File: blk03411.txt
@j>=:BNB.BNB:bnb16a5yy72z4xfmxs9dvyed3tu07ah0jf0rmhu4hl:703498::0 FjDOUT:4E3B71F9CA4E0B95C84594614BF663BEFB1DA991F7B148A7920086AD82E5D7EE Bj@=:BNB.BNB:bnb1xng76c5swx9ejr7l96ep85zqsxwurdwfk6u05k:14484318::0 Bj@=:ETH.ETH:0xEF2Fd2120200BC83B46D7fB1E9B7A4F49D480A75:12758898::0 Aj?=:BNB.BNB:bnb1zz2qw0gfgr7pum8ms5rj5tg0lsu4gk0h3ytgnp:2584013::0 OjLL=:BNB.BUSD-BD1:bnb1zmepfrhduexjjmp6t3yqslq4d7p32dq5j8ds00:1033182591235:te:0 DjB=:ETH.ETH:0xBeE023555FBE6322E6005AeDAE95762D47444fAC:62789920:te:0 KjI=:BNB.BUSD-BD1:bnb1470t5trf5za6g7r5qyc6wsjf9vca0yqww02kkf:4885832499:te:0 (((((((((((((((((((((((((((((((((((((((((((((((((( text/plain;charset=utf-8 A time capsule is an opportunity for wisdom passed on to future generations. The blockchain acts as a time capsule for future generations, allowing us to inscribe an immortal message that can be viewed centuries into the future. O Bitcoiners of future generations, we dream of your lifetimes. How will our decisions impact your lives, for better or worse? This message is both a prayer and a question to the universe. Will you learn from your past and fallacies? Use this opportunity to provide insight, and medicine Lito our reckless nature. Bitcoin is immortal, and here you will find a one-way phone line into the future.h! <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#94bc45" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> c/Foundry USA Pool #dropgold/ LjJ=:BNB.BUSD-BD1:bnb1np7wc88ym8tnjtwheskx4hn8jgnyfwuqexlx5l:28672963516:te:0 DjB=:ETH.ETH:0xBeE023555FBE6322E6005AeDAE95762D47444fAC:14797649:te:0 <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#8a19bc" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#aa0157" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#9f5ece" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#7f7733" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz "!&+7/&)4)!"0A149;>>>%.DIC<H7=>; ;("(;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; "n0@dXdj<J`rzvV^Xdnn liTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:Attrib='http://ns.attribution.com/ads/1.0/'> <rdf:li rdf:parseType='Resource'> <Attrib:Created>2023-02-13</Attrib:Created> <Attrib:ExtId>6dc27438-2b53-4c8e-b870-980abacaf095</Attrib:ExtId> <Attrib:FbId>525265914179580</Attrib:FbId> <Attrib:TouchType>2</Attrib:TouchType> <rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'> <rdf:li xml:lang='x-default'>Astonauts - 11</rdf:li> <rdf:Description rdf:about='' xmlns:pdf='http://ns.adobe.com/pdf/1.3/'> <pdf:Author>ps20183089</pdf:Author> <rdf:Description rdf:about='' xmlns:xmp='http://ns.adobe.com/xap/1.0/'> <xmp:CreatorTool>Canva</xmp:CreatorTool> $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ Aj?=:BNB.BNB:bnb1470t5trf5za6g7r5qyc6wsjf9vca0yqww02kkf:97989:te:0 <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#74d4aa" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#5f8f98" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#6a3221" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz "!&+7/&)4)!"0A149;>>>%.DIC<H7=>; ;("(;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz yhttp://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta M xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:64cea8c0-51e7-4e55-9fb7-e67bed24b018" xmpMM:InstanceID="xmp.iid:7a3a1574-12a2-4aa6-83d5-08c7797892e4"M xmpMM:OriginalDocumentID="xmp.did:38e9bf06-3bf5-4acb-a170-2f6dc65ad793" dc:Format="image/jpeg" GIMP:API="2.0" GIMP:Platform="Mac OS" GIMP:TimeStamp="1676346746569587" GIMP:Version="2.10.30" xmp:CreatorTool="GIMP 2.10"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:14cf5e76-dfda-4426-bd36-2de474d87f31" stEvt:softwareAgent="Gimp 2.10 (Mac OS)" stEvt:when="2023-02-13T22:52:26-05:00"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright Apple Inc., 2017 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Adobe Photoshop 22.1 (Windows) cropWhenPrintingbool transparencyDitherAlgorithmenum transparencyDitherAmountlong HTMLBackgroundSettingsObjc BackgroundColorBluelong BackgroundColorGreenlong BackgroundColorRedlong BackgroundImagePathTEXT UseImageAsBackgroundbool AlwaysAddAltAttributebool FileSavingSettingsObjc DuplicateFileNameBehaviorlong HtmlFileNameComponentsVlLs ImageSubfolderNameTEXT NameCompatibilityObjc NameCompatWindowsbool OutputMultipleFilesbool SavingFileNameComponentsVlLs SliceFileNameComponentsVlLs UseImageSubfolderbool UseLongExtensionsbool GoLiveCompatiblebool ImageMapLocationlong IncludeZeroMarginsbool SpacersEmptyCellslong SpacersHorizontallong UseLongHTMLExtensionbool MetadataOutputSettingsObjc AddXMPSourceFileURIbool WriteXMPToSidecarFilesbool " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c005 79.164590, 2020/12/09-11:57:44 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmM lns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop CC 2015 (Windows)" xmp:CreateDate="2021-04-06T18:29:34+03:00" xmp:ModifyDate="2023-02-14T13:19:40+04:00" xmp:MetadataDate="2023-02-14T13:19:40+04:00" dc:format="image/jpeg" photoshop:ColorMode="3" xmpMM:InstanceID="xmp.iid:5a9b44bd-36f7-af4c-8ddd-7748ee881d1e" xmpMM:DocumentID="adobe:docid:photoshop:4605e43c-6625-7d46-8b44-700580b20a32" xmpMM:OriginalDocumentID="xmp.did:fa36948d-d597-2d4f-8c83-161e9adc115a"> <photoshop:DocumM entAncestors> <rdf:Bag> <rdf:li>adobe:docid:photoshop:05e5cae0-8436-0c42-9166-097c2a91de8d</rdf:li> <rdf:li>adobe:docid:photoshop:0715d466-ca4e-c949-8a7b-b7738a31458a</rdf:li> <rdf:li>adobe:docid:photoshop:1025ca46-c544-11ec-a8dd-879706ff01ac</rdf:li> <rdf:li>adobe:docid:photoshop:179e26ae-ac21-11ec-8492-e82857642bc9</rdf:li> <rdf:li>adobe:docid:photoshop:1a44f29e-d913-11eb-bf95-a62551f149d0</rdf:li> <rdf:li>adobe:docid:photoshop:2bec54e6-a2c2-11eb-abfc-e5b9ba12c377</rdf:li> <rdf:li>adobe:docid:photoshop:35f02a7c-5M 539-184b-ae57-6406d162c756</rdf:li> <rdf:li>adobe:docid:photoshop:50fae968-2cee-11ec-a0eb-eb2644101924</rdf:li> <rdf:li>adobe:docid:photoshop:54d9a0c5-a384-11ec-9469-913a8dfb9a4d</rdf:li> <rdf:li>adobe:docid:photoshop:59944642-c33d-7147-b11c-535218f63dab</rdf:li> <rdf:li>adobe:docid:photoshop:59ebded0-842a-11ec-9a41-a618b0b44948</rdf:li> <rdf:li>adobe:docid:photoshop:5ab31c48-5f35-11ec-9b04-d151900b5a20</rdf:li> <rdf:li>adobe:docid:photoshop:5c46e872-8b4e-11ec-ae84-b95ef1ebbd4c</rdf:li> <rdf:li>adobe:docid:photoshoM p:63d8ef67-c504-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:7557402f-7207-11ec-b40e-f8b8942e67c0</rdf:li> <rdf:li>adobe:docid:photoshop:76f5c79c-c384-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:8121ede9-9eab-11eb-9b31-9be16abe8e48</rdf:li> <rdf:li>adobe:docid:photoshop:8a6e25cb-e0c5-11ec-956f-d5af5d10d567</rdf:li> <rdf:li>adobe:docid:photoshop:91f77e6a-7ac7-11ec-afc9-97a47fcc03f0</rdf:li> <rdf:li>adobe:docid:photoshop:94b006f6-1fb4-11ed-88a3-c54808fec630</rdf:li> <rdf:li>adobe:doM cid:photoshop:9a0ccf07-1d54-11ec-b9df-f37e6a19565b</rdf:li> <rdf:li>adobe:docid:photoshop:9be0e1c9-be61-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:b536a12b-7a05-11ec-afc9-97a47fcc03f0</rdf:li> <rdf:li>adobe:docid:photoshop:b7e9e60a-d915-11eb-bf95-a62551f149d0</rdf:li> <rdf:li>adobe:docid:photoshop:ba554f49-bc7a-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:bd0c769e-c773-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:c24dd136-ae41-11eb-b310-f483973798b5</rdf:li> <rdfM :li>adobe:docid:photoshop:ccc20e8b-9eb0-11eb-9b31-9be16abe8e48</rdf:li> <rdf:li>adobe:docid:photoshop:d7461191-f467-11eb-89a4-a784cc65f8bd</rdf:li> <rdf:li>adobe:docid:photoshop:d8870fde-c3a6-11eb-bc1b-fe3a6c853fb1</rdf:li> <rdf:li>adobe:docid:photoshop:dae56c96-153a-11ec-af67-b1534ab9d843</rdf:li> <rdf:li>adobe:docid:photoshop:e6d5ee28-72ef-11ec-bfab-e14d7f2e3fda</rdf:li> <rdf:li>xmp.did:28CB92A1AD1711EB8A26F9FF906B89F1</rdf:li> <rdf:li>xmp.did:38F87AAEA9D611EBBAE395DE687C6803</rdf:li> <rdf:li>xmp.did:40C2E0EBB801M 11EBAFE4F6C2E9269301</rdf:li> <rdf:li>xmp.did:D988A02B7AD311ECA9CB99941B0A6A86</rdf:li> <rdf:li>xmp.did:ee28af6e-adac-0147-86f3-18c958f404ce</rdf:li> <rdf:li>xmp.did:fa36948d-d597-2d4f-8c83-161e9adc115a</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:fa36948d-d597-2d4f-8c83-161e9adc115a" stEvt:when="2021-04-06T18:29:34+03:00" stEvt:softwareAgent="Adobe Photoshop CC 2015 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xM mp.iid:dad318dc-42fd-dc4a-b9d8-38769b1d6793" stEvt:when="2021-04-13T13:49:22+03:00" stEvt:softwareAgent="Adobe Photoshop CC 2015 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:c558dbaa-d1bf-cf4d-81cc-cfd2c19ef3ec" stEvt:when="2023-02-14T13:19:40+04:00" stEvt:softwareAgent="Adobe Photoshop 22.1 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="cM onverted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:5a9b44bd-36f7-af4c-8ddd-7748ee881d1e" stEvt:when="2023-02-14T13:19:40+04:00" stEvt:softwareAgent="Adobe Photoshop 22.1 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:c558dbaa-d1bf-cf4d-81cc-cfd2c19ef3ec" stRef:documentID="adobe:docid:photoshop:44373315-a63f-ab4a-98ca-0adeeb2caee0" stRef:originalDocumentID="xmp.did:fa36948d-d597-2d4f-8c83-161e9M adc115a"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 HHHHHHHHHHHHHHHHHHHH+a Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 (((((((((((((((((((((((((((((((((((((((((((((((((( "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA iTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.M adobe.com/exif/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <exif:PixelXDimension>1008</exif:PixelXDimension> <exif:UserComment>Screenshot</exif:UserComment> <exif:PixelYDimension>1208</exif:PixelYDimension> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> <tiff:YResolution>144</tiff:YResolution> <tiff:XResolution>144</tiff:XResolution> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA -iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshoM p/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" exif:PixelXDimension="702" exif:PixelYDimension="686" exif:UserComment="Screenshot" xmp:CreateDate="2023-02-14T07:23:54+02:00" xmp:ModifyDate="2023-02-14T07:30:32+02:00" xmp:MetadataDate="2023-02-14T07:30:32+02:00" dc:format="image/png" photoshop:ColorMode="3" xmpMM:InstanceID="xmp.iid:2ede53f8-cdf1-4d23-a249-0051d6bc0511" xmpMM:DocumentID="adobe:docid:photoshop:6fba53f6-7db4-5b49-add1-92a1ab817049" M xmpMM:OriginalDocumentID="xmp.did:656db73f-e242-4b13-966d-a6a80ea58029"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:656db73f-e242-4b13-966d-a6a80ea58029" stEvt:when="2023-02-14T07:30:32+02:00" stEvt:softwareAgent="Adobe Photoshop 24.0 (Macintosh)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:2ede53f8-cdf1-4d23-a249-0051d6bc0511" stEvt:when="2023-02-14T07:30:32+02:00" stEvt:softwareAgent="Adobe Photoshop 24.0 (Macintosh)" stEvt:changed="/"/> </rdf:SM eq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\] P XXXXXXXXXXXXXXXXXXXXX^s:N .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 watercolour guache painting style of Wendy Sharpe 1watercolour guache painting style of Wendy Sharpe8BIM %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 I|I|I|I|I|I|I|Dm Bqc 2023-02-14T18:39:48+00:00 2023-02-14T18:39:48+00:00v 2023-02-14T18:39:49+00:00 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T11:51:20+00:00 2023-02-14T11:51:20+00:00 2023-02-14T11:51:21+00:00 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 1^1^1^1^1^1^1^1^1^1^1^ Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Q4^JtVJtVLtNJtNJtNJtNJtNJj z}S}SwSoCS}C}CC}oC}Svv^^vo;L <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 (((((((((((((((((((((((((((((((((((((((((((((((((( UflagsUvalueYtimescaleUepoch F2-92BE-D5655135DB45 FA2A59F7-269E-440B-8615-A26DAD83029F 0C5FA6DE-403A-4312-B54F-821206D8A551 iPhone 12 Pro Max back triple camera 5.1mm f/1.6 Whttp://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" M xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" exif:CompositeImage="2" photoshop:DateCreated="2023-02-13T12:37:05.246" xmp:ModifyDate="2023-02-13T12:37:05" xmp:CreateDate="2023-02-13T12:37:05.246" xmp:CreatorTool="16.1"/> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz !(!!!!!!((((((((00000088888?????????? B-%-BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 i3FU6eSfS6e3fS6e3fS4e b1B1F1F1B1F1F1F1F1F1B9 JSON{"accessors" : [{"bufferView" : 0, "byteOffset" : 0, "componentType" : 5123, "count" : 6, "type" : "SCALAR", "max" : [4], "min" : [0]}, {"bufferView" : 1, "byteOffset" : 0, "componentType" : 5126, "count" : 5, "type" : "VEC3", "max" : [10, 0, 10.924919128417969], "min" : [-10, 0, -10.924919128417969], "name" : "POSITION"}, {"bufferView" : 1, "byteOffset" : 12, "componentType" : 5126, "count" : 5, "type" : "VEC2", "max" : [1, -0], "min" : [0, -1], "name" : "TEXCOORD_0"}, {"bufferView" : 1, "byteOM ffset" : 20, "componentType" : 5126, "count" : 5, "type" : "VEC3", "max" : [0, 1.0000044107437134, 0], "min" : [0, 1.0000044107437134, 0], "name" : "NORMAL"}], "asset" : {"generator" : "Aspose.3D 23.1", "version" : "2.0"}, "buffers" : [{"byteLength" : 175116}], "bufferViews" : [{"buffer" : 0, "byteOffset" : 0, "byteLength" : 12, "target" : 34963}, {"buffer" : 0, "byteOffset" : 16, "byteLength" : 192, "byteStride" : 32, "target" : 34962}, {"buffer" : 0, "byteOffset" : 212, "byteLength" : 174903}], "images" : [{"mimeM Type" : "image/jpeg", "bufferView" : 2}], "materials" : [{"name" : "", "pbrMetallicRoughness" : {"baseColorFactor" : [0.8, 0.8, 0.8, 1], "baseColorTexture" : {"index" : 0, "texCoord" : 0}, "metallicFactor" : 0, "roughnessFactor" : 0}, "emissiveFactor" : [0, 0, 0], "alphaMode" : "OPAQUE", "doubleSided" : false}], "meshes" : [{"primitives" : [{"attributes" : {"POSITION" : 1, "TEXCOORD_0" : 2, "NORMAL" : 3}, "indices" : 0, "material" : 0, "mode" : 4}], "name" : ""}], "nodes" : [{"mesh" : 0, "name" : ""}], "samplers" :M [{"magFilter" : 9729, "minFilter" : 9729, "wrapS" : 10497, "wrapT" : 10497}], "scene" : 0, "scenes" : [{"nodes" : [0]}], "textures" : [{"sampler" : 0, "source" : 0, "name" : ""}]} '#*" "*#>1++1>H<9<HWNNWmhm '#*" "*#>1++1>H<9<HWNNWmhm y[9]9[9[9[9]9]9]9]9]9]9[9]9]9]9]9]9]9] Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 b&"b&"b&"b&"b&"b&"b&"b' """"""""""""""""""""""""&"b&"b' 444444444444444444!.\: '@'@'@'@'@'@'@'@'@'@'@'@'@ /)D/)D/)D/)D/)D/)D/)D/)D/)D/)D/)D/)D/)U .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Created with ezgif.com APNG maker~ @tDGtDGtDGtDGtDGtDGtDGtDGt EGtDGtDGtDGtDGtDGtDGtDGtD ]tDGtDGtDGtDGtDGtDGtDGtDGt "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 FqVqVqVqVqVqVqVqVqV| ohttp://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:A7BB28E79DABED1194F49AA549D39DBC" xmpMM:DocumentID="xmp.did:F4FF4FCBABCB11EDBBE6FCB266F49285" xmpMM:InstanceID="xmp.iid:F4FF4FCAABCB11EDBBE6FCB266F49285" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:2FDC2646C5ABED1194F49AA549D39DBC" stRef:documentID="xmp.did:A7BB28E79DABED1194F49AA549D39DBC"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz HIJSTUVWXYZcdefghijstuvwxyz '''''''''''''''''''''''''''''''''''''''''''''''''' "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA text/plain;charset=utf-8 c/Foundry USA Pool #dropgold/ .................................................. "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.5.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:Attrib="http://ns.attribution.com/ads/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" tiff:ImageLength="360" tiff:ImageWidth="360" tiff:ResolutionUnit="2" tiff:XResolution="96/1" tiff:YResolution="96/1" xmp:CreatorTool="Canva" xmp:ModifyDate="2023-02-14T01:01:06+01:00" xmp:MetadataDate="2023-02-14T01:01:06+01:00" exif:PixelXDimension="360" exif:PixelYDimension="360" exif:ColorSpace="1" photoshop:ICCProfile="sRGB IEC61966-2.1"> Attrib:Created="2023-02-13" Attrib:ExtId="3bf5ee80-3080-4e72-aa94-28510a6535c8" Attrib:FbId="525265914179580" Attrib:TouchType="2"/> <rdf:li>Linh Kizz</rdf:li> <rdf:li xml:lang="x-default">background - 1</rdf:li> stEvt:action="produced" stEvt:softwareAgent="Affinity Photo 1.10.5" stEvt:when="2023-02-14T01:01:06+01:00"/> </rdf:Description> <?xpacket end="r"?>, iCCPsRGB IEC61966-2.1 R)-*J/*L-(L-*L+,LS6i http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:204041DBAB2911ED93C2B1BDA6CD4400" xmpMM:InstanceID="xmp.iid:204041DAAB2911ED93C2B1BDA6CD4400" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 2023-02-14T16:58:25+00:00] 2023-02-14T16:58:25+00:00, 2023-02-14T16:58:31+00:00C Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 JEJEJEJEJEJEJEJEJEJEJEJEJEJEJEJEQ Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA text/plain;charset=utf-8 "name": "Ordinal Boss", "description": "Collectible cards featuring Mr. Ordinal, the Bitcoin Boss.", "creator": "OxfordYazuka", "max_supply": 10, "first_inscribed": "2023-02-11 09:23:03 UTC", "last_inscribed": "22023-02-11 09:51:26 UTC", "collection_image_inscription_id": "ef58b3553b38e553cd254b1ca863c1d555c8e424afe3880cae06048c2c17a23ai0" "name": "Ordinal Boss #1", lection_item_id": "1", "inscription_id": "090a46f7b5ab681304810be55f4ff706d6dcfd8a4db860370a031246470f95f9i0", "image_hash": "49216611c5d060f79425e0482f695673" "name": "Ordinal Boss #2", "collection_item_id": "2", "inscription_id": "e65a145b755c55adfe373a52690c504ad010d6470ccd2e8005b35d3b9982ffcci0", "image_hash": "b6b94a87da435cbba8b5ca0d4c81dda5" "name": "Ordinal Boss #3", "collection_item_id": "3", "inscription_id": "a7aca0b18177922de5153f97a87ccf8ef464f8936ba4c328f3a83a5190805462i0", "image_hash": "e578844e5525a54478373807b77a288f" "name": "Ordinal Boss #4", "collection_item_id": "4", "inscription_id": "5fbe3662a3b7d9b806b06337e85fc133f0855c2133cd91d5fa301cd3861a592fi0", "image_hash": "47f97cbcf0f04f221cd74fd639a45ebb" "name": "Ordinal BosM "collection_item_id": "5", "inscription_id": "9fd2ed377676b90c6fdf97fffc13939cfb1c2a6bc35675144bb902aec85eb3b9i0", "image_hash": "32282152a09cf4d4cc925eb77eda77e3" "name": "Ordinal Boss #6", "collection_item_id": "6", "inscription_id": "65f9bf6dafe47244b82188c5c16b6f8f6b20a85b46fe54a8d1a7b431f2335ef7i0", "image_hash": "f862d9af22a7a9ee16e0a8db78646bea" "name": M "collection_item_id": "7", "inscription_id": "e5fb2d230d079d4f61c4ea15425c4965d6c1882d51a32c76f5fd8a46212396cci0", "image_hash": "5ff1014e477d728d7b37b0aac9b9f966" "name": "Ordinal Boss #8", "collection_item_id": "8", "inscription_id": "7a62451b1b2d4c3a54666119c97c1bd3e2a728219b6481196a9b2f3c7cf7df23i0", "image_hash": "ffb03272a348444178c4e1160fd809a6" "name": "Ordinal Boss #9", "collection_item_id": "9", "inscription_id": "fb72920c866993d476d958cbbc7c619909d8a687fc73542032f590fc781c1b51i0", "image_hash": "1f70b9740e1b26d1deff0f805a46737a" "name": "Ordinal Boss #10", "collection_item_id": "10", "inscription_id": "38d20e39b7636216c2a31a71c4e54b50d7b66d7adab82493ce77e2e932e49e13i0", "image_hash": "70b5da2844a3956fd7c50a11f2d8fd1a" Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 A.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA.vA ##)*-*)#66;;66AAAAAAAAAAAAAAA ,8(####(825---52==88==AAAAAAAAAAAAAAA ()*89:HIJWXYZghijwxyz ()*789:FGHIJUVWXYZdefghijstuvwxyz !22222222222222222222222222222222222222222222222222 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?>'B;8J24KI7XWIa[Ib[ )Optimized with https://ezgif.com/optimize ('&-?%49)5.08E):F6;;(?>&B<7GP9HS>JK6L04N3-PRFQP1UNVVcKWXIZjj\`Xb[Hf[UhP6jiHoROpp3qqUrllxwh{u\ IT<OO1QP1WXIZjj\`Xb[Hf[UhP6h\(jiHpp3qqUrllw F'&W(&,;;)IT<KK6PRFQP1\`Xc[Hf[Ugq kiInNSpp3qqUrllxwh{s[ +49)5.078(8E):F6>)7D9M :F6DIJ8L04N&"N3-O7KPRFQP1UNUWXIX.EYfM[`Wc[HgeFhP6hY)i9JiXVkiImlTnNSoROoTmpp3q +49)5.060N77)8E)=(7E89F5DFK HJ7L04L9oMHnN'#N3-O7KPRFQP1RJqUNUUP 5.060N9G.=(7E88F5CGP9IJ5IU;L04MHnN'%N3-O7KPRFQP1UNTUf5W/FWYHX 5YfM[`Wc[HgeFhP6j7KkS/kiIlTWnNSnjToROoTmpp3q F(&-('&+6&5.061N7K,9G/:F6<(7E7DE88IJ5L04L9oN'&O7KPRFRJqU0GUNTWSdZjj[`W`Q %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %.+-/------0-//+-.--/-----/-.--//+-+-----+--------- %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 "-)#""#)8/////8A;;;;;;AAAAAAAAAAAAAAAAAAAAAAAAAAAAA #1?1&&1?A?;/;?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 r&G"dr&E"dr&G"dr&G"d ]6]6]6]6]6]6]6]6]6]? n .g2fs&g2fs&g2fs&g2fs&g2fs&g2fs&i2f &i2fs&g2fs&g2fs&e2fS&e2fs&g2fs&g2fs&g2fs&g2fs&g2fs&e2fS&e2fS&e2fs&g2fs&e0fS%j^ 1:1:1:1:1:1:1:1:1:1:7u text/plain;charset=utf-8 as delivered by XCIII = 418 to DCLXVI 1. Had! The manifestation of Nuit. 2. The unveiling of the company of heaven. 3. Every man and every woman is a star. 4. Every number is infinite; there is no difference. 5. Help me, o warrior lord of Thebes, in my unveiling before the Children of men! 6. Be thou Hadit, my secret centre, my heart & my tongue! 7. Behold! it is revealed by Aiwass the minister of Hoor-paar-kraat. . The Khabs is in the Khu, not the Khu in the Khabs. 9. Worship then the Khabs, and behold my light shed over you! 10. Let my servants be few & secret: they shall rule the many & the known. 11. These are fools that men adore; both their Gods & their men are fools. 12. Come forth, o children, under the stars, & take your fill of love! 13. I am above you and in you. My ecstasy is in yours. My joy is to see your joy. 14. Above, the gemmed azure is The naked splendour of Nuit; She bends in ecstasy tM The secret ardours of Hadit. The winged globe, the starry blue, Are mine, O Ankh-af-na-khonsu! 15. Now ye shall know that the chosen priest & apostle of infinite space is the prince-priest the Beast; and in his woman called the Scarlet Woman is all power given. They shall gather my children into their fold: they shall bring the glory of the stars into the hearts of men. 16. For he is ever a sun, and she a moon. But to him is the winged secret flame, and to her the stooping starlight. 18. Burn upon their brows, o splendrous serpent! 19. O azure-lidded woman, bend upon them! 20. The key of the rituals is in the secret word which I have given unto him. 21. With the God & the Adorer I am nothing: they do not see me. They are as upon the earth; I am Heaven, and there is no other God than me, and my lord Hadit. 22. Now, therefore, I am known to ye by my name Nuit, and to him by a secret name which I will give him when at last he knoweth me. Since I am Infinite Space, M and the Infinite Stars thereof, do ye also thus. Bind nothing! Let there be no difference made among you between any one thing & any other thing; for thereby there cometh hurt. 23. But whoso availeth in this, let him be the chief of all! 24. I am Nuit, and my word is six and fifty. 25. Divide, add, multiply, and understand. 26. Then saith the prophet and slave of the beauteous one: Who am I, and what shall be the sign? So she answered him, bendingdown, a lambent flame of blue, all-touching, all penetranM t, her lovely hands upon the black earth, & her lithe body arched for love, and her soft feet not hurting the little flowers: Thou knowest! And the sign shall be my ecstasy, the consciousness of the continuity of existence, the omnipresence of my body. 27. Then the priest answered & said unto the Queen of Space, kissing her lovely brows, and the dew of her light bathing his whole body in a sweet-smelling perfume of sweat: O Nuit, continuous one of Heaven, let it be ever thus; that men speak not of Thee as One buM t as None; and let them speak not of thee at all, since thou art continuous! 28. None, breathed the light, faint & faery, of the stars, and two. 29. For I am divided for love's sake, for the chance of union. 30. This is the creation of the world, that the pain of division is as nothing, and the joy of dissolution all. 31. For these fools of men and their woes care not thou at all! They feel little; what is, is balanced by weak joys; but ye are my chosen ones. 32. Obey my prophet! follow out the ordeaM ls of my knowledge! seek me only! Then the joys of my love will redeem ye from all pain. This is so: I swear it by the vault of my body; by my sacred heart and tongue; by all I can give, by all I desire of ye all. 33. Then the priest fell into a deep trance or swoon, & said unto the Queen of Heaven; Write unto us the ordeals; write unto us the rituals; write unto us the law! 34. But she said: the ordeals I write not: the rituals shall be half known and half concealed: the Law is for all. writest is the threefold book of Law. 36. My scribe Ankh-af-na-khonsu, the priest of the princes, shall not in one letter change this book; but lest there be folly, he shall comment thereupon by the wisdom of Ra-Hoor-Khuit. 37. Also the mantras and spells; the obeah and the wanga; the work of the wand and the work of the sword; these he shall learn and teach. 38. He must teach; but he may make severe the ordeals. 39. The word of the Law is THELEMA. 40. Who calls us Thelemites will do no wrong, if heM look but close into the word. For there are therein Three Grades, the Hermit, and the Lover, and the man of Earth. Do what thou wilt shall be the whole of the Law. 41. The word of Sin is Restriction. O man! refuse not thy wife, if she will! O lover, if thou wilt, depart! There is no bond that can unite the divided but love: all else is a curse. Accursed! Accursed be it to the aeons! Hell. 42. Let it be that state of manyhood bound and loathing. So with thy all; thou hast no right but to do thy will. o that, and no other shall say nay. 44. For pure will, unassuaged of purpose, delivered from the lust of result, is every way perfect. 45. The Perfect and the Perfect are one Perfect and not two; nay, are none! 46. Nothing is a secret key of this law. Sixty-one the Jews call it; I call it eight, eighty, four hundred & eighteen. 47. But they have the half: unite by thine art so that all disappear. 48. My prophet is a fool with his one, one, one; are not they the Ox, and none by the Book? te are all rituals, all ordeals, all words and signs. Ra-Hoor-Khuit hath taken his seat in the East at the Equinox of the Gods; and let Asar be with Isa, who also are one. But they are not of me. Let Asar be the adorant, Isa the sufferer; Hoor in his secret name and splendour is the Lord initiating. 50. There is a word to say about the Hierophantic task. Behold! there are three ordeals in one, and it may be given in three ways. The gross must pass through fire; let the fine be tried in intellect, and the lofty cM hosen ones in the highest. Thus ye have star & star, system & system; let not one know well the other! 51. There are four gates to one palace; the floor of that palace is of silver and gold; lapis lazuli & jasper are there; and all rare scents; jasmine & rose, and the emblems of death. Let him enter in turn or at once the four gates; let him stand on the floor of the palace. Will he not sink? Amn. Ho! warrior, if thy servant sink? But there are means and means. Be goodly therefore: dress ye all in fine apparel; M eat rich foods and drink sweet wines and wines that foam! Also, take your fill and will of love as ye will, when, where and with whom ye will! But always unto me. 52. If this be not aright; if ye confound the space-marks, saying: They are one; or saying, They are many; if the ritual be not ever unto me: then expect the direful judgments of Ra Hoor Khuit! 53. This shall regenerate the world, the little world my sister, my heart & my tongue, unto whom I send this kiss. Also, o scribe and prophet, though thou beM of the princes, it shall not assuage thee nor absolve thee. But ecstasy be thine and joy of earth: ever To me! To me! 54. Change not as much as the style of a letter; for behold! thou, o prophet, shalt not behold all these mysteries hidden therein. 55. The child of thy bowels, he shall behold them. 56. Expect him not from the East, nor from the West; for from no expected house cometh that child. Aum! All words are sacred and all prophets true; save only that they understand a little; solve the first half M of the equation, leave the second unattacked. But thou hast all in the clear light, and some, though not all, in the dark. 57. Invoke me under my stars! Love is the law, love under will. Nor let the fools mistake love; for there are love and love. There is the dove, and there is the serpent. Choose ye well! He, my prophet, hath chosen, knowing the law of the fortress, and the great mystery of the House of God. All these old letters of my Book are aright; but [Tzaddi] is not the Star. This also is secret: my pM rophet shall reveal it to the wise. 58. I give unimaginable joys on earth: certainty, not faith, while in life, upon death; peace unutterable, rest, ecstasy; nor do I demand aught in sacrifice. 59. My incense is of resinous woods & gums; and there is no blood therein: because of my hair the trees of Eternity. 60. My number is 11, as all their numbers who are of us. The Five Pointed Star, with a Circle in the Middle, & the circle is Red. My colour is black to the blind, but the blue & gold are seen of the sM eeing. Also I have asecret glory for them that love me. 61. But to love me is better than all things: if under the night stars in the desert thou presently burnest mine incense before me, invoking me with a pure heart, and the Serpent flame therein, thou shalt come a little to lie in my bosom. For one kiss wilt thou then be willing to give all; but whoso gives one particle of dust shall lose all in that hour. Ye shall gather goods and store of women and spices; ye shall wear rich jewels; ye shall exceed the natiM ons of the earth in spendour & pride; but always in the love of me, and so shall ye come to my joy. I charge you earnestly to come before me in a single robe, and covered with a rich headdress. I love you! I yearn to you! Pale or purple, veiled or voluptuous, I who am all pleasure and purple, and drunkenness of the innermost sense, desire you. Put on the wings, and arouse the coiled splendour within you: come unto me! 62. At all my meetings with you shall the priestess say -- and her eyes shall burn with desire M as she stands bare and rejoicing in my secret temple -- To me! To me! calling forth the flame of the hearts of all in her love-chant. 63. Sing the rapturous love-song unto me! Burn to me perfumes! Wear to me jewels! Drink to me, for I love you! I love you! 64. I am the blue-lidded daughter of Sunset; I am the naked brilliance of the voluptuous night-sky. 66. The Manifestation of Nuit is at an end. 1. Nu! the hiding of Hadit. 2. Come! all ye, and learn the secret thaM t hath not yet been revealed. I, Hadit, am the complement of Nu, my bride. I am not extended, and Khabs is the name of my House. 3. In the sphere I am everywhere the centre, as she, the circumference, is nowhere found. 4. Yet she shall be known & I never. 5. Behold! the rituals of the old time are black. Let the evil ones be cast away; let the good ones be purged by the prophet! Then shall this Knowledge go aright. 6. I am the flame that burns in every heart of man, and in the core of every star. I am LM ife, and the giver of Life, yet therefore is theknowledge of me the knowledge of death. 7. I am the Magician and the Exorcist. I am the axle of the wheel, and the cube in the circle. "Come unto me" is a foolish word: for it is I that go. 8. Who worshipped Heru-pa-kraath have worshipped me; ill, for I am the worshipper. 9. Remember all ye that existence is pure joy; that all the sorrows are but as shadows; they pass & are done; but there is that which remains. 10. O prophet! thou hast ill will to learn tM 11. I see thee hate the hand & the pen; but I am stronger. 12. Because of me in Thee which thou knewest not. 13. for why? Because thou wast the knower, and me. 14. Now let there be a veiling of this shrine: now let the light devour men and eat them up with blindness! 15. For I am perfect, being Not; and my number is nine by the fools; but with the just I am eight, and one in eight: Which is vital, for I am none indeed. The Empress and the King are not of me; for there is a further secretM 16. I am The Empress & the Hierophant. Thus eleven, as my bride is eleven. 17. Hear me, ye people of sighing! The sorrows of pain and regret Are left to the dead and the dying, The folk that not know me as yet. 18. These are dead, these fellows; they feel not. We are not for the poor and sad: the lords of the earth are our kinsfolk. 19. Is a God to live in a dog? No! but the highest are of us. They shall rejoice, our chosen: who sorroweth is not of us. 20. Beauty and strength, leaping laughter aM nd delicious languor, force and fire, are of us. 21. We have nothing with the outcast and the unfit: let them die in their misery. For they feel not. Compassion is the vice of kings: stamp down the wretched & the weak: this is the law of the strong: this is our law and the joy of the world. Think not, o king, upon that lie: That Thou Must Die: verily thou shalt not die, but live. Now let it be understood: If the body of the King dissolve, he shall remain in pure ecstasy for ever. Nuit! Hadit! Ra-Hoor-Khuit! The M Sun, Strength & Sight, Light; these are for the servants of the Star & the Snake. 22. I am the Snake that giveth Knowledge & Delight and bright glory, and stir the hearts of men with drunkenness. To worship me take wine and strange drugs whereof I will tell my prophet, & be drunk thereof! They shall not harm ye at all. It is a lie, this folly against self. The exposure of innocence is a lie. Be strong, o man! lust, enjoy all things of sense and rapture: fear not that any God shall deny thee for this. alone: there is no God where I am. 24. Behold! these be grave mysteries; for there are also of my friends who be hermits. Now think not to find them in the forest or on the mountain; but in beds of purple, caressed by magnificent beasts of women with large limbs, and fire and light in their eyes, and masses of flaming hair about them; there shall ye find them. Ye shall see them at rule, at victorious armies, at all the joy; and there shall be in them a joy a million times greater than this. Beware lest any forcM e another, King against King! Love one another with burning hearts; on the low men trample in the fierce lust of your pride, in the day of your wrath. 25. Ye are against the people, O my chosen! 26. I am the secret Serpent coiled about to spring: in my coiling there is joy. If I lift up my head, I and my Nuit are one. If I droop down mine head, and shoot forth venom, then is rapture of the earth, and I and the earth are one. 27. There is great danger in me; for who doth not understand these runes shall makM e a great miss. He shall fall down into the pit called Because, and there he shall perish with the dogs of Reason. 28. Now a curse upon Because and his kin! 29. May Because be accursed for ever! 30. If Will stops and cries Why, invoking Because, then Will stops & does nought. 31. If Power asks why, then is Power weakness. 32. Also reason is a lie; for there is a factor infinite & unknown; & all their words are skew-wise. 33. Enough of Because! Be he damned for a dog! 34. But ye, o my people, riM 35. Let the rituals be rightly performed with joy & beauty! 36. There are rituals of the elements and feasts of the times. 37. A feast for the first night of the Prophet and his Bride! 38. A feast for the three days of the writing of the Book of the Law. 39. A feast for Tahuti and the child of the Prophet--secret, O Prophet! 40. A feast for the Supreme Ritual, and a feast for the Equinox of the Gods. 41. A feast for fire and a feast for water; a feast for life and a greater feastM 42. A feast every day in your hearts in the joy of my rapture! 43. A feast every night unto Nu, and the pleasure of uttermost delight! 44. Aye! feast! rejoice! there is no dread hereafter. There is the dissolution, and eternal ecstasy in the kisses of Nu. 45. There is death for the dogs. 46. Dost thou fail? Art thou sorry? Is fear in thine heart? 47. Where I am these are not. 48. Pity not the fallen! I never knew them. I am not for them. I console not: I hate the consoled & the consM 49. I am unique & conqueror. I am not of the slaves that perish. Be they damned & dead! Amen. (This is of the 4: there is a fifth who is invisible, & therein am I as a babe in an egg. ) 50. Blue am I and gold in the light of my bride: but the red gleam is in my eyes; & my spangles are purple & green. 51. Purple beyond purple: it is the light higher than eyesight. 52. There is a veil: that veil is black. It is the veil of the modest woman; it is the veil of sorrow, & the pall of death: this is noneM of me. Tear down that lying spectre of the centuries: veil not your vices in virtuous words: these vices are my service; ye do well, & I will reward you here and hereafter. 53. Fear not, o prophet, when these words are said, thou shalt not be sorry. Thou art emphatically my chosen; and blessed are the eyes that thou shalt look upon with gladness. But I will hide thee in a mask of sorrow: they that see thee shall fear thou art fallen: but I lift thee up. 54. Nor shall they who cry aloud their folly that thou M meanest nought avail; thou shall reveal it: thou availest: they are the slaves of because: They are not of me. The stops as thou wilt; the letters? change them not in style or value! 55. Thou shalt obtain the order & value of the English Alphabet; thou shalt find new symbols to attribute them unto. 56. Begone! ye mockers; even though ye laugh in my honour ye shall laugh not long: then when ye are sad know that I have forsaken you. 57. He that is righteous shall be righteous still; he that is filthy shall bM 58. Yea! deem not of change: ye shall be as ye are, & not other. Therefore the kings of the earth shall be Kings for ever: the slaves shall serve. There is none that shall be cast down or lifted up: all is ever as it was. Yet there are masked ones my servants: it may be that yonder beggar is a King. A King may choose his garment as he will: there is no certain test: but a beggar cannot hide his poverty. 59. Beware therefore! Love all, lest perchance is a King concealed! Say you so? Fool! If heM be a King, thou canst not hurt him. 60. Therefore strike hard & low, and to hell with them, master! 61. There is a light before thine eyes, o prophet, a light undesired, most desirable. 62. I am uplifted in thine heart; and the kisses of the stars rain hard upon thy body. 63. Thou art exhaust in the voluptuous fullness of the inspiration; the expiration is sweeter than death, more rapid and laughterful than a caress of Hell's own worm. 64. Oh! thou art overcome: we are upon thee; our delight is all M over thee: hail! hail: prophet of Nu! prophet of Had! prophet of Ra-Hoor-Khu! Now rejoice! now come in our splendour & rapture! Come in our passionate peace, & write sweet words for the Kings. 65. I am the Master: thou art the Holy Chosen One. 66. Write, & find ecstasy in writing! Work, & be our bed in working! Thrill with the joy of life & death! Ah! thy death shall be lovely: whososeeth it shall be glad. Thy death shall be the seal of the promise of our age long love. Come! lift up thine heart & rejoice! WeM are one; we are none. 67. Hold! Hold! Bear up in thy rapture; fall not in swoon of the excellent kisses! 68. Harder! Hold up thyself! Lift thine head! breathe not so deep -- die! 69. Ah! Ah! What do I feel? Is the word exhausted? 70. There is help & hope in other spells. Wisdom says: be strong! Then canst thou bear more joy. Be not animal; refine thy rapture! If thou drink, drink by the eight and ninety rules of art: if thou love, exceed by delicacy; and if thou do aught joyous, let there be subtlety tM 71. But exceed! exceed! 72. Strive ever to more! and if thou art truly mine -- and doubt it not, an if thou art ever joyous! -- death is the crown of all. 73. Ah! Ah! Death! Death! thou shalt long for death. Death is forbidden, o man, unto thee. 74. The length of thy longing shall be the strength of its glory. He that lives long & desires death much is ever the King among the Kings. 75. Aye! listen to the numbers & the words: 76. 4 6 3 8 A B K 2 4 A L G M O R 3 Y X 24 89 R P S T O V A L. WM hat meaneth this, o prophet? Thou knowest not; nor shalt thou know ever. There cometh one to follow thee: he shall expound it. But remember, o chose none, to be me; to follow the love of Nu in the star-lit heaven; to look forth upon men, to tell them this glad word. 77. O be thou proud and mighty among men! 78. Lift up thyself! for there is none like unto thee among men or among Gods! Lift up thyself, o my prophet, thy stature shall surpass the stars. They shall worship thy name, foursquare, mystic, wonderfulM , the number of the man; and the name of thy house 418. 79. The end of the hiding of Hadit; and blessing & worship to the prophet of the lovely Star! 1. Abrahadabra; the reward of Ra Hoor Khut. 2. There is division hither homeward; there is a word not known. Spelling is defunct; all is not aught. Beware! Hold! Raise the spell of Ra-Hoor-Khuit! 3. Now let it be first understood that I am a god of War and of Vengeance. I shall deal hardly with them. 4. Choose ye an island! 6. Dung it about with enginery of war! 7. I will give you a war-engine. 8. With it ye shall smite the peoples; and none shall stand before you. 9. Lurk! Withdraw! Upon them! this is the Law of the Battle of Conquest: thus shall my worship be about my secret house. 10. Get the stele of revealing itself; set it in thy secret temple -- and that temple is already aright disposed -- & it shall be your Kiblah for ever. It shall not fade, but miraculous colour shall come back to it day after day. Close M it in locked glass for a proof to the world. 11. This shall be your only proof. I forbid argument. Conquer! That is enough. I will make easy to you the abstruction from the ill-ordered house in the Victorious City. Thou shalt thyself convey it with worship, o prophet, though thou likest it not. Thou shalt have danger & trouble. Ra-Hoor-Khu is with thee. Worship me with fire & blood; worship me with swords & with spears. Let the woman be girt with a sword before me: let blood flow to my name. Trample down the HeaM then; be upon them, o warrior, I will give you of their flesh to eat! 12. Sacrifice cattle, little and big: after a child. 14. Ye shall see that hour, o blessed Beast, and thou the Scarlet Concubine of his desire! 15. Ye shall be sad thereof. 16. Deem not too eagerly to catch the promises; fear not to undergo the curses. Ye, even ye, know not this meaning all. 17. Fear not at all; fear neither men nor Fates, nor gods, nor anything. Money fear not, nor laughter of the folk folly, nM or any other power in heaven or upon the earth or under the earth. Nu is your refuge as Hadit your light; and I am the strength, force, vigour, of your arms. 18. Mercy let be off; damn them who pity! Kill and torture; spare not; be upon them! 19. That stele they shall call the Abomination of Desolation; count well its name, & it shall be to you as 718. 20. Why? Because of the fall of Because, that he is not there again. 21. Set up my image in the East: thou shalt buy thee an image which I will show theeM , especial, not unlike the one thou knowest. And it shall be suddenly easy for thee to do this. 22. The other images group around me to support me: let all be worshipped, for they shall cluster to exalt me. I am the visible object of worship; the others are secret; for the Beast & his Bride are they: and for the winners of the Ordeal x. What is this? Thou shalt know. 23. For perfume mix meal & honey & thick leavings of red wine: then oil of Abramelin and olive oil, and afterward soften & smooth down with richM 24. The best blood is of the moon, monthly: then the fresh blood of a child, or dropping from the host of heaven: then of enemies; then of the priest or of the worshippers: last of some beast, no matter what. 25. This burn: of this make cakes & eat unto me. This hath also another use; let it be laid before me, and kept thick with perfumes of your orison: it shall become full of beetles as it were and creeping things sacred unto me. 26. These slay, naming your enemies; & they shall fall beforeM 27. Also these shall breed lust & power of lust in you at the eating thereof. 28. Also ye shall be strong in war. 29. Moreover, be they long kept, it is better; for they swell with my force. All before me. 30. My altar is of open brass work: burn thereon in silver or gold! 31. There cometh a rich man from the West who shall pour his gold upon thee. 32. From gold forge steel! 33. Be ready to fly or to smite! 34. But your holy place shall be untouched throughout the centuries: though witM h fire and sword it be burnt down & shattered, yet an invisible house there standeth, and shall stand until the fall of the Great Equinox; when Hrumachis shall arise and the double-wanded one assume my throne and place. Another prophet shall arise, and bring fresh fever from the skies; another woman shall awakethe lust & worship of the Snake; another soul of God and beast shall mingle in the globed priest; another sacrifice shall stain the tomb; another king shall reign; and blessing no longer be poured To the HawkM -headed mystical Lord! 35. The half of the word of Heru-ra-ha, called Hoor-pa-kraat and Ra-Hoor-Khut. 36. Then said the prophet unto the God: 37. I adore thee in the song -- I am the Lord of Thebes, and I The inspired forth-speaker of Mentu; For me unveils the veiled sky, The self-slain Ankh-af-na-khonsu Whose words are truth. I invoke, I greet Thy presence, O Ra-Hoor-Khuit! Unity uttermost showed! I adore the might of Thy breath, Supreme and terrible God, Who makest the gods and death Appear on the throne of Ra! Open the ways of the Khu! Lighten the ways of the Ka! The ways of the Khabs run through To stir me or still me! Aum! let it fill me! 38. So that thy light is in me; & its red flame is as a sword in my hand to push thy order. There is a secret door that I shall make to establish thy way in all the quarters, (these are the adorations, as thou hast written), as it is said: The light is mine; its rays consume Me: I have made a secret door Into the House of Ra and Tum, Of Khephra and of Ahathoor. I am thy Theban, O Mentu, The prophet Ankh-af-na-khonsu! By Bes-na-Maut my breast I beat; By wise Ta-Nech I weave my spell. Show thy star-splendour, O Nuit! Bid me within thine House to dwell, O winged snake of light, Hadit! Abide with me, Ra-Hoor-Khuit! 39. All this and a book to say how thou didst come hither and a reproduction of this ink and paper for ever -- for in it is the word secret & not only in the English -- and thy comment upon thM is the Book of the Law shall be printed beautifully in red ink and black upon beautiful paper made by hand; and to each man and woman that thou meetest, were it but to dine or to drink at them, it is the Law to give. Then they shall chance to abide in this bliss or no; it is no odds. Do this quickly! 40. But the work of the comment? That is easy; and Hadit burning in thy heart shall make swift and secure thy pen. 41. Establish at thy Kaaba a clerk-house: all must be done well and with business way. ordeals thou shalt oversee thyself, save only the blind ones. Refuse none, but thou shalt know & destroy the traitors. I am Ra-Hoor-Khuit; and I am powerful to protect my servant. Success is thy proof: argue not; convert not; talk not over much! Them that seek to entrap thee, to overthrow thee, them attack without pity or quarter; & destroy them utterly. Swift as a trodden serpent turn and strike! Be thou yet deadlier than he! Drag down their souls to awful torment: laugh at their fear: spit upon them! the Scarlet Woman beware! If pity and compassion and tenderness visit her heart; if she leave my work to toy with old sweetnesses; then shall my vengeance be known. I will slay me her child: I will alienate her heart: I will cast her out from men: as a shrinking and despised harlot shall she crawl through dusk wet streets, and die cold and an-hungered. 44. But let her raise herself in pride! Let her follow me in my way! Let her work the work of wickedness! Let her kill her heart! Let her be loud and adulterous! M Let her be covered with jewels, and rich garments, and let her be shameless before all men! 45. Then will I lift her to pinnacles of power: then will I breed from her a child mightier than all the kings of the earth. I will fill her with joy: with my force shall she see & strike at the worship of Nu: she shall achieve Hadit. 46. I am the warrior Lord of the Forties: the Eighties cower before me, & are abased. I will bring you to victory & joy: I will be at your arms in battle & ye shall delight to slay. SucceM ss is your proof; courage is your armour; go on, go on, in my strength; & ye shall turn not back for any! 47. This book shall be translated into all tongues: but always with the original in the writing of the Beast; for in the chance shape of the letters and their position to one another: in these are mysteries that no Beast shall divine. Let him not seek to try: but one cometh after him, whence I say not, who shall discover the Key of it all. Then this line drawn is a key: then this circle squared in its failurM e is a key also. And Abrahadabra. It shall be his child & that strangely. Let him not seek after this; for thereby alone can he fall from it. 48. Now this mystery of the letters is done, and I want to go on to the holier place. 49. I am in a secret fourfold word, the blasphemy against all gods of men. 50. Curse them! Curse them! Curse them! 51. With my Hawk's head I peck at the eyes of Jesus as he hangs upon the cross. 52. I flap my wings in the face of Mohammed & blind him. 53. With my claws I teM ar out the flesh of the Indian and the Buddhist, Mongol and Din. 54. Bahlasti! Ompehda! I spit on your crapulous creeds. 55. Let Mary inviolate be torn upon wheels: for her sake let all chaste women be utterly despised among you! 56. Also for beauty's sake and love's! 57. Despise also all cowards; professional soldiers who dare not fight, but play; all fools despise! 58. But the keen and the proud, the royal and the lofty; ye are brothers! 59. As brothers fight ye! 60. There is no law beyond DoM 61. There is an end of the word of the God enthroned in Ra's seat, lightening the girders of the soul. 62. To Me do ye reverence! to me come ye through tribulation of ordeal, which is bliss. 63. The fool readeth this Book of the Law, and its comment; & he understandeth it not. 64. Let him come through the first ordeal, & it will be to him as silver. 65. Through the second, gold. 66. Through the third, stones of precious water. 67. Through the fourth, ultimate sparks of the intiM 68. Yet to all it shall seem beautiful. Its enemies who say not so, are mere liars. 69. There is success. 70. I am the Hawk-Headed Lord of Silence & of Strength; my nemyss shrouds the night-blue sky. 71. Hail! ye twin warriors about the pillars of the world! for your time is nigh at hand. 72. I am the Lord of the Double Wand of Power; the wand of the Force of Coph Nia--but my left hand is empty, for I have crushed an Universe; & nought remains. 73. Paste the sheets from right to left anM d from top to bottom: then behold! 74. There is a splendour in my name hidden and glorious, as the sun of midnight is ever the son. 75. The ending of the words is the Word Abrahadabra. The Book of the Law is Written Do what thou wilt shall be the whole of the Law. The study of this Book is forbidden. It is wise to destroy this copy after the first reading. Whosoever disregards this does so at his own risk and peril. These are most dire. s the contents of this Book are to be shunned by all, as centres of pestilence. All questions of the Law are to be decided only by appeal to my writings, each for himself. There is no law beyond Do what thou wilt. Love is the law, love under will. The priest of the princes, %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 ~!:!:!:!:!:!:!:!:!:!:!:!: ?-/%3JANMIAHFR\vdRWoXFHf Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 &H:&J:"H:"J:"J:"H:"H '>%%>B///BG=;;=GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG ''3&3=&&=G=2=GGGDDGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T06:10:11+00:00 2023-02-14T06:10:11+00:00h, 2023-02-14T06:10:11+00:00?9 .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.5.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mM xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" exif:ColorSpace="1" exif:PixelXDimension="360" exif:PixelYDimension="360" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1" tiff:ImageLength="360" tiff:ImageWidth="360" tiff:ResolutionUnit="2" tiff:XResolution="72/1" tiff:YResolution="72/1" xmp:MetadataDate="2023-02-14T02:41:43+01:00" xmp:ModifyDate="2023-02-14T02:41:43+01:00"> xmpMM:action="prM xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-11T22:31:19+01:00"/> xmpMM:action="produced" xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-13T14:54:03+01:00"/> stEvt:action="produced" stEvt:softwareAgent="Affinity Photo 1.10.5" stEvt:when="2023-02-14T02:41:43+01:00"/> </rdf:Description> <?xpacket end="r"?>) iCCPsRGB IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 pppppppppppppppppppppp2 Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y#Y> Copyright 2007 Apple Inc., all rights reserved. %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz XiTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.5.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mM xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" exif:ColorSpace="1" exif:PixelXDimension="360" exif:PixelYDimension="360" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1" tiff:ImageLength="360" tiff:ImageWidth="360" tiff:ResolutionUnit="2" tiff:XResolution="72/1" tiff:YResolution="72/1" xmp:MetadataDate="2023-02-13T20:17:16+01:00" xmp:ModifyDate="2023-02-13T20:17:16+01:00"> xmpMM:action="prM xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-11T22:31:19+01:00"/> xmpMM:action="produced" xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-12T20:26:37+01:00"/> xmpMM:action="produced" xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-13T19:22:45+01:00"/> stEvt:action="produced" stEvt:softwareAgent="Affinity Photo 1.10.5" stEvt:when="2023-02-13T20:17:16+01:0M </rdf:Description> iCCPsRGB IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 -& %.---/--/--0--------------------------------------- c/Foundry USA Pool #dropgold/ 1 DDDGGGEEEJJJRRRPPPNNNXXXKKKTTT[[[^^^UUUcccMMMHHH```ZZZ text/plain;charset=utf-8 i am not Satoshi Nakamotoh! CjA=:ETH.ETH:0xBeE023555FBE6322E6005AeDAE95762D47444fAC:2794633:te:0 <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#54ed0f" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#3fa7fd" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#4a4a86" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> FjDOUT:1C7661127AC7EDF8A3E562069A5A9EA532AD7931B800FDBFDB2E93D51CFF0560 <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Descr$iption> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM (((((((((((((((((((((((((((((((((((((((((((((((((( %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM text/plain;charset=utf-8 4+#+44444444444444444444444446444444444444444444444444 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 vk%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%<+%< 6t %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM (((((((((((((((((((((((((((((((((((((((((((((((((( %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM text/plain;charset=utf-8 Cwelcome to bitcoin! start here: Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 s%C)C)C)C)C)C)C)C)C)AH4 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T09:37:4L|7+00:00 2023-02-14T09:37:47+00:00 2023-02-14T09:37:47+00:00 iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 5.5.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mM xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" exif:ColorSpace="1" exif:PixelXDimension="360" exif:PixelYDimension="360" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1" tiff:ImageLength="360" tiff:ImageWidth="360" tiff:ResolutionUnit="2" tiff:XResolution="72/1" tiff:YResolution="72/1" xmp:MetadataDate="2023-02-14T02:25:23+01:00" xmp:ModifyDate="2023-02-14T02:25:23+01:00"> xmpMM:action="prM xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-11T22:31:19+01:00"/> xmpMM:action="produced" xmpMM:softwareAgent="Affinity Photo 1.10.5" xmpMM:when="2023-02-13T14:54:03+01:00"/> stEvt:action="produced" stEvt:softwareAgent="Affinity Photo 1.10.5" stEvt:when="2023-02-14T02:25:23+01:00"/> </rdf:Description> <?xpacket end="r"?>V?5 iCCPsRGB IEC61966-2.1 !@yUsEUseUKEUsEUsEuKyesSs .IEC 61966-2-1 Default RGB Colour Space - sRGB -Reference Viewing Condition in IEC 61966-2-1 Copyright International Color Consortium, 2015 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.da4a7e5ef, 2022/11/22-13:50:07 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmpM .did:37DE46396DC8E111889DE6B0538927AC" xmpMM:DocumentID="xmp.did:40C89668ABE311ED82A5EABE539A8E52" xmpMM:InstanceID="xmp.iid:40C89667ABE311ED82A5EABE539A8E52" xmp:CreatorTool="Adobe Photoshop CC 2017 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:1c7e3bd0-c292-094d-b5a9-36432b201b3e" stRef:documentID="adobe:docid:photoshop:c9fbbb68-4b37-3f4f-a182-4b8722fdb8fb"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ))--))=;;;=@@@@@@@@@@ *&)###)&//**//::8::@@@@@@@@@@ Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 ~bFbFbFbFbFbFbFbFbFbF2 e$we$we$we$w]$w]$w]$Wg 6*&&*6>424>LDDL_Z_|| 6*&&*6>424>LDDL_Z_|| text/plain;charset=utf-8 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz (:3=<9387@H\N@DWE78PmQW_bghg>Mqypdx\egc /cB8Bcccccccccccccccccccccccccccccccccccccccccccccccccc c/Foundry USA Pool #dropgold/ 8j6BERNSTEIN 2.0 REG bd1ebfae-86f9-49bf-9373-89261bebfc75 7j5ion:18.QmSCRNUiCBoGANegC2jhwvFfGMqXtPWo8HAVXXD9xDu44n& Mined by AntPool806` FjDOUT:304E2DFF75680EF55C725FDD68CA67A6C741D0A92F228DBD7123FA43D043599E text/plain;charset=utf-8 Aj?=:BNB.BNB:bnb1xw4x52s40clwxcq93nywrtkewaswxl3rnvlrrs:3161339::0 FjDOUT:F0067E9F033F0BB090158C0D635E9E437420AB02D1D9D90316F9D985CCA6B82A FjDOUT:C54EFE54C7427B2981B21FC525E69AAE0CFFABC3404B106AD081D1659134F79D FjDOUT:40A078B53F19C276504BEB97E14221335B2A80E179CAE7421B04FAD02AEC1B24 orleif Sigurdardottir c/Foundry USA Pool #dropgold/ FjDOUT:989A910CF70CD655F9B432C68EEB6320BAE46F87575BA6AADB1FA482DB7C3795 FjDOUT:74ED78F6F2D7EAE171450B1029361DAFBE82BAB579949C3A827FC1DC5D3A59F2 FjDOUT:63A80A4FC380E9C245CC3279C93E0105FD4FA5297F50F9744CDD91FDD5D62475 FjDOUT:ED93673EE41E12ADB9EA3A30F8F0D3AFC409B4CBD80D113E472F9C53C4E65214 text/plain;charset=utf-8 c/Foundry USA Pool #dropgold/ FjDOUT:DF5A4DA75E46F8A3FA6D439CF9D75474161F0A1A23AA2C145B0D706133FED906 FjDOUT:AE9E8F0840F1D32775318A51BA76C322358B2B90068214354518935DE427646E FjDOUT:F178485F10CD040B0DA8EC1583C0849C8701D8A403F0E7F1F5CCC74FA438FD80 4j2DC-L5:/H6rStsflnTR7qDm4zzr0ToSUovQhDS8lcnFJT9p3Xo= ;Unrecognized input file format --- perhaps you need -targa c/Foundry USA Pool #dropgold/ Aj?=:ETH.ETH:0x042229FDD54A19CF32cF14fE40c551E37B8735dd:2626227::0 @j>=:ETH.ETH:0x0be916FAbE5fc425C9a1A40E8a1a5c314861b5e5:701659::0 Aj?=:ETH.ETH:0x716b8977eE6B92311302dD45E7C321b7725f35B8:1160736::0 Bj@=:BNB.BNB:bnb130jrx2seujla6cnpphlkgl3am609uy26gl3hse:22081107::0 CjA=:ETH.ETH:0x9deef7FCd0C4FB32C1579ef6164784061Ef58411:121248443::0 Aj?=:BNB.BNB:bnb1l8gljm8hds25seeuf3rsyerjhnse72dghe0yhh:3300824::0 Bj@=:ETH.ETH:0x41FB39D12e2D888031f223F04f5d149924041c4d:79834967::0 c/Foundry USA Pool #dropgold/ KjI=:THOR.RUNE:thor1gxy2xdjge3qr9r6ss42ffy6z5vylptu2fpfy0t:463556781416:t:30\7 FjDOUT:B6BEF7E94702365EBB234B9B116DDA930A7BFFBCDB37A075811C0403A3086BD5 IjGREFUND:024064DADCF92D422758D352635B4E19BD920E4B39BC31DCA42DB70BD2B05924 Bj@=:ETH.ETH:0x5F5633CBC323fD8E7657EBe25C9a0545DA8ae41E:21499565::0 Bj@=:ETH.ETH:0x1d7Ba3494A3c5d6Ad80B27fDCf8676d1d17B36E6:14821632::0 FjDOUT:7133535CA1BC74F0D8B3ACA70FBF1892AE3D09833AD646EA938E00F83ADE6413 FjDOUT:0630AE33BDA17B59E92109802F91F0D7BE5817AC4B75863D52D22538C5243B98 @j>=:ETH.ETH:0x28eb41fFF7eaa62E53A5856361c2230C23dE2383:804716::0 Aj?=:BNB.BNB:bnb1wk8sl98umghj880jywfr5kr02rlh3p9lj7mrr9:2248095::0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:giM mp:97a77c90-0726-40ea-b744-c59d3d4b1316" xmpMM:InstanceID="xmp.iid:06a8e6ef-4e70-4b62-8081-300a79cedfd4" xmpMM:OriginalDocumentID="xmp.did:0f290ffe-65c1-45c9-b2ec-dbc845c0ce7a" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438281575334" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T16:17:58+11:00" xmp:ModifyDate="2023:02:15T16:17:58+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instancM eID="xmp.iid:5dbacb11-9d83-4214-a8d8-6fc89cd65bd3" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T16:18:01"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M L <?xpacket end="w"?>h! " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/"M xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:ad1acaea-3199-4985-b7ac-8dda81fd89f6" xmpMM:InstanceID="xmp.iid:f5dfb46f-9b5e-49ef-a5f8-a6e5b7e16fa1" xmpMM:OriginalDocumentID="xmp.did:12eceaa3-1fa8-4517-a7f4-4349ee67d97c" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438250457338" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="202M 3:02:15T16:17:28+11:00" xmp:ModifyDate="2023:02:15T16:17:28+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:50892bcf-c3af-46bd-a6a4-d739880457e3" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T16:17:30"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M MT <?xpacket end="w"?>h! " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEveM nt#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:451e066f-9f05-4ca6-8875-97ee000f4d46" xmpMM:InstanceID="xmp.iid:4687ea41-5111-411b-81ee-c1f082a29c0b" xmpMM:OriginalDocumentID="xmp.did:c11c3c7e-a844-421a-9970-5e2c27ee7a2a" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438264113875" GIMP:Version="2.10.32" tiff:Orientation="1" xM mp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T16:17:43+11:00" xmp:ModifyDate="2023:02:15T16:17:43+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:e53230d9-c35a-42de-9cf8-1c827490bf5f" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T16:17:44"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?>h! Aj?=:BNB.BNB:bnb130jrx2seujla6cnpphlkgl3am609uy26gl3hse:3792552::0 c/Foundry USA Pool #dropgold/ Bj@=:ETH.ETH:0xf76330F6Ef040cf392C8B08e3aa8F0E73859eD5F:57577120::0 <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0117/4096 0,3,1,0,1 ~0.33857746655121446--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#9296A0" width="100%" height="100%"/> <polyline fill="#52F6A8" points="0,8 2,7 4,7 0,0 "/> <polyline fill="#F2F652" points="8,0 7,1 6,4 8,8 "/> <polyline fill="#36EEE0" points="8,8 6,7 6,7 0,8 "/> <polyline fill="#52F6A8" points="0,0 7,1 6,3 8,0 "/> /ViaBTC/Mined by amosss1/, IjGREFUND:62F2186553BEFE30368D89A554F9E6F940C5D226AA7133B07B702E63971BA036 8j6ion:170.QmTEs9Srx2QPAcAvbm9hooewEFKGEdhTjfUEHg6YPkt257 <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0118/4096 0,3,1,3,1 ~0.687729621771723--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#9296A0" width="100%" height="100%"/> <polyline fill="#52F6A8" points="0,8 7,3 6,4 0,0 "/> <polyline fill="#F2F652" points="8,0 4,3 4,3 8,8 "/> <polyline fill="#36EEE0" points="8,8 4,4 4,4 0,8 "/> <polyline fill="#F2F652" points="0,0 2,4 2,4 8,0 "/> /ViaBTC/Mined by pgv1z/, <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0119/4096 3,2,0,0,0 ~0.5642215337138623--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#F2F652" points="0,8 3,5 3,5 0,0 "/> <polyline fill="#F652A0" points="8,0 1,4 2,4 8,8 "/> <polyline fill="#52F6A8" points="8,8 5,6 5,6 0,8 "/> <polyline fill="#52F6A8" points="0,0 6,6 6,6 8,0 "/> Aj?=:ETH.ETH:0x288418d93018fdd24E4211f328d1c90449b886Ae:1358578::0 @j>=:ETH.ETH:0x1F0bAB10441F7061Bab64C5053df9EB4918302BF:339477::0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adoM be.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:555ad7b7-7549-4546-a35c-16c980108e31" xmpMM:InstanceID="xmp.iid:ae2e653b-07cb-4b22-a84a-3b7df32d209f" xmpMM:OriginalDocumentID="xmp.did:72416539-6aab-459b-8ae7-7c8332f9ad57" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676406409110344" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T07:26:47+11:00" xmp:ModifyDate="2023:02:15T07:26:47+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvM t:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:f2ff52ab-56f4-4347-8125-ea4cf22b52d4" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T07:26:49"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M L <?xpacket end="w"?>h! /ViaBTC/Mined by spwww/, IjGREFUND:5ABFC5FDBBC6AC6EE23318D9535995C26C3B1FCD8FF1E30B1C65B0FFD4C4FD9E FjDOUT:BF2DF190A4DAAAA1CC181E788B5EF9B5AE7DA1077EEE481D757B47E31936F2B9 FjDOUT:6EC5367355416CA0DF797BAC63EFEBF612BDFAD92A8B6DA434DD437FCBF99EB3 xr:d:DAFapsypyq0:8,j:47055244211,t:23021515L iTXtXML:com.adobe.xmp http://ns.adobe.com/xap/1.0/ <x:xmpmeta xmlns:x='adobe:ns:meta/'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'> <rdf:li xml:lang='x-default'>BITCOIN PUNKS #WHITE - 1</rdf:li> </rdf:Description> <rdf:Description rdf:about='' xmlns:Attrib='http://ns.attribution.com/ads/1.0/'> <Attrib:Ads> <rdf:li rdf:parseType='Resource'> <Attrib:Created>2023-02-15</Attrib:Created> <Attrib:ExtId>35e27c57-7e67-43d4-81df-8c699f4eddda</Attrib:ExtId> <Attrib:FbId>525265914179580</Attrib:FbId> <Attrib:TouchType>2</Attrib:TouchType> </Attrib:Ads> </rdf:DescriptionM <rdf:Description rdf:about='' xmlns:pdf='http://ns.adobe.com/pdf/1.3/'> <pdf:Author>Stephan Balla</pdf:Author> </rdf:Description> <rdf:Description rdf:about='' xmlns:xmp='http://ns.adobe.com/xap/1.0/'> <xmp:CreatorTool>Canva</xmp:CreatorTool> </rdf:Description> </x:xmpmeta> <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0120/4096 0,3,0,3,0 ~0.7116858910303563--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#52F6A8" points="0,8 6,6 6,6 0,0 "/> <polyline fill="#F2F652" points="8,0 1,2 3,2 8,8 "/> <polyline fill="#52F6A8" points="8,8 6,3 6,3 0,8 "/> <polyline fill="#F2F652" points="0,0 7,7 6,6 8,0 "/> UflagsUvalueYtimescaleUepoch AeL6RCUnlqxf+UZK5jsioJxkY7jq 3EB129F6-9F2F-4C44-8247-D7D637CCBC92 D713D46A-203C-4E33-BF5C-83A90C41A378 iPhone XR back camera 4.25M Yhttp://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:exif="http://ns.adobe.com/exif/1.0/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" exif:CompositeImage="2" photoshop:DateCreated="2022-03-02T23:00:09.338" xmp:ModifyDate="2022-03-02T23:00:09" xmp:CreateDate="202M 2-03-02T23:00:09.338" xmp:CreatorTool="15.3.1"/> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz @j>=:BNB.BNB:bnb1nnge9j874p0xvw6v8483664meul6x2gmh38n0t:711542::0 FjDOUT:12C06C289C6AFE34DD5CD503F68A4E3E3C0FB05C29EF225958E43EB12D82E793 FjDOUT:0CEF71AD4DEFF785A5B2DA7123C1135B0331BCA7E5F4440E8C54A2A4C987A8ED FjDOUT:EEC95D15105F6421AA90F15124681AB9C0D6622ED5B59A1F9F6CEC4F93B96E79 text/html;charset=utf-8 border: 3px solid #1b1a1b; border-style: groove dashed solid double; background-color:rgb(255, 255, 255); <div id="mainDiv" class="absolute"> <p id="ordinalID"><b></b></p> <p id="date01"><b>Aug 18, 2008 - Registration date of bitcoin.org </b></p> <p id="date02"><b>Oct 31, 2008 - Publication of the WhitePaper</b></p> <input type="hidden" iM d="bunnyid" value=""> <img with=200 height=200 src="" id="imageid"><hr> <p id="s"><b>"I change everyday"</b></p> <a id="link" target="_" href="">BitcoinBunny.in</a><br> <div ><b><p id="xNy"></p></b></div> <script language="javascript"> function daySince(date) { var seconds = Math.floor((new Date() - date) / 1000); var interval = seconds / 86400; console.log(interval); interval = (seconds / 86400)%90; return Math.floor(interval); function timeSince(date) { = Math.floor((new Date() - date) / 1000); var interval = seconds / 31536000; return Math.floor(interval) + " years"; interval = seconds / 2592000; return Math.floor(interval) + " months"; interval = seconds / 86400; return Math.floor(interval) + " days"; interval = seconds / 3600; return Math.floor(interval) + " hours"; interval = seconds / 60; return Math.floor(interval) + " minutes"; ath.floor(seconds) + " seconds"; var birthDay = new Date(2023, 1, 15, 11, 11, 11, 11); var days = timeSince(birthDay) ; var _border = "groove"; var animationSpeed = 400; var bitcoinDate0 = new Date(2008, 07, 18, 00, 00, 00, 00); var bitcoinDate1 = new Date(2008, 09, 31, 00, 00, 00, 00); var breed = "Silver Fox"; var changeColor0 = daySince(bitcoinDate0); var changeColor1 = daySince(bitcoinDate1); var _color0 = changeColor1+"00"+changeColor0; "0x0092" + _color0; document.getElementById("ordinalID").innerHTML = "<b>Bitcoin Bunny ID : "+OrdinalID + "</b>"; document.getElementById("link").href="http://www.bitcoinbunny.in/index.html?ord_id="+OrdinalID; document.getElementById("xNy").innerHTML = "Gender:"+gender+"<br>Breed: "+breed+"<br>Age: " + days; var color3 = "e6e6ff"; var prev_bitcoinlandFlag = root.bitcoinlandFlag; var genesis_design = []; var designs = ["000000000012100000000000.M 000000001155510000000000.000000015555551000000111.000000015521551011100151.000011155555551155511551.001155555555555555555551.015555551555555555555511.155555110155555555555510.155511000015555551111100.111100000001555515555111.000000000001155155555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000015555555551.000000000000001555555511.000000000000000155555510.000000000000000011111110.000000000000000000001551.000000000000000000001511.00000000000000000000M 1110.000000000000000000000000.000000000000000000000000","000000000012100000000066.000000001155510000000000.000000015555551000000000.000000015512551011100000.000011155555551155510011.001155555555555555551151.015555555555555555555511.155555551155555555555510.155551110015555555111111.111110000001555551555151.000000000001155551555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000015555555551.000000000000001555555551.000000000000000155555510.0000000000000M 00011111110.000000000000000000001551.000000000000000000015551.000000000000000000015511.000000000000000000001110.000000000000000000000000"]; function RGBToHSL(r, g, b) { if (Array.isArray(r)) { var cMax = Math.max(r, g, b); var cMin = Math.min(r, g, b); var delta = cMax - cMin; } else if (cMax == r) { var h = 60 * (((g - b) / delta) % 6); } else if (cMax == g) { var h = 60 * ((b - r) / delta + 2); } else if (cMax == b) { var h = 60 * ((r - g) / delta + 4); var l = (cMax + cMin) / 2; var s = delta / (1 - Math.abs(2 * l - 1)); function HSLToRGB(h, s, l) { if (Array.isArray(h)) { var c = (1 - Math.abs(2 * l - 1)) * s; var x = c * (1 - Math.abs((h / 60) % 2 - 1)); if (h >= 0 && h < M } else if (h >= 60 && h < 120) { } else if (h >= 120 && h < 180) { } else if (h >= 180 && h < 240) { } else if (h >= 240 && h < 300) { } else if (h >= 300 && h < 360) { r = Math.round((r + m) * 255); g = Math.round((g + m) * 255); b = Math.round((b + m) * 255); return "#" + ("0" + r.toString(16)).slice(-2) + ("0" + g.toString(16)).slice(-2) + ("0" + b.toString(16)).slice(-2); function derivePalette(r, g, b, invert) { var hsl = RGBToHSL(r, g, b); var hy = (h + 320) % 360; var c1 = HSLToRGB(hx, 1, 0.1); var c4 = HSLToRGB(hx, 1, 0.2); var c5 = HSLToRGB(hx, 1, 0.45); var c2 = HSLToRGB(hx, M var c3 = HSLToRGB(hy, 1, 0.8); var c2 = HSLToRGB(hx, 1, 0.2); var c3 = HSLToRGB(hx, 1, 0.45); var c4 = HSLToRGB(hx, 1, 0.7); var c5 = HSLToRGB(hy, 1, 0.8); color1 = RGBToHex(c1); color2 = RGBToHex(c5); function random(max) { return Math.floor(Math.random() * max) + 1; function hexToBytes(hex){ = 0; i < hex.length; i+=2){ result.push(parseInt(hex.slice(i, i+2),16)); var bitcoinlandFlag = function (bunnyid,_designId){ if(bunnyid.slice(0,2) == "0x"){ bunnyid = bunnyid.slice(2); var bytes = hexToBytes(bunnyid); var genesis = bytes[0], var size = size || 10; var invert = k >= 128; k = k % (designs.length-1); var design = designs[k].split("."); k = random(genesis_design.length-1); design = genesis_design[k].split("."); if(k % 2 === 0 && invert || k % 2 === 1 && !invert){ colors = [null, "#555555", "#d3d3d3", "#ffffff", "#000000", "#ff9999"]; colors = [null, "#555555", "#222222", "#111111", "#000000", "#ff9999"]; colors = derivePalette(r, g, b, invert); return design.map(function(row){ return row.split("").map(function(cell){ return colors[cell]; landFlag.noConflict = function(){ root.bitcoinlandFlag = prev_bitcoinlandFlag; return bitcoinlandFlag; if( typeof exports !== 'undefined' ) { if( typeof module !== 'undefined' && module.exports ) { exports = module.exports = bitcoinlandFlag; exports.bitcoinlandFlag = bitcoinlandFlag; root.bitcoinlandFlag = bitcoinlandFlag; function generateBitcoinLandFlag(bunnyid, size, _designId){ size = size || 10; var data = bitcoinlandFlag(bunnyid,_designId); var canvas = documeM nt.createElement("canvas"); canvas.width = size * data.length; canvas.height = size * data[1].length; var ctx = canvas.getContext("2d"); for(var i = 0; i < data.length; i++){ for(var j = 0; j < data[i].length; j++){ var color = data[i][j]; ctx.fillStyle = color; ctx.fillRect(i * size, j * size, size, size); return canvas.toDataURL(); let img = generateBitcoinLandFlag(flagColor0,200, designId_); document.getElementById("imaM let img1 = generateBitcoinLandFlag(flagColor0,200,designId_); document.getElementById("mainDiv").style.backgroundColor = color3; document.getElementById("mainDiv").style.border = _border; var intervalId = window.setInterval(function() document.getElementById("mainDiv").style.borderColor = color1; document.getElementById("imageid").src= img; document.getElementById("mainDiv").style.borderColor = color2; document.getElementById("imCageid").src= img1; <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:YResolution>264</tiff:YResolution> <tiff:XResolution>264</tiff:XResolution> <tiff:PhotometricInterpretation>2</tiff:PhotomL etricInterpretation> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> </rdf:Description> <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0121/4096 1,2,1,3,0 ~0.5515639213845134--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#36EEE0" points="0,8 1,3 2,3 0,0 "/> <polyline fill="#F652A0" points="8,0 4,7 4,7 8,8 "/> <polyline fill="#36EEE0" points="8,8 7,7 7,7 0,8 "/> <polyline fill="#F2F652" points="0,0 3,7 3,7 8,0 "/> @j>=:BNB.BNB:bnb1nnge9j874p0xvw6v8483664meul6x2gmh38n0t:712058::0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://nsM .adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:504f3c01-5dee-4892-9e8d-e9ed16b55b5f" xmpMM:InstanceID="xmp.iid:ce8c918e-3a06-42b9-9da2-cf13eb8a4ef9" xmpMM:OriginalDocumentID="xmp.did:432ff97d-7040-447c-be64-1a9f40436c7d" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="WindowM s" GIMP:TimeStamp="1676406041459730" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T07:20:29+11:00" xmp:ModifyDate="2023:02:15T07:20:29+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:66ca860e-258b-4b6d-976a-079602d69864" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T07:20:41"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?>h! " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMPM Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:1acc349c-be5d-4eaf-bb2c-e425ee1e2c3f" xmpMM:InstanceID="xmp.iid:10eada0d-db44-4654-a11b-eff3224M 24259" xmpMM:OriginalDocumentID="xmp.did:4efde444-dd77-49d2-af18-1bd627a776ac" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438297982341" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T16:18:16+11:00" xmp:ModifyDate="2023:02:15T16:18:16+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:55294b47-f911-490c-b846-52a8229d7f19" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvtM :when="2023-02-15T16:18:17"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M LX <?xpacket end="w"?>h! !,*"!!"*7.....7;788887;;<===<;??@@??CCCCCCCCCCCCCCC !.:.&&.:=:9/9:=?<;;;;<?>?===?>AA??AACCCCCCCCCCCCCCC EjC=:BNB.ETH-1C9:bnb1l8dg2xj2n0glk8ffqv7kxfst50r59wkcgxqctf:4208305::0 Aj?=:BNB.BNB:bnb1lgl8nrgspa6wjmhp8lshdfj7c7xmuzzc5ty0le:4558615::0 Aj?=:BNB.BNB:bnb16fcjz4gc9e5n0qzp4ygla2p36npvmsaw6xlvms:2179469::0 c/Foundry USA Pool #dropgold/ Aj?=:ETH.ETH:0xaaae4b6d5c086cb72b5429194c811601670d82d9:1365632473 FjDOUT:6BB8D67F7594A0E8610E1AD9CF2E9A0DE7F5FECC89EBD305DACEE4875F4B5EC6 FjDOUT:069FE15E751302159866F291BE0E156DCC656E654D902BB344C2935919D8D624 FjDOUT:FC0B45B46596FF48AA3F34E891FA6B2F4CCAE7783A148D1845026154F2DAEF3D FjDOUT:EBDF1355166115613CEDE74D64216337B9412F0EBA3B59841529538A4B1F86B1 FjDOUT:3A387D32C7C3B750F7144A9BA08432FFCB30507A113AF13F2E4D26C7C5445A95 FjDOUT:98EF2E98E054A000898D7C2E74B68744E44D10A8543B3DDB03A0C1D30FF98D90 DjBs:ETH.ETH:bc1qy9dwc2ynf04mdqlf8sh5utagqe9u5st3yk59zn:92603466:ss:0 DjBs:ETH.ETH:0x8945b14009b6F672F84b458BbB9E63B1712f315D:69903578:ss:0 text/html;charset=utf-8 window.tokenId=1; window.ethaddr="0x38930aae699c4cd99d1d794df9db41111b13092b"; <body style="padding: 0; margin: 0"> <div style="overflow: hidden"> style="image-rendering: pixelated; width: 100%" let _seed = Math.random() * 4294967296; const seed = (num) => (_seed = num); const _rand = () => { let t = (_seed +=M t = Math.imul(t ^ (t >>> 15), t | 1); t ^= t + Math.imul(t ^ (t >>> 7), t | 61); return ((t ^ (t >>> 14)) >>> 0) / 4294967296; const rand = (min = 0, max = 1, tilt = 1) => { return min + Math.pow(_rand(), 1 / tilt) * (max - min); const randInt = (min, max, tilt) => Math.floor(rand(min, max, tilt)); const randBit = () => Math.round(_rand()); const randColor = (min = 0, max = 256) => [ randInt(min, max), randInt(min, max), randInt(min, max), const randColorString = () => `rgbM (${randColor().join(",")})`; const randRotation = () => [ _rand() * 2 * Math.PI, _rand() * 2 * Math.PI, _rand() * 2 * Math.PI, const randMember = (arr) => arr[Math.floor(_rand() * arr.length)]; const repeat = (times, fn) => { const result = new Array(times); for (let i = 0; i < times; i++) { result[i] = fn(i); const textureFunc = () => { const width = Math.floor(rand(10, 40)); const height = Math.floor(rand(10, 40)); const patternLength = Math.floM const pattern = new Array(patternLength).fill(0).map(() => rand()); const rMult = rand(0, 256); const gMult = rand(0, 256); const bMult = rand(0, 256); const canvas = document.createElement("canvas"); canvas.width = width; canvas.height = height; const ctx = canvas.getContext("2d"); const arr = new Uint8ClampedArray(4 * width * height); let offset = 0; let reset = Math.floor(rand(51, 201)); const draw M for (let i = 0, j = offset; i < arr.length; i += 4, j += 3) { arr[i + 0] = Math.floor( rMult * pattern[(j % reset) % patternLength] ); // R value arr[i + 1] = Math.floor( gMult * pattern[((j + 1) % reset) % patternLength] ); // G value arr[i + 2] = Math.floor( bMult * pattern[((j + 2) % reset) % patternLength] ); // B value arr[i + 3] = 255; mageData(new ImageData(arr, width), 0, 0); const frameTime = 1 / 10; let elapsed = 0; step: (delta) => { elapsed += delta; if (elapsed > frameTime) { elapsed = elapsed % frameTime; offset += 1; reset = reset > 400 ? 51 : reset + 1; draw(); dark: (rMult + gMult + bMult) / 3 < 128, for (;;) (r = (16807 * r) % 2147483647), yield r; var canvas = document.querySelector("canvas"), generator = pseudoRandom(window.tokenId), r = (A, r, t) => r + (A % (t - r + 1)), img = new Image(), var A = canvas.getContext("2d"); A.clearRect(0, 0, 40, 40); var t = r(generator.next().value + 4, 1, 100) <= 96; r(generator.next().value, 1, 100) <= 100 ? r(generator.nexM r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 59, 62) : r(generator.next().value, 72, 75), shirt: t ? r(generator.next().value, 76, 83) : 0, r(generator.next().value, 1, 100) <= 60 && t ? r(generator.next().value, 50, 58) r(generator.next().value, 1, 100) <= 90 ? r(generator.next().value, 3, 15) r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 16, 17) r(generator.next().value, 1, 100) <= 80 ? r(generator.next().value, 18, 39) r(generator.next().value, 1, 100) <= 80 ? r(generator.next().value, 63, 71) r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 1, 4) (V.back = 49), (V.kitFront = 40); (V.back = 41), (V.kitFront = 42), (V.hat = 43); (V.kitFront = 45), (V.back = 44); (V.back = 46), (V.kitFront = 47), (V.hat = 48); var e = ["#f8f8f8", "#E5FBEF", "#F5FCDD", "#FDEEE8", "#E5F1F6"]; const texture = textureFunc(); const drawFinal = (delta) => { texture.step(delta); A.drawImage(texture.canvas, 0, 0, canvas.width, canvas.height);M Object.entries(V).forEach(([r, t], V) => { if (0 !== t || "body" === r) { var e = t % 3, l = Math.floor(t / 3); A.drawImage(img, 40 * e, 40 * l, 40, 40, 0, 0, 40, 40); window.requestAnimationFrame(drawFinal); window.requestAnimationFrame(drawFinal); img.addEventListener("load", async () => { " EQVR42u2dC5RdVZnnD0gIBIh5GQaBwsBKQYqERpRYxhggQhhbiPii6WhLDzIdBabsNGsFWmyX0C4G8TEyOD1o4UyGiQhpsGEabV3ia9pH+wC6dEbsB2QaAZUWCggNjZjsWd9JfSff3XXOufdW6uy9763fb63/Os8bD+d3v733OcndZhkAAAAAgPLxnzzy6/uf/Jdd0/lnyp8nfy53NxHBr/jgddunS7L8OfLnITgRzr/n4e0i5Px7Ht66t1Lk8/LnTPx527m7hhWLM1eWUBUsYvZGsspVwTO+gpfMz5xE1g/Zf/f6k1vPc+4HN+SRdUnTkn3BU608+RyCKyRrVGou+iefz9O0ZG2i90ayL5cm2jTLdZJVdJOSVY4nuGPJVq735yBYhN61ebhF8ENb/6Dof+VYiKa6QnK+3uZzW/3qRa7XPN+8bigXqaJlKft0vwqW7aaruKySOxBc9rlGBS8bPMYd+5J9J0X2JydYhapkiXLXmiNyubqvYcHP2EemdpL9c7Tf1T+M nacEvP/mMSUlSsErWSrUyRbAea/qxyVTx9k6quEJukOq94jXzcplnr3mtO/zwpXlUcLJV7Eu20X2BBE+SXCfYk9uIYCuuU8HRRRdypUonKtUXavteOafpZ2JP1DOv+OB1L9QJnjj+TNNy3casK8F6ThIj6DwlkssS4s3WhOTa0bQ/etbPNN0k6/qfvWVpsS1yrVgtnNgVXDzzdiq5yVF0zePP9jaCt3fyOLU3cndtPTSvYBGr8qoE++8UYkqeLFEFVyTUu+mqUXKnx5qoXl9aVfTVryy16qO8vfIHVMVj0pojJj0y+U10SMlWaN12UwwNDU0aGdcJtv20RD6fhNxcqnkkKktsyaEZHh52l112mZOlxB8d10nWz+jnowi2/aqt2irB9lEpZH+cwnsCvz9tV73+Z6NWry/Yf1zyn4tnimCVLBXYraSpfi644LLIAG2mCO45VLLte7sVrH8GghOWbGP/5qhd9AsxUwZaPS1ZxdrUibUVzx3sIcn2nXO7ILeHBfuSy6oM cwT066KoaWdtmG7k9Pqr2B1J+n4zgPhhRdxLuGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEY2BgwElSvLbNsw52mhSvb+Vr1jhNT0hOSbRIvT072LmnF+XL1CSL1NHRUTc2NpYvR0ZGekdyCrJVsE0qFS1yRajI1YjkY489tkhdxUeXvGHDhmQr2soua851PaRgW8kaK1uin5Fj0SSLUJm4yxedmuC/felgnrLjoeT6zbNu+6L1uH9uFMkqViTLFEApSVa50ieXCVbJcrzJ65Bq9KvXSvdFW7m6redHkyyCreRUBKtcHXhVVXnTcv3qVWGassrVbXt+VV8dtJK1yU6tgmMJ1v5Uo/vmzZtXRLbXnnJKaeS4/VxSI+sUBGvzXCW46Sa6CitYJZdFj/OsXFPBul52TqxHKG2+7SDKNuM2vF5r81arqimO/ULEfyzyR9TRBla9KryTfSnIbvcCBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDXSP0Xbxdd9RWnSfH6kp7M myf4SPcVpgETqp7fdVyQ1ye0mhYmOTkPw3HPPlf6Ota7iQ1yfSL3n/iecIEuVXFfRIatdf4z+2PnnFz9Ib1fRwardr17J2rVrJ1W0HzknRLPuV6/ktN+9flJF+5FzQjTrVXN4Vc3pVZVG5drqVXl2lhg9Jks76Yie15RglWurV+WpXHtM0H32i9CUYBVpq9f+KN0/JkvdZ78IjQuuq16/kmUpolW2nK9fjBjV61eyLBU9X78YMaq37JiIVtmyT78YjVevFazzO6lMe46d+6mpKi6rXitYtvWYoufosSaruKx6rUSdIEZl2nPs5DGNVXFZv+o3z3VVbCu+iX64rF/1m+e6KrYV30Q/XNefVlVwu/45yIja739thVdVcKxHJlvFtmr9Co71yGSr2FatX8HRn4vbVXDs5+J2FRz7ubhdBUd9q1X2EsSuxxJsUyU41puvuibbbifz5quuv07tNaaf1F5jBnn+BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYLgYGBpwM mxeubs/gkp0nx+ra+Ya7TJCl3aGioSGqSRercgXVFUpMsUrdvGiySnGSROjw87DZs2JAvVXJdRYesdpG6cNk73Yqzb8iXKrmuokNWu0gdvz5z4z/O8qVKrqvoYNXuV6/K9bfrErJ6Va6/3S6hqldywYoDJ1W0Hzmn8WZdRdrqVWkq1x7bsmVLsc9+EZqSrCJt9aowlWuPnbfp88U++0VoSrDKtdWr8lSuPSboPvtFaFxwXfWWHRPRKlv26RcjRvWWHRPRKlv26RcjRvX6lSxLRc/XL0bj1WslyrYe0+g5eqzJKi6rXitRtvWYRs/RY01WcVn1WsH5fj3249Zz9FijVZw3xS/OJqemgtv1z009FvmpquB2/XNTj0V+31pVwbaKbcUHfbzy+19b4VUVHOuRyVaxrVq/gmM9MrVU8fXVFRz9ubhdBcd+Lm5XwbGfi9tVcNS3WmVC/eY55lutMqF+8xzzrVbZSxC7HkVwO+GpvdaM8fw7Hf11kq81AQAAAAAAAAAAAAAM AAAAAAAAAAAAAAAAAAAAsWy+d6zTcjT6Uu/2mwSIpSu6FidqamgtkrxGp8it09/Sf5EuVXFfRIas99YnaMm8ur6Qk+9UrueCMAydVtB85J1SzXjUbUCoTtZWJbic5yJdA5drqVXkq1x675bkHi332i9CkYH/Wn9QmaqtrriVlx+18X9Gr169kWYpolS3n6xcjhFxfsOx/z3ve0zKNg2zHnmLCTsgmyyWr318kyAQxZdVrBevcTnJMo+fosaaruF312ll/RkdHi6qR9VCz8dU1077Y0y+4NY+VHOSxyO9bqyrYVrGt+Cb64bp+10rXiFR7Y1MUbEXLslHBVfj9r63wqgpu+rHI70/LBEu0iS6bxyu04HaSowmu6pvrKjj09VUJTmGiNiu4TnLjTXQ3zXeVYG3SQ7/wsM12ndxUJmrzJavcaIK76a9jveiomqit7LxYb7bKJCcnN6VXlXbk3OlzcOzXl2VTLab6/zuRhOCqZriqylN4R22nNEbuNLz4SPUvJGCKj06M pzqEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdsjqb5TZlBzpZcjf6kLdm++eCv53NQ/JMEN1OMl+CPmiuJWXH9QuA5B4WrJWsy89khxTR/Qju8WbaF/uPC47OYyU3eiH7H+CyAw5yL5o732X7zdod2dctBxw0tc+1YcXizK05ancGXrw7sq/bP0c+P5XPTbtgK1qWjQq2cifWpyyqAcG+XF3vGcHtJAcRLBWrcvbLu4OpimpEsFatRv53pigqjuA6yUGaaGG/iX5+P/r7aR9kVUlWuUEEQ1jJyO1jyfpoxONRn0lW0cgFAAAAAAAAAAAAAACA9Dlm+ctcVVK6zjfPmuckGOtS7lve+9vu5acuz7P51IVFZDu2ZJUq+eDhQ+4bJ65ydl9SN3PRA+6Sc/7p19sksi6JLVdEiuCNN5xX5EPvWp0ntmQrVXLnH5/jfvnlPysi20lIVpmSCx56/t6LHnr+Z3/40PPP3v70rl0T+deYgkWiCBXRKlYj2zEEV8l97P9uK5KM EZK1aESsRsRc/8MyzF/50x/h59z31s5GHnh+//eld7vand+2MJVhFqmSN7ospWCXb6k1GsFatNsuSke3/8uy1j72w884du3Z9/qmdu37/h0/kom97amfQSla5spQKvmL1yXl03V+GllwnWCVHbapts+xHJF/58+d/88VndjnJqXf/6t5c8pM7d8qXINSIWav3lLcO59GK1W2Jba5Dja6tXCu5XYIOvOoEa1Vf/I/PjP/F0zt33bbD/fKA6/7fNhEtzXjTI2YdWOnoWZYiU/fZAZffXKv4JiUv2WfWJMFlwt2Fp7ckmOh2cq1kGXCJVNlWyU2Nruued6eSJgtEJNuIsLKKrTuvMcmdCraiVbAkxuNTN8JiDLp8kZp25zUmeNkP3PXdiha5i69/5LsIThytxBff4u4+ZKv71pvucd87/xe7vvc7Y+57K/7Kfe8lt7i/+Td3ujtf/i23bej77r+8+mvuu7/1HbdV8pLrH/kOghPHNreSuVvddxbc4v635PA73ZdO/qbM 70uF3uC+f+G33uSPucHcfdIv7wuyrf/6T2Vf//P5j73Efi/WGq1NxM15wmWTN/P/8s7uX/dBdd+w97qML/tJ9bs61j/7wwKt//tODrn30vljNM4L3UvJ+77v/3naR87IL770kT8KCkVs9qt4277vP3vufHt/1S8mtT/5m158/+Rt30+O/2Xntr3Y9Lcclsa+1nUAE9wFlz7qIBQAAAAAAAAAAAAAAAAAAAAAAAAAAmDmsOuRFzqab82Nd88DAgKsLVj1Zlw4cVMTfrjq2fsGsKJJF4Ec/+lG3YcOG0gwPDyPZClZZElm/eXmW55/f1LrUdRUbQ7CIE4EiUiRXiU5B8vqXZc7mo6/enS++bWGejcsD3DsVvGR+1iJYpcr22NhYftw/JgnZVKtcjcpU0TaxJftC3TUrd+en23bnmpXhJKs8EawC/abZCtZzNCo6pFxfsl+9mhiCy6q1Re6E4GCSVZ7GClShZZHP2TQpuZ3goaGhIjrQkvXQkkWuCLNyJ1WwELKKVY6M tUBvtn7UJt+ep3CaruE6uLEXk0qVLW0bRg4ODwSVbuckJVnm2au1IWePLttvy54QSbOXaqh0YGHjAJknBofthf4BlH4Mk9twzr73B+c/NKleONSFXJZXJ9Z5/f23k3j2RtAR7CSpYB1lVcus+3+S1aZW2kfvswMDA40as5v2hJFcJln11kc81/qhU1ux2IyGEYJVcIfcBT2oe28THEpzECw/bTHcruMn+1xdc8WqyRW5VMx9KsD4mJSfYl5yC4A4kl0qNJfjaL341l+tLroqeG1xyN1XctOAJisceX3I3fzHR5AV+/MHHWiq49GWHl6CC7TOx7ZPrxAaSO0lWp5JD/C2TVO3Amze0vHfWAVTdaDp4BfsDr7q/RlSxIeWWSbaiY1SuyK37SwYVXdVE63kZtK/O0H83LFXbSb9cFywCAAAAAAAAAAAAAAAAAAAAAAAAQOfMHj7NSZr+DESSu+IHj3YlS85d+N4PdP25GYX/D7Rjyb360eemJAnJFRSzwpiJQvRnFjEM qt0zwW7IjXVlSFLx8+XJXleAXI//S/q/OXdQ6l0QkyVWCReTN2XLnTjxvUlS09r8iWBJasJV45ZVXuu9///ulCSpZfxHX8uu3iJJtBWoVqtwqwXrMFx1SsEhbv359LvYb3/hGEdl+4emVefRYMMn+zx19yWW/adWEkGwr8QPZilrJKvq12UsK0UsOCPMbICu3LNs3Deax+4IJtlMPWMlFf2ym/vF//hjiEUkrWAWLNE27atbzQ8iVXH755cW6Jmo/7P+etUp01S/Um7oukXJ7tipPXokyH9dE5apAlaz7i3m75NjEeohKPvLII9tKXb16tTv33HPz6L558+blCSbYzvwiSxl02X1lE2w2JVeqVaJyRJbIVrllkfPlvJalqfYmBfuxYsviiw4mWeeasJOKVH2uqTmeVLCtPjvIskJ9iRpt0kP1wVqNkqom2Z7jn9+oZCtY5pqwv1CP8fw4SdhENfpiRaIMqMr+DD0eog9uJ7yuKW53fNrQuSaCTdDVqez5WcsAy8rM 1X3D46Gg6huCk0LkmUpxawA6UVHAncu3LkRkt2J9rIlaz3IngbuUiuERw08+2U+2TETyNklMU7EtGcJ9hJdMH97Fk+55ZqrlOLHJ7FJHsp6xqkQsAAAAAAAAAAAAAAAAAAAAAAAAA/c9ps1/pNNyNLlm64EBXlVTkPrri63meu/rBZCW/edY8J0lO7mdft6gyKUgWoR9Y+O6WpCJZpUo+ePiQ+8aJq5zdF13u25fNL2S6C09vSWjJk5rgJXOcjRWs+2KKtlL9eyeRY1Elq2Ar2ZcdSrBthnNpEwKX3Jy533YnFrF9sRw79C3Z7nMjyvUj82PpMqrkOsEqeeen/zSIZBVsm+ClH8hyiRLFypbIsfmvDS9ZBfuSVapdRhV80PLj3UFrTytyyOWbi2S//Lpb7P4uX5fzrOTpHoTZflbWpTJVsIgUVizOKiVLQkouEyzrMvmZ7rfbjUsuGyFL5b7vlQu6in5W15sYTIkoEWybZxUssXK1GbfLkHKtZH+ff7zRgZdtjv2M oPL9ptv1wlehpv9AJuZITbs8m9cFasXqOTSjBS/aZ1VZm2cBL9zcqebrS3N2b0yLMjxVqR9gt+wII9iPS/MGW7Ks6L7nn5WBvqSZk2QGWrLcI3fNl2KdlmWWZNOExRtVl0iV1580owTqC9gW3yN0j9kXZkjn7epW/74rF2b6xHpugwxF0tmRhSxNdKrgGBCfeTFvB3cpFcK9gmmkE96lgKxnBfS6ZPriPJct75k4kh3wOhmlGJPsprVrkAgAAAAAAAAAAAAAAAAAAAAAAAMCM4ojjXu/Kwp3pE7kr1l6Z55x//z+LLF25Ecn9IldkSlS0Jrbku454pfODtS7kqljNdTd+1V3z8S1FYglWmduHBt3jG08oItuIrulj6wSLXNmncmVdmurQglWslfvCzSvzqGQVjVlPph1AqVi7T4X666Hl2qotk2yrGbvym7P5mfMrtmrk7Ec+m4LgskpGsCdYsvjY3yvEdZJQ1/hH2TIn+UT20jxfPuWk0ugxPT/aTV2X7ec2zzoM 4z+3Zwe7bK091D37s+jyyLvtCCraSdT2VL6DKUsE3vjgrREtkv+yzXwBdDy5ZhIpcjZVcltCSU2tddNBU1jTbJlnXn/unvyxim+sgYkWYiqVjmNpz7t4kWAWjrk8J2eQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP+wMRtyZeHO9Ilct/9/KE1KojdmF7q6JHGNQ5mrSxS5t2Vn5qmSnIJoEXhbdkue7YP/0BJ30448sUWLwO2bBt0T/2Of0sixoJKtXF0fz47eI/amr5WKjin3iX1uzVOInUD2ybbsjyFZxN22bo9g96Obiuh2cMkq1YoWwZq6ag4t99998pstks+/5+FCtm7rsQ9nVweR7De/Ilgl25RVceNN9uJXXeHKBNdJtvtCSRZRIlekSWwVW9myrsumBftCJf62jS/cnttIHy1yL//ENwu5kjuypaWSrdgYgldlw4VcES25dZ+rJwmX/SGqV/vZKkHdxv8yTIvkeUevcz/4h984rWJZTjWhJN+RfbiM rhOhrq5phm7wf/tcnW/rjssHXtPbPIlgFybpUs0Sk67Jd9DMhJItgqdqbFv63PGWjaF3XypbPNCnYTielwv9+7dktUYFl+2Wpn9cviaxPWzMtYjXaZFvJVnTVtn5BQlWxTdWzsB5venClYv25w6ysdvv9fY0MvKzoqWTGvhwa2vv+N/pLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhpj/ure7Ts/r9NwmuGvNEa4qqdxL1yZR5J6+3RXi5p2w2pVF5dpzQ8uVX+w/fscJkyL7UxDtlh97mlvziotKI8diiM5lfWxbIW7zrIPdos2fzbc1sq2SYwj25b7w9Mo87oX/lS9VsoqOJrdM8B+96/Y8KtmIDi541sV/kgt+8JJLc6kq+oGnXigky7khBddVrpXtV3MylWtFl1RzMMkid122Xy5YJatoX3IowSpXUyVZRceQXFRlWeqEh5IswkSsjUrW2Ca7qOQAXDy4YNKcWWWJ2R8XIsuEyj7bRPvHJiQ3LliM y4Lz35fGbZomVK+eEFlxXpbJuK13Xo1dwUaUDp5Y30QOnBmumq0bOVQnZv4nkutgqjtUflz8SiUCTlqodONW9dOjoaI9OvUS7L4Am6CCrqNCBU92cqz+ex8rOt9e9+RIEp0+5XFvF/+eF3bEVLdsI7mHBE/2r9LtWrH0eRm6PyPWj/a0ct4MrBPeg3E4HWFauJub7aeh85NzxyDqF99IQ9lEKAAAAAAAAAAAAAAAAAAAAAAAAAACgV5m3+iin4W70odhFn/23RRDdR3IXvO9VLXJ90dylHpY7/+3H57GST3cX5UFyn8hVwUjuQ8F+FfvNtUpGcI/KLRNcJhrJPSj3wKULnN9U14WRdQ89EolcSVXTbPth2xfLeUjOsiXzM1eW6BemYnW9rv+tykyV/N5L3ucGz31nIfPlJ5/RVaLJnmpmmtyyil08uD6PCNT1qtB/9IBgWVrZvuDDD19aRI/JehLNN3Qm2DbT7SpYZSN4mtkye63TTMefp1L9prqugm0QPM1y3VWM ZG1/0bnfvovFpkayCbfV2IxjJ0yy3SrDOADtdglUygkPJfTirFCxi3dOL3DVnHNr1jRY5Nz7lckku2yPWXyK4QbmZOysXbPtfFbw3cqtebFixVHDTcsddLljWR0dH3djYmBOmQ26V6DLBeswXm8ybrl6Uu1JazQrBgoidDrmdVLKuI3gvWbVqlZNYwVauZGRkpBCt29MlOKt5H53se+rYwjo9V0RpbH9r5cq6nmOreTokwzQLVlEizY895leuHwQnKtjKa5c68dPVTMNeSPYF+JVrq1H7VitWov2z/nn+Me50ApKrmuR28QVa2chNbIQ8lXD3AAAAAAAAAAAAAAAAAAAAEmHtaa93deEO9bjc27bd5b7/14+WRo4huoflyu9xywQLVrKK5q71oNwqyX4lI7kP5P73T9+M5F7n5JNPniTYyuskTV3bmqMy10mw6HHjU+5j+iOtww47rFTwKa892w39+Zhb9IC75JvPurslz+9yz2tkW45JmhJ715ojWnLhcVlpkOzM JtZOFqWAbFbz/hT9yKlElS3bsck9JdHs6JYsskVYmtqx6kVwhWJYq2DbJKliabiu4KtmF926bbsEi9UdXXJCnSqwvGcGeYN22FWyba1kXwSowhGCR9LalrZF9y49cWDlVA32xhwi02yJSKtdWsspWwXWSp1uwVKOI1aoUuQy29kJwWT9sJavgKtH5/gYGWCJWIqJvfl1rH1w2yIouWi9GLjamYJl7qmy/yJxqpvsaVa5tslVk1Ug66qha/kd3XLAnsSW3Q6TJIEty9tln56nanm7BKvX9J7f2xXUVWzXoCiJa5T744cw9+K3dS5WsKfucNksxJceoXpFy1jF7BKtw/5Gobo6soI9PfvVK5MboBfiyNbbvmUljhCrBfvVaodqka+zoulHJZdUr0kSwytPYypZ1+wWYSZI7EVxVuXWSg1WvVmbZftv02QpW4TNFsO1/bd+q0uqaZyvXSg7W96q4fL8em4iIlUk4ZanVPlOr2Bcs//1TEazrjQ1SVizOWlJVwdo368hM Um2s5Xz7XxIAmVfRlh//cWye2TrCkkQtVoRs3bixE6SCqqO6JKtb/CDsAs/20fHYmCVahdpySnGCVrMkHV+uGWirY/gdo1fr79fMzbTRdJrjdu2k7yGq0D/a/kbnYdUOlz5L+SxBdNvWs2SuCq95S+RKrBAd9damSbdPsi/Qz056By15Zlv29r32VWfUc3Giz3JHgb5kXGxOVrVWumemCbfX5ryPr+uGogwc7wFLBVq7tm7MZTs/9NWDV337YkbMN1dtaxUAFAwAAAAAAAAAAAAAAAAAAAAAAAECy8O+b+xj9h+298M8/Zd7K7OA3uv0PWloabJYgUu28G92KDvWLQpVbJzgJybOPd3lSk6zzL9oJvTr5rHwmROX3hODZx7tFSz/kBl/zBfeOTY+lJdr+Ok4n2exEXIhpgKxcK7hKeKx7KHKLCrZJUbJOkdtOnjTRTVexCM5vXuKCqyo6v/bUJHcqOEQVdypY15Pq/yaqWJrtZCq8m1nYQsyF3LMVXCO6RTaC6wXM 7kpN+bEmlf+5mHsUQg6xOBCfZRKf8fJzKi4++quCUBKf0BqtMcFU/jL0ewxdcNnJGcJ8K5p00gqEXBItU/X9CkyC4DyXbyD7k9lsVm6UKLlsHAAAAAAAAAAAAgPSRf/lXtj+pf98LU0N/eoHgfuXgN1b/S/yD31gpH3pM8CSRE/+SgiruE8FVyUVDfwiWKtafQkqK39cguX8qWCWraCT3geCyZhrJfdpEV4m229y0Hh5g2SZaxdolVdzjgu0/Ntfn4EnHoHf7Xyt3xQ8eLd+G3h9ktVSyPRd6t6m2omNdypbZa50GMQ1UcszXk7nUcVcEyX0k2Ze7MtsdJDcoOVSfm0t0Z+2OkYvgHkbFydI9nOVRyVbwqlWrJoW71wNy7100Xgym3FVZIdkOsiQidGRkpEgv/Pf5P30t+ynsjBA8vujdeXLBV+2WqyJHR0eL9V6qXhF48/Ld+ec37YlsrzrkRe7SgYP6X7IK9iVbwTa91DSLPJEoUdE2M6KC7fOuCraDqV6V61eM xoMJ1e0ZUcL+/2LDNtMRW9IwT3K+sXzBrUjM9YwZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBesPu5IfpneJZeeuK/TJH2hH1x+snNZ5lKTPDAw4PykJnj7psFc8LpPznNJV++Pxr6elGCR+elt97mBE3/XHTW01r3slGvcG9/xx1El24qVfOqRc1qSnOShoSH3mRuvKeT+4m+OT0rwRVd9Jb9xIliy+qxN0atYKlZixQpyXclJFsE7nvlVHpEszXRKgqViJSJWE1uwNst+9WrmnL/aJVfBv/j5WHJNtO2DVWwqfbBIlEq1UjXJNdPFTUxQroiVZtouU5WcbD+cKmUj6BRH0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMKP6reu3snc5skew/lwm7/0nPJXOCS+ZnrJClcq4q1y+Tk/ulHbs3ze++6JgnJIk++cHJNKlO3Ja9ff3ESgvVeucsuc1Z2MpXsy5Ubl4LkOsFyXPenUL1XZJkM TwUlWsX7bRKoKTuEbWCdY1lMQnIu87LJcpi5z2RNJqoLt7DUqObZgbVl8wXJ9yTXRE0J1mdRgyzbTKchVwXItVrLte1MaZF3hVesVqQ2y/EruhVF0ivfvipQfk3gOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASIAts9c6TYrXd+mJ+zobjHXBvYvGi1lhJLKd0vVtv2nQuR3XFBm/P3OyD3PdyL0qc+PPDOSR9VQkS7WKUIlML6FLEUwlt0FuVC744cxl7iyXiWuJOyuZORetYBsEdyD3J796vsjKzOX9ryxFsu6PLVkkikyJVm6+3BRX8NY3zM2vQTJ+fbYnP57IxLacF03wB+57vIiKrNofXfLEzUxFrpWq1yaRYyo/quDMTGHoS6zaP5NH0ResOLBFngosE2uPyT75LH1G4tQJ1v16jpUu+xDch4LtPgT3sGTdtoL9fdy5HhI8lXDnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZioLl73M TaVacfUOR8zZ9Po9uy/EY1zc8POw0GzZsKLJly5Y8ui3HY1zf6Oio04yNjRXR69NtOR5FrspUiZqhoaEW8TEE+1KtbLk+Kz6GYF+qlT0yMlJE9wW5qDmLT5pUsbZSJf45spR9khWLs0YvVP58kVcmsE6u7Gv62hRfXJVcf1+Q62snWGVWCW76+toJrjoWSrD8b9QJlv0rX7Nm0jlRBPv9bmqCVWSqglVgO8G6HqqFqZRsRWpCyq2rYiu3bH+wm1dRxVakFRxcrgqeSkLewKkk5PWJxE4T+voAAAAAAAAAAAAAAAAAAAAAICrz3MNOwp3ojkPWz3Ma5Pah3MM+NOCOuff4PNElI3Ea5S6bm8uV6HoyklX0CSec6iTomrpgWbZslwiO2owjeS8FT0iT7Sq5fjMeXDSS906wL8xWrJUbrL8u64tV8mvXnuve+vbLWoLODvphreT181qEyrawZH6Wb+t6Y4LrBloqWWJ/7ojkag74rTlOojJVrBWv6yo+ymBMJEr1WsnM 6gykEd1/NRfM90Tdb6VWDscYZHFqVS/UFi3gUthesMm3fW0heNtf94RcuzaMj72iC/ekGENyh4PXz8ubajp4njbRjyVXBItMOtJDcfRX7o+mkLvLVR07++SKS+xytZIlWOHelz7j8ig+3TEOA5D5DhKrklATzq/hpkqsRyRIZkIW+joGBgXweC3+/tCpyDFN7KVcTS65OrOLLFOkI3svHJ5sY12AF+1MjyTENtnoUK9hGJOsSwX0qWI4huE8F2zkpEdynguUYgvtEsgbBM0g2o2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAASIKL52TutP35NX9XvPzkM5wmZbGSvz78wLaC9VybJq7pwuMyp0le8ObNm/OkKlqkPnTh77SVK8flSyDnPva5LXlkuwnJb3jZvu7KN+zrHvzwHtHJylaxIvnMM89MUvB/nLdfrWA59plF++cRqRqR3aRkFS3piWpOsXluJ9dvklW0ym5SshXdk320VHTMyhaxmrpm2UYHY7aqJU0JbtdM PVx3fMnuts4kmN7vzq271Die5Y/UOtymlplvE+X3ulvGLC5n2CxJ6BC5ytem2oguh7qw8X3L35AkuWvvmtf/1RpG7SST/3U6n65tSketXsEyMdtHXTgxesZ0MxkSgezjL41ewFR1csqyr2BREq2Bfrk0qz8zaR0tE7Lffcdxu0VdlLbGVHaXJVlIRbSVLsyyVq3Jlf2ovRd516Ctb5PoVrPuycRdXcI1o6aPvCP1mS2Re9N7D88iIW0fdqc1jaQWPL3p3vvzpwBN5khQcq6Lt6NiOmKsGVKmILhOskn3Bcm5yj1ShROubLW2KywZTZUJji5Y++NuvOq4QK5JVtJV7wqadaQr2RU9IdtMt2Y6g7UsMKzrVaYbzKn7VcZMickVs8nIrKrqRKrYvMcpeZqQ6j7SOqC/b7yNFVGzPyA39lqvqZUbKk4Xbx6eefdUJAAAAAAAAAAAAAAAAAAAAAAAAAAAAEJKb1w05CXeiT+WO33+n+95HLnLXZEw21g0XrDjQaZKVK2IM ldRUs4m1CXuOaozInmerxpgVvfcNc9+C159RKlp/RRPkiiCxtnsvEqVD5FZ/LsiIhRYu8v5gzx21ctMiVidVriiHZiquSp+fIFyHK76WqZKlYlSsz2bzwi0cniQ4luGyfRK5DZgOKKblKXHS5dch0CLZyr/3EJ/KEFqxC6wTHrOJ21a1ykxKsUwjaCtbY2WxchD5ZBUuTrYLlx+YpCVa50jfruiyPedsf5ElOsMr0hct6zJG3SI7dRFc12SL3sBWzi5x53a1FoksuE6yRZlr6Y7mh7eaSDFXFmlQE26b5U4+c4156zPxc7HXf/fs8yUg+ff36XKitYO2LU5hwTG7g0sEVRVLo5+QaVK6tXhG74/kX0pGs0yKI5LJmOmb16o2UvlfEylJm5ZNlTMkqV/tcWR766tNbmmcrWiUnIVonGlOxKcwmpxWs0y7GrmA7oNLtoxcfNElyWUWr6GjCY83cWsudX7Uz4ubrKQywyo6JZJsq0XYglsSIOzbaNEsl99J1txOdzGAM sBXpNbjeikdwnVA3GJEjuU8lJvRyB6W2yy8LdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBkWLjsnU6z4uwbipy36fN5dFuOx7g+mRNj+6bBPOPXZ3vy44lMbMt5Ma5veHjYaTZs2FBky5YteXRbjkeRa6Va2XMWn9QiPoZgkWalqmiJHFP5sQT7Uq3soaGhFvHBBFtxvsA6ubJP0vT16RxUfuWWibXHdPabpq/v0EMPzeVprMA6ubJPPhtEcJlk3e/HPxZCcJlk3VaRdlv3hRJsJVupZbFygwqeakIJnmpCCZ5qGPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANIf9UVmS13fpXKfB1hTk+j8LTU3u9psG8x+fyxLJUxDs/+i7XUWHrHYRWswuYCTXVTTVXtE8+78R9mWXJWTzrBHJmrLjNOkdNNmT5uioqPJYTbY222Wx4jHqYau3neQo12eqt51kbCIYwQjuktHRUacZGxsrovM86bYcT0FwlehUBFeJjiLM Yl2plj4yMFNF9KQkuS0qCyxLkgla+Zo2TWHFVcv198rnYj01VcmO9EKl7ZPIfn4IJ9gVawSrSPyeW4E6ek1N62xX9+VcreKph2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcxkYGHCaFK9vzuKTnCbF6zvx969ymiTlDg0NueHh4XyZmmSROndgnVu47J35MjXJIvVVnxxxn3rknHyZnGQRKnI1KrmuokNWuwgVuRqVXFfRIatdhIpcjUquq+ig1W5lakSypux4yCbdytSIZE3Z8ZBNupWp1WzjH/cTrcnWZrssVnysJlub7bJY8bGabG22y2LFBxdsq7ed5Bhdiq3edpJj9smdSI7SJyMYwQjuJ8FVolMRXCU6FcFVoqMI9kfQ7RLrhUeVZD+pyK1K9LdadcJjvRCpe2TyH59iv9WqE57MC5FYz79785yc0tuuZJ5/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6ZfOsg50mxesbGRlxmhSv76KrvuI0ScqMi 9PTvY/e1LB/NlapJF6ujoqBsbG8uXqUkWqZ/edp+75/4n8mVykkWoyNWo5LqKDlntIlTkalRyXUWHrHYRKnI1KrmuooNWu5Wp1WzjH/cTsnnWarbxj9tzQki2MjUiWVN2PGqTbiXbyq6q8lhNtjbbZbHiYzXZ2myXxYqPKrid5Jh9cieSY1yfrd52kqMOuhCMYAT3g+Aq0akIrhKdiuAq0VEEV8mtSipyq5KS4LJEf6tVJzzWC5F2j00hH5E6eWyqkpvMC5FYz79TFZ7aK81knn8BAAAAAAAAAACC8/8B7qWqwmm51XUAAAAASUVORK5CYII="); `TMdaXc`Wb_V/.,he\fcY# a][S]ZS &"^$ ^gd[XTOVRN<8SHDNTOM T^SLRPJLIGHDDLGBRG@HE?=;9@:631.88(&# 8= AXJ6C>591,?5*@@()&$*+!/0 JYWJ" IA?F635851%%1LM0F8. ITSB<9B%%?wb6qY2OC/;7/ `TMdaXc`Wb_V/.,he\fcY# a][S]ZS &"^$ ^gd[XTOVRN<8SHDNTOM T^SLRPJLIGHDDLGBRG@HE?=;9@:631.88(&# 8= AXJ6C>591,?5*@@()&$*+!/0 JYWJ" IA?F635851%%1LM0F8. ITSB<9B%%?wb6qY2OC/;7/ <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0122/4096 2,0,3,2,0 ~0.043116854038089514--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#F652A0" points="0,8 3,5 3,5 0,0 "/> <polyline fill="#52F6A8" points="8,0 6,4 6,4 8,8 "/> <polyline fill="#F2F652" points="8,8 4,7 4,7 0,8 "/> <polyline fill="#F652A0" points="0,0 1,1 2,4 8,0 "/> c/Foundry USA Pool #dropgold/ IjGREFUND:85039B2D773D8F4F6438F8AC647158C2216209C49F2A22F1DE1F7E380586A8C9 5>j;0QP>/CFj93Upnm9?h-%[=5W5'E6& vuu>El9Ak1<iCCf7:a842 khe9:a,+_?:]>8ZWQKOKIUH/M?* qpo>Bh7=f/4c=3T7)H80(! trstutstqm5+MPIAIA7_P5RE. theaeb_[VQ7/Q<:C@;8PC-B8&5% uMi^KC?I?/F0+D1$8B80G=,k?&A1% r]e\O)%O,1H^SC:5:Y08e33\?. |p}vi0-P|aOB<LJ4Ew?.N4) text/html;charset=utf-8 border: 3px solid #1b1a1b; border-style: inset dashed solid double; background-color:rgb(255, 255, 255); <div id="mainDiv" class="absolute"> <p id="ordinalID"><b></b></p> <p id="date01"><b>Jan 3, 2009: Genesis Block of first Bitcoin released.</b></p> <p id="date02"><b>Oct 5, 2009 1 BTC = 0.001 USD</b></p> <input type="hidden" id="bunnyid"M <img with=200 height=200 src="" id="imageid"><hr> <p id="s"><b>"I change everyday"</b></p> <a id="link" target="_" href="">BitcoinBunny.in</a><br> <div ><b><p id="xNy"></p></b></div> <script language="javascript"> var birthDay = new Date(2023, 1, 15, 15, 15, 15, 15); var days = timeSince(birthDay) ; var _border = "inset"; var animationSpeed = 400; var bitcoinDate0 = new Date(2009,00,03, 00, 00, 00, 00); var bitcoinDate1 = newM Date(2009,09,05, 00, 00, 00, 00); var breed = "Holland Lop"; function daySince(date) { var seconds = Math.floor((new Date() - date) / 1000); var interval = seconds / 86400; interval = (seconds / 86400)%90; return Math.floor(interval); function timeSince(date) { var seconds = Math.floor((new Date() - date) / 1000); var interval = seconds / 31536000; return Math.floor(interval) + " years"; interval = seconds / 2592000; return Math.floor(interval) + " monthsM interval = seconds / 86400; return Math.floor(interval) + " days"; interval = seconds / 3600; return Math.floor(interval) + " hours"; interval = seconds / 60; return Math.floor(interval) + " minutes"; return Math.floor(seconds) + " seconds"; var changeColor0 = daySince(bitcoinDate0); var changeColor1 = daySince(bitcoinDate1); var _color0 = changeColor1+"00"+changeColor0; var flagColor0 = "0x0092" + _color0; document.getElementById(M "ordinalID").innerHTML = "<b>Bitcoin Bunny ID : "+OrdinalID + "</b>"; document.getElementById("link").href="http://www.bitcoinbunny.in/index.html?ord_id="+OrdinalID; document.getElementById("xNy").innerHTML = "Gender:"+gender+"<br>Breed: "+breed+"<br>Age: " + days; var color3 = "e6e6ff"; var prev_bitcoinlandFlag = root.bitcoinlandFlag; var genesis_design = []; var designs = ["000000000012100000000000.000000001155510000000000.000000015555551000000M 111.000000015521551011100151.000011155555551155511551.001155555555555555555551.015555551555555555555511.155555110155555555555510.155511000015555551111100.111100000001555515555111.000000000001155155555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000015555555551.000000000000001555555511.000000000000000155555510.000000000000000011111110.000000000000000000001551.000000000000000000001511.000000000000000000001110.000000000000000000000000.0000000000000000M 00000000","000000000012100000000066.000000001155510000000000.000000015555551000000000.000000015512551011100000.000011155555551155510011.001155555555555555551151.015555555555555555555511.155555551155555555555510.155551110015555555111111.111110000001555551555151.000000000001155551555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000155555555551.000000000000015555555551.000000000000001555555551.000000000000000155555510.000000000000000011111110.000000000000000000001551.000000000M 000000000015551.000000000000000000015511.000000000000000000001110.000000000000000000000000"]; function RGBToHSL(r, g, b) { if (Array.isArray(r)) { var cMax = Math.max(r, g, b); var cMin = Math.min(r, g, b); var delta = cMax - cMin; } else if (cMax == r) { var h = 60 * (((g - b) / delta) % 6); } else if (cMax == g) { var h = 60 * ((b - r) / delta + 2); var h = 60 * ((r - g) / delta + 4); var l = (cMax + cMin) / 2; var s = delta / (1 - Math.abs(2 * l - 1)); function HSLToRGB(h, s, l) { if (Array.isArray(h)) { var c = (1 - Math.abs(2 * l - 1)) * s; var x = c * (1 - Math.abs((h / 60) % 2 - 1)); if (h >= 0 && h < 60) { e if (h >= 60 && h < 120) { } else if (h >= 120 && h < 180) { } else if (h >= 180 && h < 240) { } else if (h >= 240 && h < 300) { } else if (h >= 300 && h < 360) { r = Math.round((r + m) * 255); g = Math.round((g + m) * 255); b = Math.round((b + m) * 255); function RGBToHex(arr) { return "#" + ("0" + r.toString(16)).slice(-2) + ("0" + g.toString(16)).slice(-2) + ("0" + b.toString(16)).slice(-2); function derivePalette(r, g, b, invert) { var hsl = RGBToHSL(r, g, b); var hy = (h + 320) % 360; var c1 = HSLToRGB(hx, 1, 0.1); var c4 = HSLToRGB(hx, 1, 0.2); var c5 = HSLToRGB(hx, 1, 0.45); var c2 = HSLToRGB(hx, 1, 0.7); var c3 = HSLToRGB(hy, 1, 0.8); var c2 = HSLToRGB(hx, 1, 0.2); var c3 = HSLToRGB(hx, 1, 0.45); var c4 = HSLToRGB(hx, 1, 0.7); var c5 = HSLToRGB(hy, 1, 0.8); color1 = RGBToHex(c1); color2 = RGBToHex(c5); function random(max) { return Math.floor(Math.random() * max) + 1; function hexToBytes(hex){ for(var i = 0; i < hex.length; i+=2){ parseInt(hex.slice(i, i+2),16)); var bitcoinlandFlag = function (bunnyid,_designId){ if(bunnyid.slice(0,2) == "0x"){ bunnyid = bunnyid.slice(2); var bytes = hexToBytes(bunnyid); var genesis = bytes[0], var size = size || 10; var invert = k >= 128; k = k % (designs.length-1); var design = designs[k].split("."); k = random(genesis_deM design = genesis_design[k].split("."); if(k % 2 === 0 && invert || k % 2 === 1 && !invert){ colors = [null, "#555555", "#d3d3d3", "#ffffff", "#000000", "#ff9999"]; colors = [null, "#555555", "#222222", "#111111", "#000000", "#ff9999"]; colors = derivePalette(r, g, b, invert); return design.map(function(row){ return row.split("").map(function(cell){ return colors[cell]; bitcoinlandFlag.noConflict = function(){ nlandFlag = prev_bitcoinlandFlag; return bitcoinlandFlag; if( typeof exports !== 'undefined' ) { if( typeof module !== 'undefined' && module.exports ) { exports = module.exports = bitcoinlandFlag; exports.bitcoinlandFlag = bitcoinlandFlag; root.bitcoinlandFlag = bitcoinlandFlag; function generateBitcoinLandFlag(bunnyid, size, _designId){ size = size || 10; var data = bitcoinlandFlag(bunnyid,_designId); var canvas = document.createElement("canvas"); canvas.height = size * data[1].length; var ctx = canvas.getContext("2d"); for(var i = 0; i < data.length; i++){ for(var j = 0; j < data[i].length; j++){ var color = data[i][j]; ctx.fillStyle = color; ctx.fillRect(i * size, j * size, size, size); return canvas.toDataURL(); let img = generateBitcoinLandFlag(flagColor0,200, designId_); document.getElementById("imageid").src= img; nerateBitcoinLandFlag(flagColor0,200,designId_); document.getElementById("mainDiv").style.backgroundColor = color3; document.getElementById("mainDiv").style.border = _border; var intervalId = window.setInterval(function() document.getElementById("mainDiv").style.borderColor = color1; document.getElementById("imageid").src= img; document.getElementById("mainDiv").style.borderColor = color2; document.getElementById("imageid").src= img1; FjDOUT:E8DA7E2E3C23969863D2649694C36055DBC1F0849C265915E124A49A6B9D4999 (((((((((((((((((((((((((((((((((((((((((((((((((( text/plain;charset=utf-8 text/html;charset=utf-8 <meta charset="UTF-8"> <title>World Clock</title> background-color: black; font-size: 24px; font-family: Arial, sans-serif; text-align: center; margin-top: 50px; function displayTime(city, offset) { var now = new Date(); var utc = now.getTime() + (now.getTimezoneOffset() * 60000); var localTime = new Date(utc + (3600000*offset)); rs = localTime.getHours(); var minutes = localTime.getMinutes(); var seconds = localTime.getSeconds(); var timeString = city + ": " + addZero(hours) + ":" + addZero(minutes) + ":" + addZero(seconds); document.getElementById(city).innerHTML = timeString; function addZero(i) { i = "0" + i; setInterval(function() { displayTime('New York', -5); displayTime('Los Angeles', -8); displayTime(Mo displayTime('Paris', 1); displayTime('Tokyo', 9); displayTime('Sydney', 10); <h1>World Clock</h1> <div id="New York"></div> <div id="Los Angeles"></div> <div id="London"></div> <div id="Paris"></div> <div id="Tokyo"></div> <div id="Sydney"></div> Aj?=:ETH.ETH:0x1FeE636Bd6798467f26C72040e0264b76b760F57:1410412::0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlM ns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:829c7ea9-7f3f-4618-8f61-b88223d17b7d" xmpMM:InstanceID="xmp.iid:04a9e8c8-4aef-491b-ae55-8f4a6dcde955" xmpMM:OriginalDocumentID=M "xmp.did:c6b3f16d-b76a-4084-a638-7851666d1a56" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676406305039202" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T07:25:03+11:00" xmp:ModifyDate="2023:02:15T07:25:03+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:1c4570d9-49e2-4628-b48f-8bd20efe001d" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T07:25:05"/> </M rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M 8 <?xpacket end="w"?>h! !*!!!!!*+%''''%++.000.+669966AAAAAAAAAAAAAAA (0('$'(07.++++.73500053::77::AAAAAAAAAAAAAAA c/Foundry USA Pool #dropgold/ G nm}hPB_G6UE3S?,MSHcREaB/P;'IC3(WbR$( K;ZU`PLVH640E5):A6861 F4T]\njzfDK@AH<;1+.3)) _m[=*JK8,,0'4+%=.$)'$' et`oi^^eY41-)-%&)"&$ xhwccq_L=\R]NIRF490/5,10+# vl_ca]jXe^SRZLHB=>E:<C78@4H6, sRR^YcUcROJLKDH?73=( pYX_SE<O_WLLQGD?FGQM ePOQPLGGZKD8'CGNBQJB2&4:0*8* "' jSHFSlWD:3DNEBB;=4(=ZI9=@9R>3.+3L;.\ n_lZYLJYRQWy`KKP9I<1?70W IjGREFUND:D5B614163E83EED6B94D184DC3BE2C8D4A6DEB737633D1920387F60DFFD396C0 FjDOUT:A3FBD37B9D5DF47CD2622A62DFB41EA20F913DE7FEBB06DA7B7309A347E6B374 <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:YResolution>264</tiff:YResolution> <tiff:XResolution>264</tiff:XResolution> <tiff:PhotometricInterpretation>2</tiff:PhotometricInterpretation> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> </rdf*:Description> @j>=:BNB.BNB:bnb1nnge9j874p0xvw6v8483664meul6x2gmh38n0t:708657::0 patrickduwelz42@gmail.com IjG=:BNB.TWT-8C2:bnb1w8k7j6yxtmuvn3hy3zl470cyp25l2p3fl7zgku:41084700143::0 JjH=:BNB.BUSD-BD1:bnb12y55jh7dsarpqcgzpypdy87md8y8tzp2s7zclj:18552715374::0 JjH=:BNB.BUSD-BD1:bnb1u7qpmhll2nlfz5lpc7rj445x2lanaa25dg8wgv:11556464568::0 CjA=:BNB.BNB:bnb1xng76c5swx9ejr7l96ep85zqsxwurdwfk6u05k:646001046::0 << /Filter /FlateDecode /Length 7414 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /FiltM [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+CenturySchoolbook-Bold /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 59 /Widths [ 778 370 426 556 611 685 278 287 759 759 574 519 333 759 352 778 611 500 685 667 611 963 574 278 444 667 685 ] >> ength 398 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+CenturySchoM olbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 16 0 R >> << /Length1 12452 /Length 9466 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 76 /Widths [ 556 444 278 500 389 500 278 250 722 500 778 500 921 500 500 250 444 722 500 333 722 500 500 444 278 500 333 500 333 500 722 250 500 944 611 667 556 722 278 180 889 << /Length 480 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 19 0 R >> << /Length1 36584 /Length 26860 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+TimesNewRomanPS-BoldMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 40 /Widths 33 444 500 444 250 ] >> << /Length 270 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+TimesNewRomanPS-BoldMT /Flags 4 /FontBBox [0 -14 711 675] /ItalicAngle 0 /Ascent 891 /Descent M 792 /StemV 0 /Leading 42 /XHeight 594 /FontFile2 22 0 R >> << /Length1 12208 /Length 8840 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215153426Z00'00') /ModDate (D:20230215153426Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <f1a79539d6f6a94cce307dd43ae24fec> <f1a79539d6f6a94cce307dd43ae24fec> ] >> YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> text/plain;charset=utf-8 "Sweet Child O' Mine" She's got a smile that it seems to me Reminds me of childhood memories Where everything was as fresh as the bright blue sky (Sky) Now and then when I see her face She takes me away to that special place And if I stared too long I'd probably break down and cry Whoa-oh-oh! Sweet child o' mine Whoa, oh-oh-oh! Sweet love of mine She's got eyes of the bluest skies As if they thought of rain I hate to look into those eyes and see an ounce of pain Her hair reminds me of a warm, safeM Where as a child I'd hide And pray for the thunder and the rain to quietly pass me by Whoa-oh-oh! Sweet child o' mine Ooh, oh-oh-oh! Sweet love of mine Oh yeah! Whoa-oh-oh-oh! Sweet child o' mine Ooh-oh, oh, oh! Sweet love of mine Whoa, oh-oh-oh! Sweet child o' mine, ooh yeah Ooh! Sweet love of mine Ooh, where do we go? Oh, where do we go now? Where do we go? (Sweet child) Ooh, where do we go now? Where do we go now? Ah-ah-ah-ah-ah, wow Oh, where do we go now? Ooh, where do we go now? Now, now, now, now, now, now, now Sweet child, sweet child o' mineh! c/Foundry USA Pool #dropgold/ o]T8"GrcU59 C+Kp_UR8Om[T kXT[CQlbOqcUfQS]FQW?PD,LaWF25 ymcaKRS;Oh]K8#GH@558 neSpdSRH9PF7D<0@:.-)&9<!/0 _IRocQnbQYAP`WMWO@G=2611>?":< S`dT>KdYHZKHTKAQG<<,<>95EE'#!%99!'! peTlVRNLN]JYTIO;ITNEGC,A?'58 PGOPe\JPBBK:BE/:B=8T+2LJ.S?.$F++) ZbhYeVYkaVf`V[_UKeP>FI C=I:8w\6\H.ZB.l#+e"++8) FjDOUT:DBB04E9DDC9E2BFE4ED4474B717512B37CF7FFC8286F2DC33EFD9C316F8350C2 Aj?=:ETH.ETH:0xeA5406c64cb709C830A9f1D6DA8E4d93C8D527dd:1607494::0 text/plain;charset=utf-8 PLTE<;j<<i<;hgZCh[DgYBfXB ?=_;:542+@?;><920) 4 @=ZthVpdTkaSaXHYP@QJ>MG=RG5#) vbg\LZSC_R>/-=:76430/.()& :9e87ZymXvkV31Sb[ND?8@;5G?3C<0'. ze@=]ocPcZJFDIXQFj\E;9@,+6850'+(+8 uobA>\sgQA>P85M76FSNEXI8 ^wm\mf[ahVlgR)(G^UDPMB31@ IjGREFUND:43E8F14DA17B3677768D045421ED372F3432591178A2E89933398CA05B4D4711 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:DescriptiM on rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:b99ceb9f-f627-42d4-8c57-2f190b7202a5" xmpMM:InstanceID="xmp.iid:b5bc6d04-4c66-467f-8363-4372965a53d2" xmpMM:OriginalDocumentID="xmp.did:56d43156-c1e2-4769-bca9-cf6839b56883" dc:Format="image/webpM " GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676406278106734" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T07:24:36+11:00" xmp:ModifyDate="2023:02:15T07:24:36+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:f53595f5-31bc-4776-bd1b-25bdeeda7ba3" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T07:24:38"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta>M M M M <?xpacket end="w"?>h! << /Filter /FlateDecode /Length 9309 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> < /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+CenturySchoolbook-Bold /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 50 /Widths [ 574 278 722 519 611 685 500 556 426 370 611 574 963 574 667 287 667 611 << /Length 336 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+CenturySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 16 0 R >> << /Length1 10436 /Length 7925 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 73 /Widths [ 944 444 250 500 333 278 500 444 278 444 278 333 500 389 500 500 500 250 611 722 500 500 500 500 500 500 722 611 778 180 333 250 278 556 333 333 500 333 722 500 500 << /Length 467 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPSMT /Flags 4 /M [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 19 0 R >> << /Length1 33620 /Length 24461 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+ArialMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 68 /Widths [ 667 222 556 500 500 278 278 556 833 278 722 556 500 556 611 333 556 222 778 722 278 556 191 667 556 556 667 500 556 M 667 556 556 667 278 556 500 ] >> << /Length 445 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+ArialMT /Flags 4 /FontBBox [-1 -210 933 729] /ItalicAngle 0 /Ascent 905 /Descent -212 /CapHeight 805 /StemV 0 /Leading 33 /XHeight 604 /FontFile2 22 0 R >> << /Length1 22008 /Length 15630 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215153933Z00'00') /ModDate (DM :20230215153933Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <47e5108c4df9515c4bf2d59488e0a7ab> <47e5108c4df9515c4bf2d59488e0a7ab> ] >> (((((((((((((((((((((((((((((((((((((((((((((((((( }}}==<jjj<<<rrrzzz~~~kkk %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz text/plain;charset=utf-8 iTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:exif="httM p://ns.adobe.com/exif/1.0/"> <tiff:YResolution>144</tiff:YResolution> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> <tiff:XResolution>144</tiff:XResolution> <tiff:Orientation>1</tiff:Orientation> <exif:PixelXDimension>1022</exif:PixelXDimension> <exif:ColorSpace>1</exif:ColorSpace> <exif:UserComment>Screenshot</exif:UserComment> <exif:PixelYDimension>1018</exif:PixelYDimension> </rdf:Description> CjA=:ETH.ETH:0x0d4C47bBcE39Adb9725aa5572fe075566e91e1ad:398612972::0 Aj?=:ETH.ETH:0xaaae4b6d5c086cb72b5429194c811601670d82d9:1357143453 PLTE?>-=<,>=,=;+r~g3*]AA/@@. J 2*\5([>6+8&[@A/@>.><.=6*;#^4)\q}f<3)? f2,]=7*:2(2+]?5-d:):9*;#]<2)53'10$it^V]M wkva<#_>4,<3,o{ell`<"`9![RQIHNA=5.+% {trg5,JAG:9-9:.6;/5=:4>31:2*6/(Z3".,! mxulnxc7"WcbVXaP7)PQWI. ILUFJF=:.3|J1=;-<6-0)# qpodoocep\7$[ggZ^[V_fU5 BSO@QJ>GE;>D8;A5,!40*)T3#a4"q: w\blY2+VoaRYVQ\ZOR[KcVJtV@A=>CA7A=4 kM5,L8*H8,>1)3<21uG0 8j6ion:124.QmTnZqWnm1fByPUNHGRMXshW7CZDjiG8CJpxWkqf1gbT1J FjDOUT:6DCB8A03639888E0DE4A9D857E72CBD3375EF9B1D087FF852122BB7A9D1A731C DjB=:ETH.ETH:0x9deef7FCd0C4FB32C1579ef6164784061Ef58411:60008377:te:0 text/plain;charset=utf-8 FjDOUT:46A32AD0012A78988676C925F70817CE9EE4F72B2052899AEE038E6F1DE6979A \W@x0=VQ<SN7+!4V12DC1IB/83''! ;* 9LM8GF4LG2??.L*.E<-@;,GB+J4+.&+U =~7<TB8Y?8PK6V95AC1U,*41%@9$?3$D%"D 6F`QAgOA^J>kC>YL=n88PB4o(2` text/html;charset=utf-8 window.tokenId=2; window.ethaddr="0x38930aae699c4cd99d1d794df9db41111b13092b"; <body style="padding: 0; margin: 0"> <div style="overflow: hidden"> style="image-rendering: pixelated; width: 100%" let _seed = Math.random() * 4294967296; const seed = (num) => (_seed = num); const _rand = () => { let t = (_seed +=M t = Math.imul(t ^ (t >>> 15), t | 1); t ^= t + Math.imul(t ^ (t >>> 7), t | 61); return ((t ^ (t >>> 14)) >>> 0) / 4294967296; const rand = (min = 0, max = 1, tilt = 1) => { return min + Math.pow(_rand(), 1 / tilt) * (max - min); const randInt = (min, max, tilt) => Math.floor(rand(min, max, tilt)); const randBit = () => Math.round(_rand()); const randColor = (min = 0, max = 256) => [ randInt(min, max), randInt(min, max), randInt(min, max), const randColorString = () => `rgbM (${randColor().join(",")})`; const randRotation = () => [ _rand() * 2 * Math.PI, _rand() * 2 * Math.PI, _rand() * 2 * Math.PI, const randMember = (arr) => arr[Math.floor(_rand() * arr.length)]; const repeat = (times, fn) => { const result = new Array(times); for (let i = 0; i < times; i++) { result[i] = fn(i); const textureFunc = () => { const width = Math.floor(rand(10, 40)); const height = Math.floor(rand(10, 40)); const patternLength = Math.floM const pattern = new Array(patternLength).fill(0).map(() => rand()); const rMult = rand(0, 256); const gMult = rand(0, 256); const bMult = rand(0, 256); const canvas = document.createElement("canvas"); canvas.width = width; canvas.height = height; const ctx = canvas.getContext("2d"); const arr = new Uint8ClampedArray(4 * width * height); let offset = 0; let reset = Math.floor(rand(51, 201)); const draw M for (let i = 0, j = offset; i < arr.length; i += 4, j += 3) { arr[i + 0] = Math.floor( rMult * pattern[(j % reset) % patternLength] ); // R value arr[i + 1] = Math.floor( gMult * pattern[((j + 1) % reset) % patternLength] ); // G value arr[i + 2] = Math.floor( bMult * pattern[((j + 2) % reset) % patternLength] ); // B value arr[i + 3] = 255; mageData(new ImageData(arr, width), 0, 0); const frameTime = 1 / 10; let elapsed = 0; step: (delta) => { elapsed += delta; if (elapsed > frameTime) { elapsed = elapsed % frameTime; offset += 1; reset = reset > 400 ? 51 : reset + 1; draw(); dark: (rMult + gMult + bMult) / 3 < 128, for (;;) (r = (16807 * r) % 2147483647), yield r; var canvas = document.querySelector("canvas"), generator = pseudoRandom(window.tokenId), r = (A, r, t) => r + (A % (t - r + 1)), img = new Image(), var A = canvas.getContext("2d"); A.clearRect(0, 0, 40, 40); var t = r(generator.next().value + 4, 1, 100) <= 96; r(generator.next().value, 1, 100) <= 100 ? r(generator.nexM r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 59, 62) : r(generator.next().value, 72, 75), shirt: t ? r(generator.next().value, 76, 83) : 0, r(generator.next().value, 1, 100) <= 60 && t ? r(generator.next().value, 50, 58) r(generator.next().value, 1, 100) <= 90 ? r(generator.next().value, 3, 15) r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 16, 17) r(generator.next().value, 1, 100) <= 80 ? r(generator.next().value, 18, 39) r(generator.next().value, 1, 100) <= 80 ? r(generator.next().value, 63, 71) r(generator.next().value, 1, 100) <= 50 ? r(generator.next().value, 1, 4) (V.back = 49), (V.kitFront = 40); (V.back = 41), (V.kitFront = 42), (V.hat = 43); (V.kitFront = 45), (V.back = 44); (V.back = 46), (V.kitFront = 47), (V.hat = 48); var e = ["#f8f8f8", "#E5FBEF", "#F5FCDD", "#FDEEE8", "#E5F1F6"]; const texture = textureFunc(); const drawFinal = (delta) => { texture.step(delta); A.drawImage(texture.canvas, 0, 0, canvas.width, canvas.height);M Object.entries(V).forEach(([r, t], V) => { if (0 !== t || "body" === r) { var e = t % 3, l = Math.floor(t / 3); A.drawImage(img, 40 * e, 40 * l, 40, 40, 0, 0, 40, 40); window.requestAnimationFrame(drawFinal); window.requestAnimationFrame(drawFinal); img.addEventListener("load", async () => { " EQVR42u2dC5RdVZnnD0gIBIh5GQaBwsBKQYqERpRYxhggQhhbiPii6WhLDzIdBabsNGsFWmyX0C4G8TEyOD1o4UyGiQhpsGEabV3ia9pH+wC6dEbsB2QaAZUWCggNjZjsWd9JfSff3XXOufdW6uy9763fb63/Os8bD+d3v733OcndZhkAAAAAgPLxnzzy6/uf/Jdd0/lnyp8nfy53NxHBr/jgddunS7L8OfLnITgRzr/n4e0i5Px7Ht66t1Lk8/LnTPx527m7hhWLM1eWUBUsYvZGsspVwTO+gpfMz5xE1g/Zf/f6k1vPc+4HN+SRdUnTkn3BU608+RyCKyRrVGou+iefz9O0ZG2i90ayL5cm2jTLdZJVdJOSVY4nuGPJVq735yBYhN61ebhF8ENb/6Dof+VYiKa6QnK+3uZzW/3qRa7XPN+8bigXqaJlKft0vwqW7aaruKySOxBc9rlGBS8bPMYd+5J9J0X2JydYhapkiXLXmiNyubqvYcHP2EemdpL9c7Tf1T+M nacEvP/mMSUlSsErWSrUyRbAea/qxyVTx9k6quEJukOq94jXzcplnr3mtO/zwpXlUcLJV7Eu20X2BBE+SXCfYk9uIYCuuU8HRRRdypUonKtUXavteOafpZ2JP1DOv+OB1L9QJnjj+TNNy3casK8F6ThIj6DwlkssS4s3WhOTa0bQ/etbPNN0k6/qfvWVpsS1yrVgtnNgVXDzzdiq5yVF0zePP9jaCt3fyOLU3cndtPTSvYBGr8qoE++8UYkqeLFEFVyTUu+mqUXKnx5qoXl9aVfTVryy16qO8vfIHVMVj0pojJj0y+U10SMlWaN12UwwNDU0aGdcJtv20RD6fhNxcqnkkKktsyaEZHh52l112mZOlxB8d10nWz+jnowi2/aqt2irB9lEpZH+cwnsCvz9tV73+Z6NWry/Yf1zyn4tnimCVLBXYraSpfi644LLIAG2mCO45VLLte7sVrH8GghOWbGP/5qhd9AsxUwZaPS1ZxdrUibUVzx3sIcn2nXO7ILeHBfuSy6oM cwT066KoaWdtmG7k9Pqr2B1J+n4zgPhhRdxLuGgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEY2BgwElSvLbNsw52mhSvb+Vr1jhNT0hOSbRIvT072LmnF+XL1CSL1NHRUTc2NpYvR0ZGekdyCrJVsE0qFS1yRajI1YjkY489tkhdxUeXvGHDhmQr2soua851PaRgW8kaK1uin5Fj0SSLUJm4yxedmuC/felgnrLjoeT6zbNu+6L1uH9uFMkqViTLFEApSVa50ieXCVbJcrzJ65Bq9KvXSvdFW7m6redHkyyCreRUBKtcHXhVVXnTcv3qVWGassrVbXt+VV8dtJK1yU6tgmMJ1v5Uo/vmzZtXRLbXnnJKaeS4/VxSI+sUBGvzXCW46Sa6CitYJZdFj/OsXFPBul52TqxHKG2+7SDKNuM2vF5r81arqimO/ULEfyzyR9TRBla9KryTfSnIbvcCBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDXSP0Xbxdd9RWnSfH6kp7M myf4SPcVpgETqp7fdVyQ1ye0mhYmOTkPw3HPPlf6Ota7iQ1yfSL3n/iecIEuVXFfRIatdf4z+2PnnFz9Ib1fRwardr17J2rVrJ1W0HzknRLPuV6/ktN+9flJF+5FzQjTrVXN4Vc3pVZVG5drqVXl2lhg9Jks76Yie15RglWurV+WpXHtM0H32i9CUYBVpq9f+KN0/JkvdZ78IjQuuq16/kmUpolW2nK9fjBjV61eyLBU9X78YMaq37JiIVtmyT78YjVevFazzO6lMe46d+6mpKi6rXitYtvWYoufosSaruKx6rUSdIEZl2nPs5DGNVXFZv+o3z3VVbCu+iX64rF/1m+e6KrYV30Q/XNefVlVwu/45yIja739thVdVcKxHJlvFtmr9Co71yGSr2FatX8HRn4vbVXDs5+J2FRz7ubhdBUd9q1X2EsSuxxJsUyU41puvuibbbifz5quuv07tNaaf1F5jBnn+BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACYLgYGBpwM mxeubs/gkp0nx+ra+Ya7TJCl3aGioSGqSRercgXVFUpMsUrdvGiySnGSROjw87DZs2JAvVXJdRYesdpG6cNk73Yqzb8iXKrmuokNWu0gdvz5z4z/O8qVKrqvoYNXuV6/K9bfrErJ6Va6/3S6hqldywYoDJ1W0Hzmn8WZdRdrqVWkq1x7bsmVLsc9+EZqSrCJt9aowlWuPnbfp88U++0VoSrDKtdWr8lSuPSboPvtFaFxwXfWWHRPRKlv26RcjRvWWHRPRKlv26RcjRvX6lSxLRc/XL0bj1WslyrYe0+g5eqzJKi6rXitRtvWYRs/RY01WcVn1WsH5fj3249Zz9FijVZw3xS/OJqemgtv1z009FvmpquB2/XNTj0V+31pVwbaKbcUHfbzy+19b4VUVHOuRyVaxrVq/gmM9MrVU8fXVFRz9ubhdBcd+Lm5XwbGfi9tVcNS3WmVC/eY55lutMqF+8xzzrVbZSxC7HkVwO+GpvdaM8fw7Hf11kq81AQAAAAAAAAAAAAAM AAAAAAAAAAAAAAAAAAAAsWy+d6zTcjT6Uu/2mwSIpSu6FidqamgtkrxGp8it09/Sf5EuVXFfRIas99YnaMm8ur6Qk+9UrueCMAydVtB85J1SzXjUbUCoTtZWJbic5yJdA5drqVXkq1x675bkHi332i9CkYH/Wn9QmaqtrriVlx+18X9Gr169kWYpolS3n6xcjhFxfsOx/z3ve0zKNg2zHnmLCTsgmyyWr318kyAQxZdVrBevcTnJMo+fosaaruF312ll/RkdHi6qR9VCz8dU1077Y0y+4NY+VHOSxyO9bqyrYVrGt+Cb64bp+10rXiFR7Y1MUbEXLslHBVfj9r63wqgpu+rHI70/LBEu0iS6bxyu04HaSowmu6pvrKjj09VUJTmGiNiu4TnLjTXQ3zXeVYG3SQ7/wsM12ndxUJmrzJavcaIK76a9jveiomqit7LxYb7bKJCcnN6VXlXbk3OlzcOzXl2VTLab6/zuRhOCqZriqylN4R22nNEbuNLz4SPUvJGCKj06M pzqEJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACdsjqb5TZlBzpZcjf6kLdm++eCv53NQ/JMEN1OMl+CPmiuJWXH9QuA5B4WrJWsy89khxTR/Qju8WbaF/uPC47OYyU3eiH7H+CyAw5yL5o732X7zdod2dctBxw0tc+1YcXizK05ancGXrw7sq/bP0c+P5XPTbtgK1qWjQq2cifWpyyqAcG+XF3vGcHtJAcRLBWrcvbLu4OpimpEsFatRv53pigqjuA6yUGaaGG/iX5+P/r7aR9kVUlWuUEEQ1jJyO1jyfpoxONRn0lW0cgFAAAAAAAAAAAAAACA9Dlm+ctcVVK6zjfPmuckGOtS7lve+9vu5acuz7P51IVFZDu2ZJUq+eDhQ+4bJ65ydl9SN3PRA+6Sc/7p19sksi6JLVdEiuCNN5xX5EPvWp0ntmQrVXLnH5/jfvnlPysi20lIVpmSCx56/t6LHnr+Z3/40PPP3v70rl0T+deYgkWiCBXRKlYj2zEEV8l97P9uK5KM EZK1aESsRsRc/8MyzF/50x/h59z31s5GHnh+//eld7vand+2MJVhFqmSN7ospWCXb6k1GsFatNsuSke3/8uy1j72w884du3Z9/qmdu37/h0/kom97amfQSla5spQKvmL1yXl03V+GllwnWCVHbapts+xHJF/58+d/88VndjnJqXf/6t5c8pM7d8qXINSIWav3lLcO59GK1W2Jba5Dja6tXCu5XYIOvOoEa1Vf/I/PjP/F0zt33bbD/fKA6/7fNhEtzXjTI2YdWOnoWZYiU/fZAZffXKv4JiUv2WfWJMFlwt2Fp7ckmOh2cq1kGXCJVNlWyU2Nruued6eSJgtEJNuIsLKKrTuvMcmdCraiVbAkxuNTN8JiDLp8kZp25zUmeNkP3PXdiha5i69/5LsIThytxBff4u4+ZKv71pvucd87/xe7vvc7Y+57K/7Kfe8lt7i/+Td3ujtf/i23bej77r+8+mvuu7/1HbdV8pLrH/kOghPHNreSuVvddxbc4v635PA73ZdO/qbM 70uF3uC+f+G33uSPucHcfdIv7wuyrf/6T2Vf//P5j73Efi/WGq1NxM15wmWTN/P/8s7uX/dBdd+w97qML/tJ9bs61j/7wwKt//tODrn30vljNM4L3UvJ+77v/3naR87IL770kT8KCkVs9qt4277vP3vufHt/1S8mtT/5m158/+Rt30+O/2Xntr3Y9Lcclsa+1nUAE9wFlz7qIBQAAAAAAAAAAAAAAAAAAAAAAAAAAmDmsOuRFzqab82Nd88DAgKsLVj1Zlw4cVMTfrjq2fsGsKJJF4Ec/+lG3YcOG0gwPDyPZClZZElm/eXmW55/f1LrUdRUbQ7CIE4EiUiRXiU5B8vqXZc7mo6/enS++bWGejcsD3DsVvGR+1iJYpcr22NhYftw/JgnZVKtcjcpU0TaxJftC3TUrd+en23bnmpXhJKs8EawC/abZCtZzNCo6pFxfsl+9mhiCy6q1Re6E4GCSVZ7GClShZZHP2TQpuZ3goaGhIjrQkvXQkkWuCLNyJ1WwELKKVY6M tUBvtn7UJt+ep3CaruE6uLEXk0qVLW0bRg4ODwSVbuckJVnm2au1IWePLttvy54QSbOXaqh0YGHjAJknBofthf4BlH4Mk9twzr73B+c/NKleONSFXJZXJ9Z5/f23k3j2RtAR7CSpYB1lVcus+3+S1aZW2kfvswMDA40as5v2hJFcJln11kc81/qhU1ux2IyGEYJVcIfcBT2oe28THEpzECw/bTHcruMn+1xdc8WqyRW5VMx9KsD4mJSfYl5yC4A4kl0qNJfjaL341l+tLroqeG1xyN1XctOAJisceX3I3fzHR5AV+/MHHWiq49GWHl6CC7TOx7ZPrxAaSO0lWp5JD/C2TVO3Amze0vHfWAVTdaDp4BfsDr7q/RlSxIeWWSbaiY1SuyK37SwYVXdVE63kZtK/O0H83LFXbSb9cFywCAAAAAAAAAAAAAAAAAAAAAAAAQOfMHj7NSZr+DESSu+IHj3YlS85d+N4PdP25GYX/D7Rjyb360eemJAnJFRSzwpiJQvRnFjEM qt0zwW7IjXVlSFLx8+XJXleAXI//S/q/OXdQ6l0QkyVWCReTN2XLnTjxvUlS09r8iWBJasJV45ZVXuu9///ulCSpZfxHX8uu3iJJtBWoVqtwqwXrMFx1SsEhbv359LvYb3/hGEdl+4emVefRYMMn+zx19yWW/adWEkGwr8QPZilrJKvq12UsK0UsOCPMbICu3LNs3Deax+4IJtlMPWMlFf2ym/vF//hjiEUkrWAWLNE27atbzQ8iVXH755cW6Jmo/7P+etUp01S/Um7oukXJ7tipPXokyH9dE5apAlaz7i3m75NjEeohKPvLII9tKXb16tTv33HPz6L558+blCSbYzvwiSxl02X1lE2w2JVeqVaJyRJbIVrllkfPlvJalqfYmBfuxYsviiw4mWeeasJOKVH2uqTmeVLCtPjvIskJ9iRpt0kP1wVqNkqom2Z7jn9+oZCtY5pqwv1CP8fw4SdhENfpiRaIMqMr+DD0eog9uJ7yuKW53fNrQuSaCTdDVqez5WcsAy8rM 1X3D46Gg6huCk0LkmUpxawA6UVHAncu3LkRkt2J9rIlaz3IngbuUiuERw08+2U+2TETyNklMU7EtGcJ9hJdMH97Fk+55ZqrlOLHJ7FJHsp6xqkQsAAAAAAAAAAAAAAAAAAAAAAAAA/c9ps1/pNNyNLlm64EBXlVTkPrri63meu/rBZCW/edY8J0lO7mdft6gyKUgWoR9Y+O6WpCJZpUo+ePiQ+8aJq5zdF13u25fNL2S6C09vSWjJk5rgJXOcjRWs+2KKtlL9eyeRY1Elq2Ar2ZcdSrBthnNpEwKX3Jy533YnFrF9sRw79C3Z7nMjyvUj82PpMqrkOsEqeeen/zSIZBVsm+ClH8hyiRLFypbIsfmvDS9ZBfuSVapdRhV80PLj3UFrTytyyOWbi2S//Lpb7P4uX5fzrOTpHoTZflbWpTJVsIgUVizOKiVLQkouEyzrMvmZ7rfbjUsuGyFL5b7vlQu6in5W15sYTIkoEWybZxUssXK1GbfLkHKtZH+ff7zRgZdtjv2M oPL9ptv1wlehpv9AJuZITbs8m9cFasXqOTSjBS/aZ1VZm2cBL9zcqebrS3N2b0yLMjxVqR9gt+wII9iPS/MGW7Ks6L7nn5WBvqSZk2QGWrLcI3fNl2KdlmWWZNOExRtVl0iV1580owTqC9gW3yN0j9kXZkjn7epW/74rF2b6xHpugwxF0tmRhSxNdKrgGBCfeTFvB3cpFcK9gmmkE96lgKxnBfS6ZPriPJct75k4kh3wOhmlGJPsprVrkAgAAAAAAAAAAAAAAAAAAAAAAAMCM4ojjXu/Kwp3pE7kr1l6Z55x//z+LLF25Ecn9IldkSlS0Jrbku454pfODtS7kqljNdTd+1V3z8S1FYglWmduHBt3jG08oItuIrulj6wSLXNmncmVdmurQglWslfvCzSvzqGQVjVlPph1AqVi7T4X666Hl2qotk2yrGbvym7P5mfMrtmrk7Ec+m4LgskpGsCdYsvjY3yvEdZJQ1/hH2TIn+UT20jxfPuWk0ugxPT/aTV2X7ec2zzoM 4z+3Zwe7bK091D37s+jyyLvtCCraSdT2VL6DKUsE3vjgrREtkv+yzXwBdDy5ZhIpcjZVcltCSU2tddNBU1jTbJlnXn/unvyxim+sgYkWYiqVjmNpz7t4kWAWjrk8J2eQCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQP+wMRtyZeHO9Ilct/9/KE1KojdmF7q6JHGNQ5mrSxS5t2Vn5qmSnIJoEXhbdkue7YP/0BJ30448sUWLwO2bBt0T/2Of0sixoJKtXF0fz47eI/amr5WKjin3iX1uzVOInUD2ybbsjyFZxN22bo9g96Obiuh2cMkq1YoWwZq6ag4t99998pstks+/5+FCtm7rsQ9nVweR7De/Ilgl25RVceNN9uJXXeHKBNdJtvtCSRZRIlekSWwVW9myrsumBftCJf62jS/cnttIHy1yL//ENwu5kjuypaWSrdgYgldlw4VcES25dZ+rJwmX/SGqV/vZKkHdxv8yTIvkeUevcz/4h984rWJZTjWhJN+RfbiM rhOhrq5phm7wf/tcnW/rjssHXtPbPIlgFybpUs0Sk67Jd9DMhJItgqdqbFv63PGWjaF3XypbPNCnYTielwv9+7dktUYFl+2Wpn9cviaxPWzMtYjXaZFvJVnTVtn5BQlWxTdWzsB5venClYv25w6ysdvv9fY0MvKzoqWTGvhwa2vv+N/pLEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAhpj/ure7Ts/r9NwmuGvNEa4qqdxL1yZR5J6+3RXi5p2w2pVF5dpzQ8uVX+w/fscJkyL7UxDtlh97mlvziotKI8diiM5lfWxbIW7zrIPdos2fzbc1sq2SYwj25b7w9Mo87oX/lS9VsoqOJrdM8B+96/Y8KtmIDi541sV/kgt+8JJLc6kq+oGnXigky7khBddVrpXtV3MylWtFl1RzMMkid122Xy5YJatoX3IowSpXUyVZRceQXFRlWeqEh5IswkSsjUrW2Ca7qOQAXDy4YNKcWWWJ2R8XIsuEyj7bRPvHJiQ3LliM y4Lz35fGbZomVK+eEFlxXpbJuK13Xo1dwUaUDp5Y30QOnBmumq0bOVQnZv4nkutgqjtUflz8SiUCTlqodONW9dOjoaI9OvUS7L4Am6CCrqNCBU92cqz+ex8rOt9e9+RIEp0+5XFvF/+eF3bEVLdsI7mHBE/2r9LtWrH0eRm6PyPWj/a0ct4MrBPeg3E4HWFauJub7aeh85NzxyDqF99IQ9lEKAAAAAAAAAAAAAAAAAAAAAAAAAACgV5m3+iin4W70odhFn/23RRDdR3IXvO9VLXJ90dylHpY7/+3H57GST3cX5UFyn8hVwUjuQ8F+FfvNtUpGcI/KLRNcJhrJPSj3wKULnN9U14WRdQ89EolcSVXTbPth2xfLeUjOsiXzM1eW6BemYnW9rv+tykyV/N5L3ucGz31nIfPlJ5/RVaLJnmpmmtyyil08uD6PCNT1qtB/9IBgWVrZvuDDD19aRI/JehLNN3Qm2DbT7SpYZSN4mtkye63TTMefp1L9prqugm0QPM1y3VWM ZG1/0bnfvovFpkayCbfV2IxjJ0yy3SrDOADtdglUygkPJfTirFCxi3dOL3DVnHNr1jRY5Nz7lckku2yPWXyK4QbmZOysXbPtfFbw3cqtebFixVHDTcsddLljWR0dH3djYmBOmQ26V6DLBeswXm8ybrl6Uu1JazQrBgoidDrmdVLKuI3gvWbVqlZNYwVauZGRkpBCt29MlOKt5H53se+rYwjo9V0RpbH9r5cq6nmOreTokwzQLVlEizY895leuHwQnKtjKa5c68dPVTMNeSPYF+JVrq1H7VitWov2z/nn+Me50ApKrmuR28QVa2chNbIQ8lXD3AAAAAAAAAAAAAAAAAAAAEmHtaa93deEO9bjc27bd5b7/14+WRo4huoflyu9xywQLVrKK5q71oNwqyX4lI7kP5P73T9+M5F7n5JNPniTYyuskTV3bmqMy10mw6HHjU+5j+iOtww47rFTwKa892w39+Zhb9IC75JvPurslz+9yz2tkW45JmhJ715ojWnLhcVlpkOzM JtZOFqWAbFbz/hT9yKlElS3bsck9JdHs6JYsskVYmtqx6kVwhWJYq2DbJKliabiu4KtmF926bbsEi9UdXXJCnSqwvGcGeYN22FWyba1kXwSowhGCR9LalrZF9y49cWDlVA32xhwi02yJSKtdWsspWwXWSp1uwVKOI1aoUuQy29kJwWT9sJavgKtH5/gYGWCJWIqJvfl1rH1w2yIouWi9GLjamYJl7qmy/yJxqpvsaVa5tslVk1Ug66qha/kd3XLAnsSW3Q6TJIEty9tln56nanm7BKvX9J7f2xXUVWzXoCiJa5T744cw9+K3dS5WsKfucNksxJceoXpFy1jF7BKtw/5Gobo6soI9PfvVK5MboBfiyNbbvmUljhCrBfvVaodqka+zoulHJZdUr0kSwytPYypZ1+wWYSZI7EVxVuXWSg1WvVmbZftv02QpW4TNFsO1/bd+q0uqaZyvXSg7W96q4fL8em4iIlUk4ZanVPlOr2Bcs//1TEazrjQ1SVizOWlJVwdo368hM Um2s5Xz7XxIAmVfRlh//cWye2TrCkkQtVoRs3bixE6SCqqO6JKtb/CDsAs/20fHYmCVahdpySnGCVrMkHV+uGWirY/gdo1fr79fMzbTRdJrjdu2k7yGq0D/a/kbnYdUOlz5L+SxBdNvWs2SuCq95S+RKrBAd9damSbdPsi/Qz056By15Zlv29r32VWfUc3Giz3JHgb5kXGxOVrVWumemCbfX5ryPr+uGogwc7wFLBVq7tm7MZTs/9NWDV337YkbMN1dtaxUAFAwAAAAAAAAAAAAAAAAAAAAAAAECy8O+b+xj9h+298M8/Zd7K7OA3uv0PWloabJYgUu28G92KDvWLQpVbJzgJybOPd3lSk6zzL9oJvTr5rHwmROX3hODZx7tFSz/kBl/zBfeOTY+lJdr+Ok4n2exEXIhpgKxcK7hKeKx7KHKLCrZJUbJOkdtOnjTRTVexCM5vXuKCqyo6v/bUJHcqOEQVdypY15Pq/yaqWJrtZCq8m1nYQsyF3LMVXCO6RTaC6wXM 7kpN+bEmlf+5mHsUQg6xOBCfZRKf8fJzKi4++quCUBKf0BqtMcFU/jL0ewxdcNnJGcJ8K5p00gqEXBItU/X9CkyC4DyXbyD7k9lsVm6UKLlsHAAAAAAAAAAAAgPSRf/lXtj+pf98LU0N/eoHgfuXgN1b/S/yD31gpH3pM8CSRE/+SgiruE8FVyUVDfwiWKtafQkqK39cguX8qWCWraCT3geCyZhrJfdpEV4m229y0Hh5g2SZaxdolVdzjgu0/Ntfn4EnHoHf7Xyt3xQ8eLd+G3h9ktVSyPRd6t6m2omNdypbZa50GMQ1UcszXk7nUcVcEyX0k2Ze7MtsdJDcoOVSfm0t0Z+2OkYvgHkbFydI9nOVRyVbwqlWrJoW71wNy7100Xgym3FVZIdkOsiQidGRkpEgv/Pf5P30t+ynsjBA8vujdeXLBV+2WqyJHR0eL9V6qXhF48/Ld+ec37YlsrzrkRe7SgYP6X7IK9iVbwTa91DSLPJEoUdE2M6KC7fOuCraDqV6V61eM xoMJ1e0ZUcL+/2LDNtMRW9IwT3K+sXzBrUjM9YwZZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsBesPu5IfpneJZeeuK/TJH2hH1x+snNZ5lKTPDAw4PykJnj7psFc8LpPznNJV++Pxr6elGCR+elt97mBE3/XHTW01r3slGvcG9/xx1El24qVfOqRc1qSnOShoSH3mRuvKeT+4m+OT0rwRVd9Jb9xIliy+qxN0atYKlZixQpyXclJFsE7nvlVHpEszXRKgqViJSJWE1uwNst+9WrmnL/aJVfBv/j5WHJNtO2DVWwqfbBIlEq1UjXJNdPFTUxQroiVZtouU5WcbD+cKmUj6BRH0gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANMKP6reu3snc5skew/lwm7/0nPJXOCS+ZnrJClcq4q1y+Tk/ulHbs3ze++6JgnJIk++cHJNKlO3Ja9ff3ESgvVeucsuc1Z2MpXsy5Ubl4LkOsFyXPenUL1XZJkM TwUlWsX7bRKoKTuEbWCdY1lMQnIu87LJcpi5z2RNJqoLt7DUqObZgbVl8wXJ9yTXRE0J1mdRgyzbTKchVwXItVrLte1MaZF3hVesVqQ2y/EruhVF0ivfvipQfk3gOBgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASIAts9c6TYrXd+mJ+zobjHXBvYvGi1lhJLKd0vVtv2nQuR3XFBm/P3OyD3PdyL0qc+PPDOSR9VQkS7WKUIlML6FLEUwlt0FuVC744cxl7iyXiWuJOyuZORetYBsEdyD3J796vsjKzOX9ryxFsu6PLVkkikyJVm6+3BRX8NY3zM2vQTJ+fbYnP57IxLacF03wB+57vIiKrNofXfLEzUxFrpWq1yaRYyo/quDMTGHoS6zaP5NH0ResOLBFngosE2uPyT75LH1G4tQJ1v16jpUu+xDch4LtPgT3sGTdtoL9fdy5HhI8lXDnAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZioLl73M TaVacfUOR8zZ9Po9uy/EY1zc8POw0GzZsKLJly5Y8ui3HY1zf6Oio04yNjRXR69NtOR5FrspUiZqhoaEW8TEE+1KtbLk+Kz6GYF+qlT0yMlJE9wW5qDmLT5pUsbZSJf45spR9khWLs0YvVP58kVcmsE6u7Gv62hRfXJVcf1+Q62snWGVWCW76+toJrjoWSrD8b9QJlv0rX7Nm0jlRBPv9bmqCVWSqglVgO8G6HqqFqZRsRWpCyq2rYiu3bH+wm1dRxVakFRxcrgqeSkLewKkk5PWJxE4T+voAAAAAAAAAAAAAAAAAAAAAICrz3MNOwp3ojkPWz3Ma5Pah3MM+NOCOuff4PNElI3Ea5S6bm8uV6HoyklX0CSec6iTomrpgWbZslwiO2owjeS8FT0iT7Sq5fjMeXDSS906wL8xWrJUbrL8u64tV8mvXnuve+vbLWoLODvphreT181qEyrawZH6Wb+t6Y4LrBloqWWJ/7ojkag74rTlOojJVrBWv6yo+ymBMJEr1WsnM 6gykEd1/NRfM90Tdb6VWDscYZHFqVS/UFi3gUthesMm3fW0heNtf94RcuzaMj72iC/ekGENyh4PXz8ubajp4njbRjyVXBItMOtJDcfRX7o+mkLvLVR07++SKS+xytZIlWOHelz7j8ig+3TEOA5D5DhKrklATzq/hpkqsRyRIZkIW+joGBgXweC3+/tCpyDFN7KVcTS65OrOLLFOkI3svHJ5sY12AF+1MjyTENtnoUK9hGJOsSwX0qWI4huE8F2zkpEdynguUYgvtEsgbBM0g2o2gAAAAAAAAAAAAAAAAAAAAAAAAAAAAASIKL52TutP35NX9XvPzkM5wmZbGSvz78wLaC9VybJq7pwuMyp0le8ObNm/OkKlqkPnTh77SVK8flSyDnPva5LXlkuwnJb3jZvu7KN+zrHvzwHtHJylaxIvnMM89MUvB/nLdfrWA59plF++cRqRqR3aRkFS3piWpOsXluJ9dvklW0ym5SshXdk320VHTMyhaxmrpm2UYHY7aqJU0JbtdM PVx3fMnuts4kmN7vzq271Die5Y/UOtymlplvE+X3ulvGLC5n2CxJ6BC5ytem2oguh7qw8X3L35AkuWvvmtf/1RpG7SST/3U6n65tSketXsEyMdtHXTgxesZ0MxkSgezjL41ewFR1csqyr2BREq2Bfrk0qz8zaR0tE7Lffcdxu0VdlLbGVHaXJVlIRbSVLsyyVq3Jlf2ovRd516Ctb5PoVrPuycRdXcI1o6aPvCP1mS2Re9N7D88iIW0fdqc1jaQWPL3p3vvzpwBN5khQcq6Lt6NiOmKsGVKmILhOskn3Bcm5yj1ShROubLW2KywZTZUJji5Y++NuvOq4QK5JVtJV7wqadaQr2RU9IdtMt2Y6g7UsMKzrVaYbzKn7VcZMickVs8nIrKrqRKrYvMcpeZqQ6j7SOqC/b7yNFVGzPyA39lqvqZUbKk4Xbx6eefdUJAAAAAAAAAAAAAAAAAAAAAAAAAAAAEJKb1w05CXeiT+WO33+n+95HLnLXZEw21g0XrDjQaZKVK2IM ldRUs4m1CXuOaozInmerxpgVvfcNc9+C159RKlp/RRPkiiCxtnsvEqVD5FZ/LsiIhRYu8v5gzx21ctMiVidVriiHZiquSp+fIFyHK76WqZKlYlSsz2bzwi0cniQ4luGyfRK5DZgOKKblKXHS5dch0CLZyr/3EJ/KEFqxC6wTHrOJ21a1ykxKsUwjaCtbY2WxchD5ZBUuTrYLlx+YpCVa50jfruiyPedsf5ElOsMr0hct6zJG3SI7dRFc12SL3sBWzi5x53a1FoksuE6yRZlr6Y7mh7eaSDFXFmlQE26b5U4+c4156zPxc7HXf/fs8yUg+ff36XKitYO2LU5hwTG7g0sEVRVLo5+QaVK6tXhG74/kX0pGs0yKI5LJmOmb16o2UvlfEylJm5ZNlTMkqV/tcWR766tNbmmcrWiUnIVonGlOxKcwmpxWs0y7GrmA7oNLtoxcfNElyWUWr6GjCY83cWsudX7Uz4ubrKQywyo6JZJsq0XYglsSIOzbaNEsl99J1txOdzGAM sBXpNbjeikdwnVA3GJEjuU8lJvRyB6W2yy8LdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBkWLjsnU6z4uwbipy36fN5dFuOx7g+mRNj+6bBPOPXZ3vy44lMbMt5Ma5veHjYaTZs2FBky5YteXRbjkeRa6Va2XMWn9QiPoZgkWalqmiJHFP5sQT7Uq3soaGhFvHBBFtxvsA6ubJP0vT16RxUfuWWibXHdPabpq/v0EMPzeVprMA6ubJPPhtEcJlk3e/HPxZCcJlk3VaRdlv3hRJsJVupZbFygwqeakIJnmpCCZ5qGPUBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANIf9UVmS13fpXKfB1hTk+j8LTU3u9psG8x+fyxLJUxDs/+i7XUWHrHYRWswuYCTXVTTVXtE8+78R9mWXJWTzrBHJmrLjNOkdNNmT5uioqPJYTbY222Wx4jHqYau3neQo12eqt51kbCIYwQjuktHRUacZGxsrovM86bYcT0FwlehUBFeJjiLM Yl2plj4yMFNF9KQkuS0qCyxLkgla+Zo2TWHFVcv198rnYj01VcmO9EKl7ZPIfn4IJ9gVawSrSPyeW4E6ek1N62xX9+VcreKph2AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwcxkYGHCaFK9vzuKTnCbF6zvx969ymiTlDg0NueHh4XyZmmSROndgnVu47J35MjXJIvVVnxxxn3rknHyZnGQRKnI1KrmuokNWuwgVuRqVXFfRIatdhIpcjUquq+ig1W5lakSypux4yCbdytSIZE3Z8ZBNupWp1WzjH/cTrcnWZrssVnysJlub7bJY8bGabG22y2LFBxdsq7ed5Bhdiq3edpJj9smdSI7SJyMYwQjuJ8FVolMRXCU6FcFVoqMI9kfQ7RLrhUeVZD+pyK1K9LdadcJjvRCpe2TyH59iv9WqE57MC5FYz79785yc0tuuZJ5/AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC6ZfOsg50mxesbGRlxmhSv76KrvuI0ScqMi 9PTvY/e1LB/NlapJF6ujoqBsbG8uXqUkWqZ/edp+75/4n8mVykkWoyNWo5LqKDlntIlTkalRyXUWHrHYRKnI1KrmuooNWu5Wp1WzjH/cTsnnWarbxj9tzQki2MjUiWVN2PGqTbiXbyq6q8lhNtjbbZbHiYzXZ2myXxYqPKrid5Jh9cieSY1yfrd52kqMOuhCMYAT3g+Aq0akIrhKdiuAq0VEEV8mtSipyq5KS4LJEf6tVJzzWC5F2j00hH5E6eWyqkpvMC5FYz79TFZ7aK81knn8BAAAAAAAAAACC8/8B7qWqwmm51XUAAAAASUVORK5CYII="); text/html;charset=utf-8 <title>Live Bitcoin Price</title> background-color: black; color: white; font-size: 36px; font-family: 'Roboto', sans-serif; text-align: center; margin-top: 100px; <link href="https://fonts.googleapis.com/css?family=Roboto:400,700&display=swap" rel="stylesheet"> <h1>Live Bitcoin Price</h1> <p id="price"></p> fetch('https://api.coingecko.com/api/v3/simple/price?ids=bitcoin&vs_currencies=usd') .then(response => response.json()) .then(data => { const price = data.bitcoin.usd; document.getElementById('price').textContent = `1 BTC = $${price} USD`; .catch(error => { console.error(error); document.getElementById('price').textContent = 'Error fetching Bitcoin price'; fetchPriLsce(); setInterval(fetchPrice, 60000); // Refresh price every 60 seconds 4j2DC-L5:eRwrYbDjLT6GqhT2eOG7tZxtbqZVhHHIDFYITMHb/y0= <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0123/4096 3,1,2,3,1 ~0.9334846823476255--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#9296A0" width="100%" height="100%"/> <polyline fill="#F2F652" points="0,8 5,3 5,3 0,0 "/> <polyline fill="#36EEE0" points="8,0 3,2 4,3 8,8 "/> <polyline fill="#F652A0" points="8,8 4,2 4,3 0,8 "/> <polyline fill="#F2F652" points="0,0 2,4 4,4 8,0 "/> FjDOUT:96497DE42D372D6726AB6B332D8BD68270F2188E05B57AF557E996B9F258CF44 OPLTEEMFCJC*-&390@G@7<46;305-(,$%(!27/16.?E>03,,0(.2*D8&'*#8>6BIB.3++/'4:2F:(9?7-0*#% ;A9ZYNTSH<C;<B:>4$$' XVK=2"\[OH>.M@-B5$@5#9/ QQFQNC:?7G;'*# }OK@MH>JD8JA7J=)B7&!$ z]yrYmhNWTISPEEG=JF;:2&-% etmUpjR^ZHA@6D>467/>8-75,/) (((((((((((((((((((((((((((((((((((((((((((((((((( text/plain;charset=utf-8 data:text/html,%3Chtml%3E%3Chead%3E%3Cscript%20src%3D%22https%3A//cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js%22%20crossorigin%3D%22anonymous%22%3E%3C/script%3E%3C/head%3E%3Cbody%3E%3Cscript%3Elet%20x%3D-0.72%3Blet%20y%3D-0.64%3Blet%20z%3D0%3Blet%20j%3D100%3Bfunction%20setup%28%29%7BcreateCanvas%28500%2C500%29%3Bbackground%280%29%3B%7Dfunction%20draw%28%29%7Bfor%20%28let%20i%20%3D%200%3B%20i%20%3C%20j%3B%20i%2B%2B%29%7Bx2%20%3D%20pow%28x%2C2%29-pow%28y%2C2%29%2B0.9%2Ax%2B-0.6013%2Ay%3By2%3D2%2Ax%2Ay%2B2.0%2Ax%M 2B0.5%2Ay%3Bfill%28255%29%3Bstroke%28255%29%3Bellipse%28x%2A200%2B325%2Cy%2A200%2B350%2C0.1%2C0.1%29%3Bx%3Dx2%3By%3Dy2%3Bz%2B%2B%3B%7Dif%28z%3D%3D20000%29%7Bj%3D200%3B%7Dif%28z%3D%3D40000%29%7Bj%3D350%3B%7Dif%28z%3E250000%29%7BnoLoop%28%29%3B%7D%7D%3C/script%3E%3C/body%3E%3C/html%3Eh! text/plain;charset=utf-8 Bj@=:ETH.ETH:0xf76330F6Ef040cf392C8B08e3aa8F0E73859eD5F:70439342::0 Aj?=:ETH.ETH:0xEDbE81E21e68e5B5B9CD828FBFd384013AF9cc95:4095763::0 Aj?=:ETH.ETH:0x139938D9302F6cc7AAB4aAC183B7f9dcf468be5D:5586927::0 Bj@=:ETH.ETH:0x69DcCa0AC20BA86F33449dDa774b3dDa03BD922b:30848285::0 Bj@=:ETH.ETH:0x60cA466E4153273daAa74035633f0cbB5570B414:12569572::0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xM mlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:d9830be9-9ef4-4a94-990a-1907d3c8069d" xmpMM:InstanceID="xmp.iid:ef7df8eb-a385-4877-b089-ff490bf674c4" xmpMM:OriginalDocumentID="xmp.did:510794f4-c626-4d34-a033-da0970e66e2d" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676405945081187" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreM atorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T07:18:49+11:00" xmp:ModifyDate="2023:02:15T07:18:49+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:62e98a2e-62c7-45b7-b09c-44c168bc0b16" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T07:19:05"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M~ <?xpacket end="w"?>h! c/Foundry USA Pool #dropgold/ Bj@=:ETH.ETH:0x5F2dD837cdd79497CfFE1b00301cC016331aeb1f:59886324::0 Bj@=:BNB.BNB:bnb1atjwdgsxzhfcdg4rx0xfw3vmha2d7s72sqcwsf:22525646::0 JjH=:BNB.BUSD-BD1:bnb1pkr42p99eew77fjlwn67qy5rpl3e7j4ac50fhn:32700519603::0 << /Filter /FlateDecode /Length 8647 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+CenturySchoolbook-Bold /FontDescriptor 14 M 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 46 /Widths [ 574 278 759 519 611 389 333 981 667 574 833 574 426 889 ] >> << /Length 312 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+CenturySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 16 0 R >> << /Length1 8932 /Length 6745 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 88 /Widths [ 611 500 250 278 778 500 278 444 500 278 444 500 389 333 500 500 500 333 250 722M 500 722 667 444 180 722 500 333 500 333 722 250 500 556 500 500 444 500 500 556 722 667 556 278 333 944 278 500 333 722 611 500 500 278 ] >> << /Length 551 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 19 0 R >> << /Length1 40332 /LengtM h 29627 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+ArialMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 51 /Widths [ 667 222 556 500 500 667 333 556 500 278 722 556 500 556 722 556 611 500 278 ] >> << /Length 343 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+ArialMT /Flags 4 /FontBBox [-1 -210 933 729] /ItalicAngle 0 /Ascent 905 /Descent -212 /CapHeight 805 /StemV 0 /Leading 33 /XHeight 604 /FontFile2 22 0 R >> << /Length1 14380 /Length 10070 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215174751Z00'00') /ModDate (D:20230215174751Z00'00') 0000000000 00000 n M << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <3f61ebdfcb779743ebc33658966916f7> <3f61ebdfcb779743ebc33658966916f7> ] >> 2iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 137.da4a7e5, 2022/11/27-09:35:03 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmpMM="http://ns.adobe.com/xapM /1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmp:CreatorTool="Adobe Photoshop 24.1 (Windows)" xmp:CreateDate="2023-02-15T10:07:30-08:00" xmp:ModifyDate="2023-02-15T10:09:10-08:00" xmp:MetadataDate="2023-02-15T10:09:10-08:00" dc:format="image/png" photoshop:ColorMode="3" xmpMM:InstanceID="xmp.iid:3bc5a535-f773-d545-9786-1ed2587538b8" xmpMM:DocumentID="adobe:docid:photoshop:272bab82-b9b0-af4d-aebe-e16cc85b2730" xmpMM:OriginalDocumentID="xmp.did:cf9946fb-478c-ca41-9c17-a6c914a3603d"> <xmpMMM :History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:cf9946fb-478c-ca41-9c17-a6c914a3603d" stEvt:when="2023-02-15T10:07:30-08:00" stEvt:softwareAgent="Adobe Photoshop 24.1 (Windows)"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/png"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:3bc5a535-f773-d545-9786-1ed2587538b8" stEvt:when="2023-02-15T10:09:10-08:00" stEvt:softwareAgent="Adobe Photoshop 24.1 (Windows)" stEvt:changed="/"/> </M rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?>* %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz CjA=:ETH.ETH:0xA4b7F529D1c2de90BBda7760f71E627A8b1118b9:3660376:te:0 CjA=:BNB.BNB:bnb1uqvlf4nzkpqgyskq6w04rgh9ggza89e4flsual:4803014:te:0 CjA=:ETH.ETH:0x29791Eac68c54eF56c308c4272d20620c2A16642:6647409:te:0 DjB=:ETH.ETH:0xa94c3793cf0f1f4F09b57F2a57dA475667bB6C49:87990411:te:0 DjB=:BNB.BNB:bnb18kxvds3mtvwxsnuq4rtn4l6a4tjslesky7mta7:14636917:te:0 EjC=:ETH.ETH:0x6308F64EB8369e2724E30FfBd601f80756a08Ad6:147545390:te:0 954!!!==<jjj<<<rrrzzz text/plain;charset=utf-8 PRIMORDINAL PUNKS COLLECTION One of the earliest bitcoin ordinal punk collections and 100% on-chain. All inscription IDs fall within the range 65045 to 84737. This message is for provenance. Follow @primordinalpunk on Twitter for details and updates. Comprehensive list of Primordinal Punks & their inscription IDs: primordinalpunk#1 """inscription"": ""19babab326d7d9d650a32ae31f15f561f0e0d89d6eea492f923cc12a85620c8bi0"", " primordinalpunk#2 """inscription"": ""9980e3c2a0d1de5db12ec7bb06e73dc8d685b77fa9089326a23M 6a2bfedf0804ei0"", " primordinalpunk#3 """inscription"": ""ef875cdc9b271dc9a214c0bc99f3fc6f523ae48263a259795c2accd5c492123di0"", " primordinalpunk#4 """inscription"": ""c604c5638c68ec343295696ff7e364158665050575c79ef11000e4bb3f58d030i0"", " primordinalpunk#5 """inscription"": ""4ebf5575d3a53f9113d929cfade999e12efe52a45b306c501e862330249aa875i0"", " primordinalpunk#6 """inscription"": ""a4330fc7fe654d5c31b8d5443f002fc7a8aa3c70200e1c0744647cd98e61d10ci0"", " primordinalpunk#7 """inscription"": ""2332d893ee64d96bc7320M 2daa21e4a5b738683aff17f132aa8e72f17d1db584ci0"", " primordinalpunk#8 """inscription"": ""425ff982c1dbe870c277e1c61e4bfcb74154148f0d332b0882c543cc5e58975ci0"", " primordinalpunk#9 """inscription"": ""0be371e7d9c6e267d15af66316f98f43b164429097b9f92af06b93f1d2f1f6c4i0"", " primordinalpunk#10 """inscription"": ""757da19cdb114369957eadcbdc0ae9ccd6ded193b864ac9ce8287bff55edd2d0i0"", " primordinalpunk#11 """inscription"": ""88e091d0107a607772b160de98d0019ef9d7f1d022cce666e76e1347d4f0120di0"", " primordinalpunk#12 """inscrM iption"": ""72ac9b8db6ef4f90cd1a548bb4dcc2279dc40526b3c8d86a219efebeed6d734ci0"", " primordinalpunk#13 """inscription"": ""64696af36a478f00301301d4e63cb45c639366fd5d74671f30418d4ed185b91fi0"", " primordinalpunk#14 """inscription"": ""de7deeaec48e2c62e06b2057b6c0ab890f589a89ee7b5db96d0cf241b5c4ee04i0"", " primordinalpunk#15 """inscription"": ""db933b35c7c9c7f638cb87ed9e9dd5944bf06a4171d2e4103e694887d82e11adi0"", " primordinalpunk#16 """inscription"": ""b3fde5e611e942abe69184a73655cb2a0b79f229723b6079e913fff783588532M primordinalpunk#17 """inscription"": ""04e4b6a4aba0b05e72badf32c7b6b6360402c49805081ad0f2e5a5feef453f20i0"", " primordinalpunk#18 """inscription"": ""f4facb8372cc27a2df64476a058c3709d48e880a34e95fc464c609740f70e183i0"", " primordinalpunk#19 """inscription"": ""b4f00199f3afb49d0a311961797cdac1bc624936641b814eb6335a686a47165di0"", " primordinalpunk#20 """inscription"": ""2e9dc743d0407505ad35e86c54d4031dda6e352409df8458ebb53b07735ee316i0"", " primordinalpunk#21 """inscription"": ""3f20d70b991dfd8dcef5917c9e525M 692133eb04cb075da40dee613ce5c089c1di0"", " primordinalpunk#22 """inscription"": ""7ff649d01c0a3582c2b2e3e210b70fdf32bb2506f74adb88f8fe7aab18d89ba3i0"", " primordinalpunk#23 """inscription"": ""e13458dfced28d03af75e48c8438581f007fafa9893ef306ff7ec0d8734f12e4i0"", " primordinalpunk#24 """inscription"": ""1576e220ed8e7e7c96b662c5bb9010b9633facf53683ebfedfdc251d6696a8d4i0"", " primordinalpunk#25 """inscription"": ""0478a34fee68824b16a9cddc8737b9beb4dce36f07f475f6df20463218130f5bi0"", " primordinalpunk#26 """inscriptionM "": ""e255e75756bb72e5e10d3ba56964efd42fcdd54296dab81f335ffb6891b1bb0di0"", " primordinalpunk#27 """inscription"": ""67b01447a9bbbe80433899385f1fb04c7c77b8b4bb977e787c875dbbc499c8eci0"", " primordinalpunk#28 """inscription"": ""426b772d2a491954328dfb6f88fbd1d4e70694f1234b6d3759bd358f8ebf447bi0"", " primordinalpunk#29 """inscription"": ""396a0ff9b0ff0fcdaf261d2f2de2acc8f6dd7cb68636827ffb8636c3adf9a5fei0"", " primordinalpunk#30 """inscription"": ""d1d689f6c257d62a78bfe558186d4a0bee719b96064c7e9ab8094ccba3d745bbi0"", M primordinalpunk#31 """inscription"": ""82c953874bb92a056557d97ff4c5eed59b34760de0ef93da695cdddf92430d97i0"", " primordinalpunk#32 """inscription"": ""5b5e76368ed6777fbf89a07d667e7bd04bf80eab20beeab37675dd242d4e09afi0"", " primordinalpunk#33 """inscription"": ""bb9c3c369cd57eedc0d7c0843932ec9283e4542ca56aed50046eb87e8d157b8di0"", " primordinalpunk#34 """inscription"": ""55aac10cc4605daa6b1f6f6b3798fabc8aa33da01b6b42be95a913bcd5d9864ci0"", " primordinalpunk#35 """inscription"": ""92e89b1eeeff79373358996474e14629aadM f28fa3488becdcc864a721742b2eai0"", " primordinalpunk#36 """inscription"": ""1924cd00ef855749be663b956468af047e26a078c8efdf517a2929e021600fa9i0"", " primordinalpunk#37 """inscription"": ""a44730fde3db3eb609ee0cb8b380b288995ba4464681fddb4642f018e71d7e19i0"", " primordinalpunk#38 """inscription"": ""43fd3ead09e044333c82a7aed5809f3e5897482acb38b73aa5c1999a953090e0i0"", " primordinalpunk#39 """inscription"": ""692dd19cf3f25a8847ead145a0aba700927dcf228058a9c67344c6204ef3f2b4i0"", " primordinalpunk#40 """inscription"": ""M a04b7fc1f43a93cc0e36da0a2dc265489decc91874a75ec8decf1cda06c9d8fci0"", " primordinalpunk#41 """inscription"": ""dd726671756202142fc77654d8f4034beb87f64d9cf067cb4f9bf3fd725284b3i0"", " primordinalpunk#42 """inscription"": ""a9541a3b6eee5cb53dd93dede60a6ffcde31b3f905e75abf0672979b25dd864ai0"", " primordinalpunk#43 """inscription"": ""e1b9a258b662de335080d241de3115e7b4e6d4d2e5cd0aa510a26f9924f04d4di0"", " primordinalpunk#44 """inscription"": ""0636f47d22b1bfd38fc446706ff81992f67b0a15c6912b4cba08d10515542d14i0"", " ordinalpunk#45 """inscription"": ""3f03180a38b1fdb681e40fd81c94c9d0f80f5f43322def6ebafddab48f6d1f1ei0"", " primordinalpunk#46 """inscription"": ""3ca72068746f32b971f039a1fd8a4aaab7ab908137609b56f77d50d4dbfacd3ai0"", " primordinalpunk#47 """inscription"": ""1fe13551cbd64157ce78fa593c64e753e0a6824eefd1ecfa9ce89392ae091923i0"", " primordinalpunk#48 """inscription"": ""b85ab1d4e8a5fe022b6f7c41bb00cb3a4059885979c75580c2239ec742a80225i0"", " primordinalpunk#49 """inscription"": ""d36327bbe2e8adab433af4119a00dd42f2c3ddf30L 54000d7f7cae498f38ea1e4i0"", " primordinalpunk#50 """inscription"": ""2e104ba0583a7485f0095aed74090434ab65e783d4eaabecd50ac27e269a8d2ai0"", "h! XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:7M E393816ACF211ED9952A9BB55B7B9E5" xmpMM:DocumentID="xmp.did:7E393817ACF211ED9952A9BB55B7B9E5"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:7E393814ACF211ED9952A9BB55B7B9E5" stRef:documentID="xmp.did:7E393815ACF211ED9952A9BB55B7B9E5"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L (((((((((((((((((((((((((((((((((((((((((((((((((( (((((((((((((((((((((((((((((((((((((((((((((((((( XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:1M 07714E5ACF311ED98D1825BC74D87AD" xmpMM:DocumentID="xmp.did:107714E6ACF311ED98D1825BC74D87AD"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:107714E3ACF311ED98D1825BC74D87AD" stRef:documentID="xmp.did:107714E4ACF311ED98D1825BC74D87AD"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:9M C080D19ACF211EDAA509D189117F2AC" xmpMM:DocumentID="xmp.did:9C080D1AACF211EDAA509D189117F2AC"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:9C080D17ACF211EDAA509D189117F2AC" stRef:documentID="xmp.did:9C080D18ACF211EDAA509D189117F2AC"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:BM B14BAA1ACF211ED9242E8432C844A6A" xmpMM:DocumentID="xmp.did:BB14BAA2ACF211ED9242E8432C844A6A"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:BB14BA9FACF211ED9242E8432C844A6A" stRef:documentID="xmp.did:BB14BAA0ACF211ED9242E8432C844A6A"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L text/plain;charset=utf-8 GjE=:BNB.BTCB-1DE:bnb1e6kueumz5kk3vr4qtmctzk3nqpdx82cthnwg84:291231:te:0 JjH=:BNB.BUSD-BD1:bnb1kehrg4rj8c2kpmgxqf78zxjyw4vzqteerm5y56:776830993:te:0 KjI=:BNB.BUSD-BD1:bnb1470t5trf5za6g7r5qyc6wsjf9vca0yqww02kkf:7263764606:te:0 CjA=:ETH.ETH:0xA0c666E117db527b4522355E11329d8936004D98:6796612:te:0 CjA=:BNB.BNB:bnb1a7emhpqrwaw6l7pw6hlk4738zg6drfk7k9pq2c:1899201:te:0 CjA=:BNB.BNB:bnb1x4sttx6vcuedk4vwpqknrp8d2gjyl3jjk9mn7f:7253063:te:0 CjA=:ETH.ETH:0x450F9c7c9809dF605bd3fb2aACa0B971fAE8182e:4868725:te:0 CjA=:BNB.BNB:bnb108az5vzng0ed6kj9f5enwdzxqsfy3w37e52ucn:1264906:te:0 DjB=:BNB.BNB:bnb1s6mnnf6rzt5ngkdcm3tn2kfv0sw6qjapzk46d4:13261559:te:0 GjE=:BNB.BTCB-1DE:bnb15lqyw963vp24d99kljh8ckf6a43hm6r2c4a0e9:756815:te:0 JjH=:BNB.TWT-8C2:bnb1amyqwcjzxk2jk3h9r4y3rayt59gzpaf586jm39:3642314105:te:0 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="httM p://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:a2dd51af-26b7-4ff3-8033-cdf79c4316d9" xmpMM:InstanceID="xmp.iid:a70bdef0-c157-4698-a830-6596a9b66265" xmpMM:OriginalDocumentID="xmp.did:501891d7-4254-4bfd-9e48-3414a02055ad" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438136663508" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T16:15:34M +11:00" xmp:ModifyDate="2023:02:15T16:15:34+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:fbfe5699-e08c-4d06-877c-f8d562f353b7" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T16:15:36"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M MD <?xpacket end="w"?>h! )Optimized with https://ezgif.com/optimize (((((((((((((((((((((((((((((((((((((((((((((((((( Adobe Photoshop Lightroom Classic 8.0 (Windows) Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGM .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c140 79.160451, 2017/05/06-01:08:21 "> <rdf:RDF xmlns:rdf="htM tp://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="xmp.did:ddc5357d-f7fc-3c4e-89a5-c7680d905b64" xmpMM:OriginalDocumentID="5B4A335B00370AA173F453E6BB23D58D" xmpMM:InstanceID="xmp.iid:ddc5357d-fM 7fc-3c4e-89a5-c7680d905b64" dc:format="image/jpeg" xmp:CreatorTool="Adobe Photoshop Lightroom Classic 8.0 (Windows)" xmp:ModifyDate="2023-02-11T14:35:11+07:00" xmp:MetadataDate="2023-02-11T14:35:11+07:00"> stEvt:action="derived" stEvt:parameters="converted from image/png to image/jpeg, saved to new location"/> stEvt:action="saved" stEvt:instanceID="xmp.iid:0980f19c-d46a-fe49-8d58-71f284ebb7d8" stEvt:when="2023-02-11M stEvt:softwareAgent="Adobe Photoshop Lightroom Classic 8.0 (Windows)" stEvt:changed="/"/> stEvt:action="converted" stEvt:parameters="from image/jpeg to image/png"/> stEvt:action="derived" stEvt:parameters="converted from image/png to image/jpeg, saved to new location"/> stEvt:action="saved" stEvt:instanceID="xmp.iid:ddc5357d-f7fc-3c4e-89a5-c7680d905b64" stEvt:when="2023-02-11T14:35:11+07:00" twareAgent="Adobe Photoshop Lightroom Classic 8.0 (Windows)" stEvt:changed="/"/> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:0980f19c-d46a-fe49-8d58-71f284ebb7d8" stRef:documentID="xmp.did:0980f19c-d46a-fe49-8d58-71f284ebb7d8" stRef:originalDocumentID="5B4A335B00370AA173F453E6BB23D58D"/> </rdf:Description> M M M M M M Blender:RenderTime:00:00.21 !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:M gimp:0a5e6645-14e9-467f-9ac2-408da9be7b11" xmpMM:InstanceID="xmp.iid:50fe1884-596a-4180-815c-1d47b058548d" xmpMM:OriginalDocumentID="xmp.did:786cb949-7b03-4927-b370-d877f72e4da4" dc:Format="image/webp" GIMP:API="2.0" GIMP:Platform="Windows" GIMP:TimeStamp="1676438100796479" GIMP:Version="2.10.32" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10" xmp:MetadataDate="2023:02:15T16:14:56+11:00" xmp:ModifyDate="2023:02:15T16:14:56+11:00"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="saved" stEvt:changed="/" stEvt:instaM nceID="xmp.iid:ddad7cbe-0794-4c32-9d41-409d82afe04a" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2023-02-15T16:15:00"/> </rdf:Seq> </xmpMM:History> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M L <?xpacket end="w"?>h! text/plain;charset=utf-8 Eselect * from ordinals where rarity in ('epic','legendary','mythic');h! c/Foundry USA Pool #dropgold/ FjDOUT:6B68BAA2E8DC154EA9B69F0B54B5533AAE95B28499D4A426F5E818FAE0995483 @j>=:BNB.BNB:bnb1nnge9j874p0xvw6v8483664meul6x2gmh38n0t:709141::0 DjB=:ETH.ETH:0xe3e95496Fb64880aA8b1678b340A38F7ebef89DF:61597385:te:0 EjC=:ETH.ETH:0x4f4ab6cC502cDb994F7d8f26aF73DE7aaafd3cc0:411151094:te:0 FjD=:BNB.ETH-1C9:bnb1x2jgyyrgfper4xlmyplyl86km26xe6a2qzexez:503133:te:0 EjC=:BNB.BNB:bnb18uk2ng3qmlyvws9gzlgtsct8r4g8u2w659k0hl:341034354:t:30 lylYGJQ+-/'(,=;#4+ 0 nR`WJkW?N=,90%('"/) rXobNKKKr^EbR<;<<77:954024XF2RC2H>/XC-00(A1 etePXPFbTCDDCMD7<<5^H3B8+A3%I6$r text/html;charset=utf-8 <html><head><script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.4.0/p5.js" crossorigin="anonymous"></script></head><body><script>let x=-0.72;let y=-0.64;let z=0;let j=100;function setup(){createCanvas(500,500);background(0);}function draw(){for (let i = 0; i < j; i++){x2 = pow(x,2)-pow(y,2)+0.9*x+-0.6013*y;y2=2*x*y+2.0*x+0.5*y;fill(255);stroke(255);ellipse(x*200+325,y*200+350,0.1,0.1);x=x2;y=y2;z++;}if(z==20000){j=200;}if(z==40000){j=350;}if(z>250000){noLoop();}}</script></body></html>h! IjGREFUND:85D0253A72BE0B8D69FF768752C945347E389287CE23B2B1CE3C7B6C52DBF901 Bj@=:ETH.ETH:0x985960af8d2559126aC402d1058b59524f696b9A:55609786::0 << /Filter /FlateDecode /Length 8982 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 26M 12 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+TimesNewRomanPSMT /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 89 /Widths [ 722 444 722 250 278 333 444 500 389 444 278 500 500 500 278 500 500 250 722 500 778 250 500 333 667 500 333 500 500 500 500 444 611M 667 556 722 722 722 180 889 333 500 333 500 500 500 500 500 500 500 500 500 564 944 722 667 611 ] >> << /Length 565 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 16 0 R >> << /Length1 41312 /Length 30487 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+CenturySchoolbook-Bold /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 53 /Widths 44 685 556 574 426 370 611 574 815 352 611 963 611 287 833 500 << /Length 355 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+CenturySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 19 0 R >> << /Length1 11660 /Length 8907 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+ArialMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 67 /Widths [ 66M 500 500 278 722 556 556 556 333 333 500 556 333 667 500 722 556 556 556 556 556 722 278 611 500 222 833 667 278 556 556 333 833 ] >> << /Length 420 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+ArialMT /Flags 4 /FontBBox [-1 -210 933 729] /ItalicAngle 0 /Ascent 905 /Descent -212 /CapHeight 805 /StemV 0 /Leading 33 /XHeight 604 /FontFile2 22 0 R >> << /Length1 21140 /Length 14930 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215174811Z00'00') /ModDate (D:20230215174811Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <305281b24001e8251cbe3a7b13c21123> <305:281b24001e8251cbe3a7b13c21123> ] >> text/plain;charset=utf-8 DjB=:BNB.BNB:bnb1a6u6vupzry94rh86uc6n9kyj7y0dqqj4zlwlsy:16062280:te:0 Aj?=:BNB.BNB:bnb18p2jn3hxm400xca8mxxmm029ka57wkgq2hfcdt:6954135::0 http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.da4a7e5ef, 2022/11/22-13:50:07 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.dM id:8187f80b-58da-b441-beb6-f4facd64d755" xmpMM:DocumentID="xmp.did:106CA37BA1CD11EDA616A3C011D6A140" xmpMM:InstanceID="xmp.iid:106CA37AA1CD11EDA616A3C011D6A140" xmp:CreatorTool="Adobe Photoshop 24.1 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:2dbcbd7b-5167-4bff-ac51-168ae23c0306" stRef:documentID="adobe:docid:photoshop:fd22fd71-ab86-e64b-a2c2-bff21558e0ff"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> $$+,/,+$99>>99AAAAAAAAAAAAAAM .:*$$$$*:48///84@@::@@AAAAAAAAAAAAAAA PLTE58#KM/FH,IK.6:$CE+?B)>@(-1 OKJHED>;:<98eG*Y=$24#O5!H1 EB@>=0jK,T:"M4 9, D. tWUDA?6rR0eJ,/-&@1"/+ vochcXe`T\YKQNCIF=ED8310+))F<' YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> IjGREFUND:4BE825CD5F84490C7EF205A7875C4DB4149A14FAE6CA8DC2CD5F96E9ECCF20DC Bj@=:ETH.ETH:0xCDA90D1cfD9B0bfa3B47EAF1D62c3904b20BAb58:71684043::0 Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.M 3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023M -02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-14T14:17:17-05:00" xmp:ModifyDate="2023-02-14T14:17:17-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:CA59006197ACED11922AC4AC85209B44" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="202M 3-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:C959006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:17-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saM ved" stEvt:instanceID="xmp.iid:CA59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:17-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:C959006197ACED11922AC4AC85209B44" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xM mp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdM f:RDF> </x:xmpmeta> M M M <?xpacket enM Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Bj@=:ETH.ETH:0x02C09AC5AbF98dE448706d76ec9FDE46C1083eaE:305971:te:0 CjA=:ETH.ETH:0x29791Eac68c54eF56c308c4272d20620c2A16642:4126724:te:0 CjA=:ETH.ETH:0xA4b7F529D1c2de90BBda7760f71E627A8b1118b9:8231508:te:0 CjA=:ETH.ETH:0xC4786d7E266712cE57dF4382E16AfC53c0dd1D0d:7223049:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "wizard stM {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "fire sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "fire sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "laser beams"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser beams"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:4M 7A5C8A3ACF311EDB9C698102292A571" xmpMM:DocumentID="xmp.did:47A5C8A4ACF311EDB9C698102292A571"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:47A5C8A1ACF311EDB9C698102292A571" stRef:documentID="xmp.did:47A5C8A2ACF311EDB9C698102292A571"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "lightning bolt"}]} text/plain;charset=utf-8 LUI feel like Alex Jones, Ordinals is sandy hook and Casey is the parents of dead kids CjA=:ETH.ETH:0xEDCaD224B3fF6f2bC77B3cA0948B85A788492D02:110978085::0 CjA=:BNB.BNB:bnb1dm367t9h4gggvf6fp2sh2a9wgr0ecru2tt20ss:3935605:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "ghostly companion"M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pepe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "ghostly coM {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:9M F8BD834ACF411EDB54CE63CF656CF71" xmpMM:DocumentID="xmp.did:9F8BD835ACF411EDB54CE63CF656CF71"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:9F8BD832ACF411EDB54CE63CF656CF71" stRef:documentID="xmp.did:9F8BD833ACF411EDB54CE63CF656CF71"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:8M 03EEEDEACF311ED8CD8E5514E94F095" xmpMM:DocumentID="xmp.did:803EEEDFACF311ED8CD8E5514E94F095"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:803EEEDCACF311ED8CD8E5514E94F095" stRef:documentID="xmp.did:803EEEDDACF311ED8CD8E5514E94F095"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L text/plain;charset=utf-8 99175 Moncada Investments, LLCh! XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:6M D8FA6EAACF411ED8FC3C8BFA9DD1E44" xmpMM:DocumentID="xmp.did:6D8FA6EBACF411ED8FC3C8BFA9DD1E44"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:6D8FA6E8ACF411ED8FC3C8BFA9DD1E44" stRef:documentID="xmp.did:6D8FA6E9ACF411ED8FC3C8BFA9DD1E44"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:EM 1219D89ACF311ED9F75C9DE1EEBAE1D" xmpMM:DocumentID="xmp.did:E1219D8AACF311ED9F75C9DE1EEBAE1D"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:E1219D87ACF311ED9F75C9DE1EEBAE1D" stRef:documentID="xmp.did:E1219D88ACF311ED9F75C9DE1EEBAE1D"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L 9e06d5ee734e08c26089395a1d3b1c84G0D cF)cF)cF)cF)cF)cF)cF)cF)bx UUUUUUUUUUUUUUUUUUUR {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "lamp"}]} text/plain;charset=utf-8 You're at the top of your game, a true mfer, degen or crypto boy, and you want to leave your mark on the world. You want to be remembered for your achievements and your boldness. This inscription is the key to making that happen. It's a symbol of your success, your ambition, and your willingness to take risks. And for just 100 BTC, you can own it and show the world what you're made of. Don't miss this chance to make history.h! XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:8M 9D49313ACF511ED86B0AAB079BEF705" xmpMM:DocumentID="xmp.did:89D49314ACF511ED86B0AAB079BEF705"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:89D49311ACF511ED86B0AAB079BEF705" stRef:documentID="xmp.did:89D49312ACF511ED86B0AAB079BEF705"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L ab6c5e883afc2ad81437767639c0deddG0D 4483101d9362ed8ef09ecddf58066921H0E 6537210f1004440b77fbdfd98b827f12G0D ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 89c16a26817088a52ef1946cdb272575G0D c/Foundry USA Pool #dropgold/ text/plain;charset=utf-8 Bob Marley & The Wailers Don't worry, about a thing 'Cause every little thing, gonna be all right Singin', don't worry, about a thing 'Cause every little thing, gonna be all right Rise up this mornin' Smile with the risin' sun Pitched by my doorstep Of melodies pure and true Sayin', "This is my message to you, whoo-hoo" Singin', don't worry, about a thing 'Cause every little thing, is gonna be all right Singin', don't worry, don't worry M 'Cause every little thing, gonna be all right Rise up this mornin' Smile with the risin' sun Pitched by my doorstep Of melodies pure and true Sayin', "This is my message to you, whoo-hoo" Singin', don't worry, about a thing Worry about a thing, no Every little thing, gonna be all right Singin', don't worry, about a thing 'Cause every little thing, gonna be alright Hmm, don't worry, about a thing 'Cause a every little thing, gonna be allM Baby don't worry, about a thing 'Cause every little thing, is gonna be all right Say, don't worry about a thing, no girl 'Cause every little thing gonna be all right Exodus (Deluxe Edition) EjC=:BNB.BNB:bnb18uk2ng3qmlyvws9gzlgtsct8r4g8u2w659k0hl:465019090:t:30 ~YYxIH_SRP;9?FD9435: zyyPQlBBQ68))))34$'' TZUSB?JSSGPHACB?76=44=11=;:7)*7<</D5- w^\uwwtmlmYYhongUTeNKdgga 7j5ion:41.QmUVJ3N16uhoEzMSt3SDg37tXsYfxLvvMXFZ8ksTZ6pFyx 55#@;&<6!;5!33"YF\76#/) B5G;/AGB-?7%?:$64 <0AJC.22 )& O=T>B-G@+~T*A9'lF"iC!a> SR@IT=KE/D=+C;(0+ d@ [G^@3F=1CKI:GQ9GE7B?*0()sK$11 QP>ON;NK:6.7DN6FJ5B@2GC0==/6:.9<+>:(26(=4"2. s]I_VQA9.>OJ4HF42)4EG1I@,pH#$% PDPED6EB9D@2BOS?:E=4+6>>)68(zP')+ G. |KHXKRAH>:B:29CC6AI20.-84,;8)+/(<4!3& ZShZXXTZJGHHFrZ5>82{S*12(V DjB=:ETH.ETH:0xdD59C3a1AffA26A1f41968F7950173672061fE6a:2759195553::0 text/plain;charset=utf-8 nil illegitimi carborundum binary stl file iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValuM e>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokeM n.thesaudisnft.com/3113</metadata:External_URL> <metadata:Name>The Saudis #3113</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>Red Shemagh & Crown</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Green Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>htM tps://token.thesaudisnft.com/3106</metadata:External_URL> <metadata:Name>The Saudis #3106</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>XP;U Aj?=:ETH.ETH:0xaaae4b6d5c086cb72b5429194c811601670d82d9:1355765852 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> @j>=:BNB.BNB:bnb1nnge9j874p0xvw6v8483664meul6x2gmh38n0t:125829::0 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 "3 % % 3-7,),7-Q@88@Q^OJO^qeeq "3 % % 3-7,),7-Q@88@Q^OJO^qeeq @j>=:ETH.ETH:0xF8D42CF8F14b52E96A9c31589D9b111DcD1386Fe:931825::0 Bj@=:BNB.BNB:bnb1ajm0s8cuy7vh8lv36czwaem0veqznqfc2at93w:13175272::0 !*!!!!!*+%''''%++.000.+669966AAAAAAAAAAAAAAA (0('$'(07.++++.73500053::77::AAAAAAAAAAAAAAA FjDOUT:112937A3BD18ED34B92644D92C0E54B48647858B47D84E06EB11A6257EECDF0C Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:DescripM tion rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T13:03:06-05:00" xmp:ModifyDate="2023-02-15T13:03:06-05:00" dc:format="imagM e/jpeg" xmpMM:InstanceID="xmp.iid:89C4D40A5AADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xM mp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:88C4D40A5AADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:03:06-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted fromM application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:89C4D40A5AADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:03:06-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:88C4D40A5AADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdM f:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31<M /rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition inM Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> M <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-14T14:24:43-05:00" xmp:ModifyDate="2023-02-14T14:24:43-05:00" dc:M format="image/jpeg" xmpMM:InstanceID="xmp.iid:8D0A1C1D9DACED11922AC4AC85209B44" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:iM nstanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:8C0A1C1D9DACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:24:43-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="coM nverted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:8D0A1C1D9DACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:24:43-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:8C0A1C1D9DACED11922AC4AC85209B44" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAnM cestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDM C1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing M Condition in IEC61966-2.1 << /Filter /FlateDecode /Length 7657 >> << /Type /Page /Parent 2 0 R /Resources M 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont M /AAAAAC+CenturySchoolbook-Bold /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 57 /Widths [ 574 278 667 370 963 667 352 389 574 667 287 759 611 611 685 426 759 519 556 611 574 778 648 611 685 ] >> << /Length 380 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+CenturySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 16 0 R >> << /Length1 13024 /Length 9942 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 72 /Widths [ 333 278 250 278 389 500 500 500 278 444 500 333 333 500 444 778 500 722 500 500 500 500 500 250 722 444 333 250 500 180 889 722 944 722 667 611 722 278 500 500 ] << /Length 464 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 0 /Leading 42 /XHeight 625 /FontFile2 19 0 R >> << /Length1 34160 /Length 24889 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+ArialMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 69 /Widths [ 611 333 556 556 500 500 278 222 556 278 278 778 556 722 556 556 556 556 556 667 222 500 278 556 556 833 722 667 500 722 278 500 556 556 333 944 722 ] >> << /Length 434 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+ArialMT /Flags 4 /FontBBox [-1 -210 933 729] /ItalicAngle 0 /Ascent 905 /Descent -212 /CapHeight 80M 33 /XHeight 604 /FontFile2 22 0 R >> << /Length1 21500 /Length 15213 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215174830Z00'00') /ModDate (D:20230215174830Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <40acc481ebafa21bd81e1e70e04efCbc6> <40acc481ebafa21bd81e1e70e04efbc6> ] >> FjDOUT:152F5CD165A025C492391C50265954C553A068F58C3C6760E57AE375A2FE903B FjDOUT:039DBD404CA9C851816091EB95D1A48F438C1D61F18A7266D79ED54A63036C26 FjDOUT:B5869D7CBCF2A359763DDFA4F2308C249AFFF7CD7C9ED9DA6590A04A5FDC2F10 FjDOUT:7C9B240285A52891775BB29D164D3F487D6DEE585EB59F6F94353F2158C5AB77 FjDOUT:502A83B7EC42E1D057B5BC79361E4CF6ED317B838A6CD1B9BECC0165C2DDB135 FjDOUT:A35F6E3BF7E3C9970AFD5E9384B4D273294A59301A0F4E1546EEF59254E6D19E text/plain;charset=utf-8 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMWWWNNNNNNWWWWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWWNXKK0OOOkkkkkkkkOOO00KKXNWWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWNX00OkxxxxxxxxxxxxxxxxxxxxxxxkO0KXWWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMWXKOkxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxO0KNWMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMWNKOkxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxk0XNMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMWX0kxxxM xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxOKNWMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMWX0kxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxkKNMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMN0kxxxxxxxxxxxxxxxxxxxxxxxxk000OkxxxxxxxxxxxxxxxxxxxxxxxOXWMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMWXOxxxxxxxxxxxxxxxxxxxxxxxxxxKWWWW0xxOKKKOxxxxxxxxxxxxxxxxxk0NWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMWKkxxxxxxxxxxxxxxxxxxkOkkxxxxONMMMNOxkKWMW0xxxxxxxxxxxxxxxxxxxOXWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxxxkKNNNXXKM 0XWMWWXkxONMMNOxxxxxxxxxxxxxxxxxxxxkXWMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxxxxkKNWMMMMMMMMMMWNXNWMMXkxxxxxxxxxxxxxxxxxxxxxOXWMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMWKkxxxxxxxxxxxxxxxxxxxxxkkO0NMMMMMMMMMMMMMMMWNXK0kxxxxxxxxxxxxxxxxxxONWMMMMMMMMMMMMMMM MMMMMMMMMMMMMMXOxxxxxxxxxxxxxxxxxxxxxxxxxkXMMMMMWX00KKXNWMMMMMWNKkxxxxxxxxxxxxxxxxx0WMMMMMMMMMMMMMMM MMMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxxxxxxxxxxONMMMMMXkdxxxxkOKNMMMMMWXOxxxxxxxxxxxxxxxxkXMMMMMMMMMMMMMMM MMMMMMMMMMMMMNOxxxxxxxxxxxxxxxxxxxxxxxxxkKWMMMMWKxxxxxxxxx0WM MMMMMW0xxxxxxxxxxxxxxxxx0WMMMMMMMMMMMMMM MMMMMMMMMMMMMXkxxxxxxxxxxxxxxxxxxxxxxxxxONMMMMMNOxxxxxxxxkKWMMMMMN0xxxxxxxxxxxxxxxxxONMMMMMMMMMMMMMM MMMMMMMMMMMMWKxxxxxxxxxxxxxxxxxxxxxxxxxxKWMMMMMWXKKK0000KXWMMMMMWKkxxxxxxxxxxxxxxxxxkNMMMMMMMMMMMMMM MMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxxxxxxxxxONMMMMMMWMMMMMMMMMMMMMWNKOkxxxxxxxxxxxxxxxxxxkXMMMMMMMMMMMMMM MMMMMMMMMMMMWKxxxxxxxxxxxxxxxxxxxxxxxxx0WMMMMWX000KKXXNWMMMMMWX0kxxxxxxxxxxxxxxxxxxxkXMMMMMMMMMMMMMM MMMMMMMMMMMMMKkxxxxxxxxxxxxxxxxxxxxxxxkXMMMMMN0xxxxxxxkOKWMMMMMWXOxxxxxxxxxM xxxxxxxxxONMMMMMMMMMMMMMM MMMMMMMMMMMMMXkxxxxxxxxxxxxxxxxxxxxxxx0WMMMMMXkxxxxxxxxxx0WMMMMMWXkxxxxxxxxxxxxxxxxx0WMMMMMMMMMMMMMM MMMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxx0XKKKNMMMMMW0xxxxxxxxxxx0NMMMMMWXkxxxxxxxxxxxxxxxxkXMMMMMMMMMMMMMMM MMMMMMMMMMMMMMXkxxxxxxxxxxxxxxxxONMMMMMMMMMMWX00OOOOkkOOKNWMMMMMWKxxxxxxxxxxxxxxxxx0NMMMMMMMMMMMMMMM MMMMMMMMMMMMMMWKxxxxxxxxxxxxxxxxOKKXNNWMMMMMMMMWWWWWWWWWMMMMMMMWKkxxxxxxxxxxxxxxxxOXWMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMW0xxxxxxxxxxxxxxxxxxxkkOKWMMWNNWWMMMMMMMMMMMMMWX0kxxxxxxxxxxxxxxxxkXWMMMMMMM MMMMMMMMMMMMMMMMN0xxxxxxxxxxxxxxxxxxxxkKWMWKkkKWMMMNKKKKXXKK0OkxxxxxxxxxxxxxxxxxkKWMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMN0xxxxxxxxxxxxxxxxxxxONMMNOxkKWMWN0xxxxxxxxxxxxxxxxxxxxxxxxxxxkXWMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMWKkxxxxxxxxxxxxxxxxxOKXX0kxONWWX0kxxxxxxxxxxxxxxxxxxxxxxxxxxONWMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMWXOxxxxxxxxxxxxxxxxxxxxxxxk0KK0kxxxxxxxxxxxxxxxxxxxxxxxxxkKWMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMWXOxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxk0NWMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMWKOxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxk0NWMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMWX0kxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxkOKNWMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMWNK0kkxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxkOKNWMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWWXK0OkxxxxxxxxxxxxxxxxxxxxxxxxxkO0XNWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWWNXK00OOkkkkkxxxxkkkkOO0KXXNWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMWWWNNNNXNNNNNNWWWMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMML MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMh! Bj@=:ETH.ETH:0xE6C242e03c4567CFB95b63F2C4b0B89D851312a8:264840:te:0 Bj@=:ETH.ETH:0x29791Eac68c54eF56c308c4272d20620c2A16642:173910:te:0 CjA=:ETH.ETH:0x67A3015b9ECdD325182B5B479cd27a45409dd2ff:1674252:te:0 DjB=:BNB.BNB:bnb1hhpv9lt59u673mpn9uzrjt0lnz5474cty7t55p:22237311:te:0 FjD=:ETH.ETH:0x377B4aa905F76b8dA753F3842d5afd3448fA1f28:2060892006:t:30 KjI=:BNB.BUSD-BD1:bnb19vffvkjehj237q5qh3dcn605z87ltzf5mllnaa:2259235272:te:0 KjI=:BNB.BUSD-BD1:bnb1470t5trf5za6g7r5qyc6wsjf9vca0yqww02kkf:5527348267:te:0 KjI=:BNB.BUSD-BD1:bnb1hem48hu5mhyx3u8ydswxu40qak5u4tefxsq6ly:1107981302:te:0 LjJ=:BNB.BUSD-BD1:bnb1r5p5xw2pjhz25eweqql6j4e0pc648lmu3f6nya:38738788182:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dragon wings"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dragon wings"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "wizard sM {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "fire sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:7M CC6E37EACF711EDA465A8102DA5D5A0" xmpMM:DocumentID="xmp.did:7CC6E37FACF711EDA465A8102DA5D5A0"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:7CC6E37CACF711EDA465A8102DA5D5A0" stRef:documentID="xmp.did:7CC6E37DACF711EDA465A8102DA5D5A0"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:DM C9E81F6ACF711EDBA86EDFCA959051F" xmpMM:DocumentID="xmp.did:DC9E81F7ACF711EDBA86EDFCA959051F"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:DC9E81F4ACF711EDBA86EDFCA959051F" stRef:documentID="xmp.did:DC9E81F5ACF711EDBA86EDFCA959051F"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:BM 60BD570ACF711EDA010F6B7B49769F7" xmpMM:DocumentID="xmp.did:B60BD571ACF711EDA010F6B7B49769F7"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:B60BD56EACF711EDA010F6B7B49769F7" stRef:documentID="xmp.did:B60BD56FACF711EDA010F6B7B49769F7"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:AM 9CC8206ACF811EDA9C6DDBB0BE40D39" xmpMM:DocumentID="xmp.did:A9CC8207ACF811EDA9C6DDBB0BE40D39"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:A9CC8204ACF811EDA9C6DDBB0BE40D39" stRef:documentID="xmp.did:A9CC8205ACF811EDA9C6DDBB0BE40D39"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:5M A7BBB8CACF711EDA0EBE260A50B54D2" xmpMM:DocumentID="xmp.did:5A7BBB8DACF711EDA0EBE260A50B54D2"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5A7BBB8AACF711EDA0EBE260A50B54D2" stRef:documentID="xmp.did:5A7BBB8BACF711EDA0EBE260A50B54D2"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L c/SBICrypto.com Pool/ LjJ=:BNB.BUSD-BD1:bnb1r5p5xw2pjhz25eweqql6j4e0pc648lmu3f6nya:12410422393:te:0 (((((((((((((((((((((((((((((((((((((((((((((((((( 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:42+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:42+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:42+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 9ed9228c0c01e65aff8f972ae016b025H0E Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 UUUUUUUTJ%UUUWUUUUUU^ IjGREFUND:3534CB6B9E71E4D9C7EAA9662052F9C082EF38F01D904670EE615DD6514773FF BZjAAAFNVNNvFNFvNv^^nFFf~~nNV. Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYM Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 a78fadf3bb8355b4f84c9dae387b2ecdG0D http://ns.adobe.com/xap/1.0/ ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x="adobe:ns:meta/"><rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"/></x:xmpmeta> M M M M <?xpacket end='w'?> DEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz text/html;charset=utf-8 <title>Bitcoin Shrooms Poems - Day 5</title> <meta name="description" content="Ode to Bitcoin Shrooms"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <h1>Coveting the Bitcoin Shrooms: A Yearning for Community, by Shroomya Angeloom</h1> I long to join the "Bitcoin Shrooms" clan,<br /> To share their knowledge, and hold their hand.<br /> But the discord server is locked so tight,<br /> eaving me yearning, in the middle of the night.<br /><br /> The Shrooms, they hold a value that's rare,<br /> A treasure beyond measure, beyond compare.<br /> And so I dream of holding one,<br /> And being part of the group, when all is done.<br /><br /> Oh, how I wish to be a member,<br /> To connect with others, in this digital sector.<br /> To learn and grow, with each passing day,<br /> And hold a Shroom, in a special way.<br /><br /> know the doors will open, in time,<br /> And let me in, with a rhythm and rhyme.<br /> And then I'll hold that Shroom, with pride,<br /> And be a part of the community, side by side.<br /><br /> So I stand tall, and wait with patience,<br /> Knowing that I'll soon be granted entrance.<br /> And then I'll share my own knowledge and light,<br /> With the Bitcoin Shrooms, a community so bright.<br /><br /> --------------------------------------------- <h3>Previous Poems</h3> <ul><a href="https://ordinals.com/inscription/52250a916387f75c5ec32cdb1b60134f3242a78bdcb31a67c347b10be3e50ce8i0" rel="noopener noreferrer" target="_blank">Inscription #67838 - Oh how I long to acquire a Bitcoin Shroom</a></ul> <ul><a href="https://ordinals.com/inscription/229162b15c54b8bcefb560546ecacc39b9cc2955b99eb2309dce6ba728ee60bei0" rel="noopener noreferrer" target="_blank">Inscription #68225 - Oh how I longeth to acquireth a Bitcoin Shroom</a></ul> "https://ordinals.com/inscription/b19d7c45b8994d620bbeaf1bfaf2923af3c11379753705c98c5561ea59819010i0" rel="noopener noreferrer" target="_blank">Inscription #76809 - Oh how I long to acquire a bitcoin shroom, by Shroom Shroomerstein</a></ul> <ul><a href="https://ordinals.com/inscription/66eb0b3a9404fc09d6cf2907e6573b6ddf0392dc42668ed280aa3d4beb532e2ai0" rel="noopener noreferrer" target="_blank">Inscription #104327 - The Locked Doors of the Bitcoin Shroom Discord, by Shroomgar Shallan Shoe</a></ul> --------------------------------------</p> <footer>These poems are created by ChatGPT and inscribed to be immutable artifacts in history to forever be cherised by the masses.<br /><br /> With love,<br /><a href="https://twitter.com/maximonee_" rel="noopener noreferrer" target="_blank">Maximonee</a> c/Foundry USA Pool #dropgold/ A@AB=9ZB.S<*?0%-'#=, eZJ<<;877543B2&/*&+,$#" yyn\ZQA::9J5$2*#K6"$$ cAUM>=;:OC5<61P;+H6)O7(3+(C1"5' jm`QmhO`ZJIA582-(((82&<.$7+!2( JjH=:BNB.BUSD-BD1:bnb1y9mp8y9zrlavuz98a0fpvy63fl3hxfp9x95ssn:63305524059::0 FjDOUT:5AAF8C399CF4AD1664251E7C1A81488CBEBE773B3CD254E5569B5982FF0EF693 CjA=:ETH.ETH:0x1a0b77Ed415f424a320a184649dE9beBc535ED6e:524012295::0 << /Filter /FlateDecode /Length 6060 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 M << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R /TT8 13 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 14 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+TimesNewRomanPSMTM 16 0 R /ToUnicode 17 0 R /FirstChar 33 /LastChar 71 /Widths [ 722 278 500 444 500 250 500 500 333 444 389 778 500 278 500 250 500 278 500 500 500 333 444 500 722 250 944 500 180 611 722 722 556 278 500 500 667 667 500 ] >> << /Length 460 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 18 0 R >> << /Length1 32996 /LengthM 24077 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPS-ItalicMT /FontDescriptor 19 0 R /ToUnicode 20 0 R /FirstChar 33 /LastChar 41 /Widths [ 500 250 675 500 389 444 444 278 278 ] >> << /Length 281 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPS-ItalicMT /Flags 68 /FontBBox [-172 -216 924 694] /ItalicAngle -8 /Ascent 891 /Descent -216 /CapHeight 792 /StemV 0 /Leading 42 /XHeight 594 /FontFile2 21 0 R >> /Length 7370 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+OpenSymbol /FontDescriptor 22 0 R /ToUnicode 23 0 R /FirstChar 33 /LastChar 46 /Widths [ 567 795 792 752 795 296 578 382 312 278 312 795 795 382 ] >> << /Length 314 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+OpenSymbol /Flags 4 /FontBBox [0 -221 732 810] /ItalicAngle 0 /Ascent 917 /Descent -313 /CapHeight 815 /StemV 0 /XHeight 611 /FontFile2 24 0 R >> << /Length1 1616 /Length 1286 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAI+CourierNewPSMT /FontDescriptor 25 0 R /ToUnicode 26 0 R /FirstChar 33 /LastChar 76 /Widths [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 6M 00 600 600 600 600 600 600 600 600 600 600 600 600 600 << /Length 485 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAI+CourierNewPSMT /Flags 4 /FontBBox [0 -188 625 679] /ItalicAngle 0 /Ascent 833 /Descent -300 /CapHeight 740 /StemV 0 /XHeight 555 /FontFile2 27 0 R >> << /Length1 23380 /Length 16258 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215174846Z00'00') /ModDate (D:20230215174846Z00'00') << /Size 29 /Root 15 0 R /Info 28 0 R /ID [ <76925d21cc1b38a645ba47f94b0d6e38> <76925d21cc1b38a645ba47f94b0d6e38> ] >> Bj@=:BNB.BNB:bnb1xa0xqq2s7pxuudd8c95c4nky6szvn3udqcpr45:348042:te:0 FjDOUT:810FBBF047559AE32F97E8F917FCA3B27E48F3B84DB8EF20AB7D8D42A5B17EE0 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:DesM cription rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T13:08:39-05:00" xmp:ModifyDate="2023-02-15T13:08:39-05:00" dc:format="M image/jpeg" xmpMM:InstanceID="xmp.iid:8CC4D40A5AADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceIM D="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:8BC4D40A5AADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:08:39-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted M from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:8CC4D40A5AADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:08:39-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:8BC4D40A5AADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors>M <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DM A31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing ConditioM Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 zTXtRaw profile type exif fzTXtRaw profile type iptc iTXtXML:com.adobe.xmp " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 4.4.0-Exiv2"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="gimp:docid:gimp:9aca2687-af0b-4f21-9a17-a00e31fe3d77" xmpMM:InstanceID="xmp.iid:5d782ec9-837e-4709-982e-4938f80c0d34" xmpMM:OriginalDocumentID="xmp.did:720b786f-96fa-4171-bbf7M dc:Format="image/png" GIMP:Platform="Linux" GIMP:TimeStamp="1676470768513628" GIMP:Version="2.10.30" tiff:Orientation="1" xmp:CreatorTool="GIMP 2.10"> stEvt:action="saved" stEvt:changed="/" stEvt:instanceID="xmp.iid:c4721eae-cac8-48de-8060-7f88c520f5a3" stEvt:softwareAgent="Gimp 2.10 (Linux)" stEvt:when="2023-02-15T17:19:28+03:00"/> </rdf:Description> M M Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Ffffffffffffffffffffffffc= Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 c/Foundry USA Pool #dropgold/ text/plain;charset=utf-8 text/plain;charset=utf-8 text/plain;charset=utf-8 :K^GHH;=BH<0wH%=0%^6 Ew}9^dPW`STV6TNPC7/C61:#f7 .bwuvunlk;Z^c`Y^YTYWT_SI,ED29M |{|\]`'I^2_\2VZQQN,;IAA>.28%-7,2 caBNZDUWKOU,MQkYJ5FH:@GHH:78::L5nM2D<1211 7Ij66:84e/._-.>&)Y!!/1 7j5ion:39.QmcqGGDezuHEdh9WgEiCZBbboS9cigyCT9S1tp6PyXavCT Aj?=:ETH.ETH:0xaaae4b6d5c086cb72b5429194c811601670d82d9:1364785505 EjC=:ETH.ETH:0x377B4aa905F76b8dA753F3842d5afd3448fA1f28:968743725:t:30 FjDOUT:7A4C889464C8A43C691E144C8EB8940F23CE489813978698CE8BE8CB5CA57EC5 Q`mJWcYjyVguM[h@LV?IR:A@0" vwsTcqHWdPZbEQZSWX8@D3;5/42,/))-!!! sy~GMVUUL:DK@FGKI@2927;128+8;(,0#$&!03 6# kCLO:DOPQC1:9:?4>4.(*+2-& " alvhiiqqh]bhjjcW[_y`] Z[eXRBNOiFF92.-*%#$%D-$@% <svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="fill-rule:evenodd;clip-rule:evenodd;stroke-linejoin:round;stroke-miterlimit:2"><path d="M0 0h199.334v199.334H0z"/></svg>h! iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>RM ed Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:/M /token.thesaudisnft.com/3547</metadata:External_URL> <metadata:Name>The Saudis #3547</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> tadata:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>htM tps://token.thesaudisnft.com/3212</metadata:External_URL> <metadata:Name>The Saudis #3212</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>q iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigar</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_M URL>https://token.thesaudisnft.com/3153</metadata:External_URL> <metadata:Name>The Saudis #3153</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>Z iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>M Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/3298</metadata:External_URL> <metadata:Name>The Saudis #3298</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>F iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red ShemM agh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.M com/3234</metadata:External_URL> <metadata:Name>The Saudis #3234</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> adata:Value>Red Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Rimless Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:/M /token.thesaudisnft.com/3236</metadata:External_URL> <metadata:Name>The Saudis #3236</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>hM ttps://token.thesaudisnft.com/3376</metadata:External_URL> <metadata:Name>The Saudis #3376</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>hM ttps://token.thesaudisnft.com/3134</metadata:External_URL> <metadata:Name>The Saudis #3134</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red ShM emagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Horn Rimmed Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudM isnft.com/3131</metadata:External_URL> <metadata:Name>The Saudis #3131</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudiM snft.com/3488</metadata:External_URL> <metadata:Name>The Saudis #3488</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>( iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>MAX BIDDING</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/3436</metadata:External_URL> <metadata:Name>The Saudis #3436</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>Red Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://toM ken.thesaudisnft.com/3135</metadata:External_URL> <metadata:Name>The Saudis #3135</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White ShemM agh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokM en.thesaudisnft.com/3381</metadata:External_URL> <metadata:Name>The Saudis #3381</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/3433</metadata:External_URL> <metadata:Name>The Saudis #3433</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>BrownM Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Pearwood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/3460</metadata:External_URL> <metadata:Name>The Saudis #3460</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ta:Value>Brown Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/3474</metadata:External_URL> <metadata:Name>The Saudis #3474</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>8 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>RM ed Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Rimless Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/3149</metadata:External_URL> <metadata:Name>The Saudis #3149</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/3289</metadata:External_URL> <metadata:Name>The Saudis #3289</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>~ ~iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Haram PoliM ce Cap</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/3466</metaM <metadata:Name>The Saudis #3466</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>Red Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Laser Eyes</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisM nft.com/3366</metadata:External_URL> <metadata:Name>The Saudis #3366</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>RM ed Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>3D Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/M 3272</metadata:External_URL> <metadata:Name>The Saudis #3272</metadata:Name> </metadata:Metadata> c/Foundry USA Pool #dropgold/ FjDOUT:9CA6864CCAE21BDE33D6EF14676346522FF65AA6BE8C71E402A512CB0AD4A026 Adobe Illustrator 27.2 (Macintosh) http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xM mlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpGImg="http://ns.adobe.com/xap/1.0/g/img/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stMfs="http://ns.adobe.com/xap/1.0/sType/ManifestItem#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmp:CreatorTool="Adobe Illustrator 27.2 (Macintosh)" xmp:ModifyDate="2023-02-15T17:49:52Z" xmp:CreateDate="2023-02-15T11:49:49-06:00" xmp:MetadataDate="2M 023-02-15T11:49:49-06:00" xmpMM:OriginalDocumentID="xmp.did:f22fbf5f-befa-486b-bb76-e611c1555d2d" xmpMM:DocumentID="xmp.did:557bfd99-7db1-49fd-bca4-2869578e3132" xmpMM:InstanceID="xmp.iid:f22fbf5f-befa-486b-bb76-e611c1555d2d" dc:format="image/jpeg"> <xmp:Thumbnails> <rdf:Alt> <rdf:li xmpGImg:image="/9j/4AAQSkZJRgABAgEBLAEsAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABABLAAAAAEA
AQEsAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDAM 0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAADUAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNM CFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9Q3l4tqqsyluRptiqF/T
kX++m+8Ypp36ci/3033jFad+nIv99N94xWnfpyL/AH033jFad+nIv99N94xWnfpyL/fTfeMVp36c
i/3033jFad+nIv8AfTfeMVp36ci/3033jFad+nIv99N94xWnfpyL/fTfeMVp36ci/wB9N94xWnfp
yL/fTfeMVp36ci/3033jFad+nIv99N94xWnfpyL/AH033jFad+nIv99N94xWnfpyL/fTfeMVp36c
i/3033jFad+nIv8AfTfeMVp36ci/3033jFad+nIv99N94M xWnfpyL/fTfeMVp36ci/wB9N94xWnfp
yL/fTfeMVpMsUJbrn91F/rH9WKQx+e4eN+IApTvgSsF5JUVAp36/1xVZ9Zn/AJvwGKrzdyqSKDbb
v/XFV0NzI8gUgUPh8sVROKuxV2KrJpoYI2lmkWKJBVnchVA9ydsNKkc3n/yREDXXrF2U0McVxHLJ
Uf5EZZvwyRxyHMI4gk9/+cHlK1qIotQvaf8ALPZT0PyMixjIjh/nR/0wTv3H5JNN+fmiqSI9D1Sn
/FqQxH7jIcnwx/nRY2e4qafn9pJPxaHqFP8AIMDH/k4MPBH+cPtWz3JlZ/nb5ZuD+803VrYfzSWZ
Yf8AJJpMiREfxw/0wTv3H5J7bfmR5Hn66xBbd6XnKzP/AE8iLfBGJPLf3b/cpNc0507WdH1NDJpt
9b3qDq9tKkoH0oWxMSOYSDaMyKuxV2KuxVAi5m4yHlWi1rQbHlSn3YVVC84mYepVQvOlB92BWhLc&#xM A;8FqaeoV4vQdGFTt7Yq0LiagFdwH3oNyvQ4qq20zSFqnYBaD3I3xVmOFiluuf3UX+sf1YpDG7kFpw
B1IAwJb+pkAkv09sVcVjDMeO6gN1xVv6oW+Ln136eOKrIFK3IU9RX9WKo3FUh81ed/Lnli39TVbo
LO61t7KP47iY9AI4xuanapoK9Tk4YzLlyQZAPM9b/PXVhbN6VjDoQevoy3bG7uHXsVt4xEEP+sxG
MakagPE92w+amwPV6Xk+pedbvVp+Wrvd63JWsK3U5SFW8Vt4xxX6GzNOnyEbSEPcLPzP6mkZI9Ra
M0+387al9RisIYtMttSlWCyKiOAMz8wnWsvEmJhypSoyv8nhG8rmR3m/2MvFn02Q8XljV9Q0i+1G
4v57h7b0QltEklw7tNbSXPx1ZOCRrCyswDUI6UFcyYiECBGIDWTI8yjNR/LH6pdeW4U1MTR+YbqC
1EoiA9H14raUMVEjcqfWvsnj9mv7WSGeM 725ftQYckNe/l41t5fudXW/VhbRxSGF1SLl6l1d2xVWe
TcgWPIAAluVANtyM1mq/G3614NrVk8gvH5lvtEtdSmM+mWb3l7LHbmvwRJJ6cSpKWduUnDem+RlM
GIJA3SIkHYqH1Pz7ZWFnf+o8un6hCZ4JJ2VozGLgW9G9bZTzdO/RgfGlEtLgka4QCO7b7mYyzHVD
XGrXel3rLd6ZLperRGhuLSSSymB61oAw32O2MNNIfTO490hxfqU5B1G/ls9A8m/nZr9tElvcXcer
kVCWl9/o9wetAt4vNG/2aVPTMfPAxNyj6e+O/wDsebOBB5Hfz/W9L8qfm3oWs3KadqUbaJrUjBYr
G5bksvLZfRmAVHqdgNiT0GQ4ARxQPFFldGjsWdZWl2KoH6tMVf4KHiR1HxEtXCquYnMzGnwmPjX3
wKpCK54qSv8AdleKVHRRQ4q5YJtiV6hyRUbcumKqtvC0ckpI+FiCv44qzHCxS3XP7qM L/AFj+rFIS
UIOZfuRQYEoe4nYOUFQB4Yqo+o38zV+eKq1tNIz8WNRTFVuqX+nabaSalqE6WtpaqWmnkNFAO25+
ZoB3OGMSTQUmnjfnT87Lu8065j0c/orTpgyW+oOS15cJShMEI4+hU1AdiT0Oxy2MfXwgcUuv80e8
9fcxJ2s7D7Xk0N3rGoxva6JZypFMypdSAmWWWWZuC+pOQv22NAu1TmUNLHi4sh4pDl0A9wavENVH
YJlpHlDS4fNFnouqyev+lrWGbSrpHMcIluYuUKzx0EhBkohAdCOuXyyHhsdGAjvTIpPOfknTLB4r
eyjli1GJp4oIaObYXiCSS3cAxk/V7yzhZauCUbamV+HIn3fj7iy4gEguvzD1HUlQ2+nn9MRXM1zb
XaMZOCz3iX3ERcKkpOnwty+yxFO+SOOMOZqP7KRxE8hu5Lz8xbi4vJ7KI6bHqKGO4hiCwpxZndqC
Ql1q00hqDX4iBttmNPWM aeOxldfFsGHIeiKtvI/m029tfa9rS6PpFs6SQ3VxO1VaFEiVraKq85Eji
VV4n9kCu2GOuhL6Ik/BThI5ldY6RrHmCKSbyz5quLq6lBiuNNvrhra8kWOvHiglkEqcX2FdqkYZZ
jj+uHxCBDi5FDSx/mbaNKszm69WI288c/o3HKMlCVdZgxO8Se+wyuOv0x618CyODIEr/AE95isfS
g1S2lbSfrNnPcWLAxRyfUkESKrFWC8o14kgHoPDMuE8c/pIJaiJDmGQw/mBo+sIum6nH+jrK8uZ7
nVrgBpTKLm6+uTIoWgXkbeCJPgr35AVBTiI3G/4peIFBeb9K0mTSX8xGGK0lvXig02zsDGIGZ1F1
KxCLxpbxTR2xC0LSAsTXkMljkb4fx+OqJDql9zpHmHy5c3FkpW8jgghn1exX41i9aMOySod6oNnd
dlPU5VkxQy0TtLoerKMpR26Mn/Lr8zdQ0NntdNZGsnfkmhXkh4kkbM m3uqVjJ/kZSPvzGzxlADj9Q
/nD9Mf0tkCDy28v2vePJnnnRfNllJPp5eK5tiq31jMOM0DtWgYdweJoRlU8Zj7izErZFlaXYq7FX
Yq7FWVYWKW65/dRf6x/VikJPgSgpV5yyNUAL1J+7FVvomleS8fGuKpT5l81aX5U09NS1L1JIpXEM
ENuvOWWV6kIikqK0UncjJwhxIJp4D+YP5h6lquqXhu5JgG4Cz0QtztIFoKNMmyyzb8t1IUnrtl2H
GcgHDtDv/iPu7h9rCcuHn9X2JVpPlLUJ3udX11JJf0Wbe7vdJlJjuJbMvV2q5jpHxUxjgSwcgUHX
M0GMRww2H6WqidynfmHzPpGmmG002VLqzu7FmWC0iS1aC+BaSyvBHCeMV1ESsUtKMQld+QyMYE7n
8Dr8Ek9zF9StvMWq3Npda1OfrzokMAKGS+nCfZJVBzkcdOUjVpQV2yuOqgSY4xxf7kfH9VpOM85b
fe9C0bM 8jvML26Sw2NrZs9A76tJ60wU9SsEKyRA/6z1zElknI+ue3dDb7Tu2iIHIfNmNh+T2gaJbC
61W9vtRcD4rW0Y2kFaciVjgMbAAA9X6e+V5ckAL4Qff6j9rKMT3/AKEq1DU/J+j61anSrBDq0bqF
kVQ6oswpT15CJQ4VqnqdypK9BgzzHodu7o7bT9mTnA5DQjv79mC+eNTSX8w9YtpoFvri5a1hsjOT
IkQMK8iGccl+12HXNjwE4YzEjGI4ia677Oo4hxkVZNJP5gnmsIXh1S3hlurqIm2vECmWN04inLin
Fe+2Q0cBkN4yRGJ3HQj5lOY8IqQ3L1nzTruhG+srLX7X69axB54Z2RJ5FZnaPjykoUUrGrnjUezC
mYAzSGwJp2um7NlngZRqx0Kbf8q/8na+jW9u11YzKK/XNPuZRbv4BUkaWLcfFQL/ALLY0ysWWJO8
Yn4B1s4EdSGM6j+Quro7xwSadqdmasrTI1ldg9hzM hSRXPzpU5kGXWMpRP+mj8i113gH7C861Ty15
g8vat+jIpbjTJPUWeGyvaejLJHRkaN19S3moenL5dcyRqSI3kF+cf1cx9rUcYJqJ+ahDrslld2kW
sQSR3gu2m1d+K+rfwTH96st0zerxdR6ZUH0yDUiteWRAxyRuBsdPL4fgsCDE0Uy876X5ZuYZNR0+
4jMqzfULWOwhiSK5uldppfShiEY9GOOeKNZq1Yj7BrUHFKQ2KyASXT/MWpaRf3MNze3FtqVu5iTU
7OUNIrI1GR3Vh68RI6Fj7ZRPTkUcYFdYnl8O4shk6S+b6N8i/mXb+YLldIvrc2mtrB65KENa3CKQ
C9vJXkeoPFhUe9CcwtpDijy+0e9u3Bos3yKXYq7FXYqyrCxS3XP7qL/WP6sUhJZHCIWPbpgSgVko
W5DkG3YdMVS3zB5n0Xy/p7X+qyCG1DBEUBmd5G+yiKtSzGn+YycIGRoIJp86eePPep6hfNcy3TM Nf
pLILS1KqUsbdySIhQBWmIIDvudqVy/Fh8XmP3X+6Pf7u5hKfD/W+5J/L2lyW91p+s6wJoNJv2mEG
sQVmkt7iGrCbjGxblG6hmVxUpUgdDmfIiuGPTo0DvKa3nnPXNRlh/Rfpw6jaJci+1y3RYA0Uxf1W
XjHEyRyczKQ4LCQkoE6ZTPgxj1deQ8/x+1mLlyTvyT+WV1qLWmpeotno/ISXGvXdEkl3BZLSKXpt
0ldetaVpTMWc5Tvj/wBIP98R9zYAB9Pz/U908r+TPKehtJeaNbL690B6t60r3EkgXb+8kZ6V7haD
KTI1XQdGYHVkOQSwLzrq3mOCVY9M4veXbtDZxKOUkUcdHkmFT6TCiqav9nkKbg5izMrdloMGOcic
n0R5/oDBrPyvPd6w1s0DqumT+rc6lQrOY3rKqTRT8fUlr9niOn8w4nKjHp3O5z62MMWx+uNCPTu2
I5D8bbpJ5+8p6zpfm298y6tZtc6M VKYuNwpDLFWMRqJkFXAAWnLiR267DZiUp4Rjial+Dt+A8lQE+
I8mPS6cvmxk07y7ZPdXcNZeaMVRFagb1XmEYA2HHr2A8MdLDJhJlkNA+77KtchjMVF6h5k8r6lCb
We+rcy2FsEvrlYkIjCjkJooyQHV5C1RRuC9Bt8OvmPUdtvud92ZqhGJgTufhZ8+77PNS8oXHmKzv
LfT7lBYWN47tpKS/G0MvLdY9zJUCvwvQE7H7RBhUhXRv7SxYpxM4HinH6vPz7vk9fsLj6xZxSlld
yKSFK8ea/C4FfBgczYGxbzpCjrOiaVrWny6dqtsl3ZTU9SF602NQQRQgjsQa5ZGRibCCLeReePyj
tJpE/wAMtFfW0ChZ9Dkm53KUPxPbzyOXrT/dbtx/VlkTVkemR69D7xy+PNie47h5H6OreXNSOpaW
Wf8ARzsiSTxfvLWYgijwyj4XStQ3GlffMvHnE/Rk9Mz07/cf0c2qUK3juGYroM 3lLzWYtI0a7ijjh
S9u7GzhgkWaNYouUVuZZF5SSSH45ncsooFiNK5LilDc+X4/HxRQPJhGh65Pp17Fb3VzJHFaSFra4
t3DNbzg0Esbpy5L1qoJU1rvkdRpz9eMevr/SHd+1OOfSXL7n0n+XH5j2mv20Gl6jME8wxwh2BXit
3EoFLmIgBP3g+IoN132oMwjGxxDl9x7m4HoWdZWl2KuxVlWFiluuf3UX+sf1YpDH7iOVz8NCo7YE
qPpuOsNflX+uKvnX8xPPUuu6p9atYDJb28jQeXEC8izDae640+PkQojrsPCtcv8ADBPATURvP9Eb
+9hxVvW/T9bCb6CxhjEDI2oa7dnlcEFv3Mj/ALAVD8UnI/FXLsU5yPEDwYY8vMd+/RhIAbc5lXkX
UILu+8u2l4bfSLgwyagjNygRo1VyWJ6cHPEb1OwyWPUfuhkIuW9d532+zf7Vlj9RiOSrFWNlWCZL
HQYWWZWnVOdyY6M Ev6bg+tybopHDsRlHFvZHHm8uUf1fezrpdQ+9d5n1XU9REeq3Gn3E1sw9OHUL8
yvUAsAEHJYUWqsAqrSoNOhzIwYZjaU9+6ND9Ftc5joPmj/y688+YNAlv20wxx26wNc3MDKWjkaKh
UMGJ4VBK/Bx6+wyGrhXDuTcgPmyxG79z6M0Tz75f8w6BPqej3SSSQ27TTWrFRPCVUmksdSRuvXoe
2YmeEsYNtsCJPPPMccV35xNjHdxGDS7aNYGluHhJZqSu0UyLJ8dWpv2+WYFC6B5PTaH0afio+uXd
fzG2zJ/JF3AdHgvgVj9SSWWeCquObTCOEsWBevF46HqePiThhIc3VdoD96R3UPs3+20x0i9n1yB7
K6WBpHUNeeqBIHjkiVSojBUEP3HSlOtcOHJKXvcScQFukadZ6DpUtzYWUFlaxySNNbND6LF6cfUH
EhX406cfEA5OWSRHFI3XexERyCraXt7qGktLdz0e3lWKQ0ReM SvEqUdSKLykNT3oSOhyuMjKO55Mi
AC8qu9NvLawl1dLh/rGm3SxRMImkqbd+Cv65Z+CgU+HYVpkKPDb1uLLHJUCNpx7+8dz2HQ9Y0qHT
7q7e5it9PThO00sgWOP1VHIM7Gg+ME7nvmTpzxbB5DIK5vH/AMx/zcvdZttWtdDkH6CtpIbdpU5I
9wHqXdnHF1TmoUBSOQrXrQZ0cRjkjEmiQS0GVxJeVaVczm5VrbThcNb0mPoessiKpHxB425LQkfE
czsmE1tMj5fdTTGXknuoaxqGrTrqdnfM18Ilt5bK9ZGmkj3KgM/9+CH251b8MwTHh9GYWOYkOnvr
6fubrveB+B/G6XSy3Gk3A1by/JNZsUkhuYxX1bVpFMbozEVAcMeDdfpGZGnymXoyUT0PSQ8v0tc4
gbx/sdNZ6Np97HFeW7S6fdQxmG+R25AlRzdaHi1GO4/zNUMuXJAmJqcSbj+jvZmMYmiNj1TPRNS1
3M RtVt47WQC6tubeX9RdVKGoNUBPwss0bFKGtCRlcjAjxBt/qkfx3H5pAP0n/ADT+O99P+UPMK+Yv
LdjrAha3a5RhLA1QUlidopV38JEYDK5xo1zZA2E4yCXYqyrCxS3XP7qL/WP6sUhJ8CXYq8p8w/k5
oGmaddahpWqHR1gjdjPeD6xHBETyKwklGjFSf5jkyBkl6hfkNr9/egHhGzw1QmhhLmGUXWt3NRHG
y8vSjkGzsv2hK1RQHxzIl+/JiRw4Y9e+v961j0b85n8fNdFJ+jtPEdyBNqdzKJDpzKSWavwm6qeR
/mRBTxNciYeLk9O0AK4v+I+4lN8Md+fd+tkqaDFpc66z5kmij1yMmeK2ndRCj2jczCEjZTISiAKy
sV5homCvRsyMcRGPBAen9f4/SwkSTZ5paJ7y7028t44J9P0srJdT6ahkuLmRCI3karr8MCvBzWR1
PH4viNTkJ5vUBD1H+d/CP2+SRDbfby6pLMzM aZokgWIwvq5ASNzV1t4t+RNF3kZvClBgiPFyje/D+
XEf1JPpj/W+5Gfl3rV3o+paldW5Wh064jnVxVWiYpyBoR4be+HtIEwiB/FID5go0/MnuD0fzrZ22
oeZvrkKi3ttRgimgmmZbaEcVCOQXX4xsDRN980Ronu+x7PsrPWCufCegs97LPKxkj8twWNvEJrmJ
/RedWVYxKbhWhctuxUKiP9ncNjVCgPxbpdeP3xPQ7/Zv9thz2strdrHLBNbmR/SuDaH4SWkHLhIn
2SKEKjKfh2yoxo7ivc412idZubua+jjmiuGZ4kLQqkvAiNgf7iRtq7hnLUpXatclkkSd7/Hl+lER
sj9NFzZafI7wBrOZkkiKFXPpxtJL6km0Y5F+Ne/DsOJyyFxjy2/H49zE7l5jq0OptbcHPpzatOXj
0yOVxMGlk5jnb0YcCOIUbGvjTAQRF6zTyhHfpjj9VbbDoe/5oP8AOHXI1sW0DT3H1C1ksM /WIUo7y
elM1HrTYeFOubLs2IE9uVH7OH9ZeM1MrG/f+t515eYTzTaVJIIoNRTg0jGgEkf7yI7+Ljj9OZ+sH
CBkAsw+47H7HHw7+nvTbStPu7W2u5oYHhkiZYL+0u4y9lcUZZUhMlF4M7ICq8qn9lsqlqDYP1Yz1
HMe8fj3MhjHLlJMri40zzPFZx62k1nr1m0ovCnwvLbErJGIonBZ5TI7hI12Fa1WNQBfCVC4kGJYE
d/NDTtqFpftZ6/8AuZCJLWLUQhNvcFCA6TkhefCoB+yyH7VD0wsum4Y3jFi7rqP6vd9oLdHJZqX4
96VWxIRNE1vnbWZYyWk5G8bnYHkfhaI1NafOuWz/ANWw1KXUd/w/nMR/MnsPx9j0f8q/y4tfMFhc
wX+sB7ezm/eadElJ42qWhnhmZvhST7SngQ248cpz8MiMgFEj+0EeTKFgcJ/Hue5eXdAsdA0e30mx
MjW1vzKvM3ORmkkaR2ZqCpM LuTlRNswEywK7FWVYWKW65/dRf6x/VikJPgS7FUq80+X4PMPl6+0We
RoY72P0/VUVKsCGVqbVowG3fJwnwkFEhYp4X5i/Jrzl5ekuNT0lV164mLfv41CSw892ZbdudT2BV
zTwy645AIS9MB07/AHljvGyNy8/0i81rRNTvobnTHlv7y3mtZI7iJvrEbTKRzUOpPL+YEfEtR3rm
dPgERuBEfJoF35si8s+T/M/mXV7Bbl7i9ubfhEzSAvBZRJQI00hPFiq/EIQat0qMw8mfjBEdoHr3
99D/AHzdGFEXz+78dz2A/lA6aHHpEGsskdxOtzrtw9uHmvilOMRb1F9OFeO0e/6608YAqIrah5ef
vZcO+6WXf/OPOj6hfyXepazdyl9lSFI4gqjoo5CXphwZvCgIxCJw4jZeL+VvLmpXV01iimObUblN
H6V4F3DzOfaNIjXMrUZIynGP831/oH3teOJESe/Z7/550O+ngWO0iQ3GM mH6xY8aepLCVKSRxKyMo
ZEC777qCBVttLku3d9m6iOOVS+mW36iWB+X9a1a3ka8toHms71ks7y3WX1rqacIXaUK1X5H4t1UU
G1a/FlO53DvNbpITHCTUo7g1UQO7uek6Tqun6oLl9MJnaVArvPRnWpPKMw8Wau3xVord69csiQSa
eZzYZYzUhSsbmJNOuriSAJZksHQKkBHpOwLKeBj5AdDyB2xv0k1s11vXVhXmPzI96BpuhqWspoSJ
rmU+hHJDagtJFbs5X4KbeP01Jhz5cneaLQcB48vMHYczZ5EqXkqG+vbn9KRxSNpliWayt55SSbyU
UIhJDGgdzTruQWOIJ5hn2pkjCPBtxy51/NHK0p/OnyhIms+tCiompWXrqiVI+t2bfGq+PKOfbNpj
yjGIk9DR90v2h5iUeKx5fcpfl/8AkbovmfyXY65PqVzbXl2ZjxjEZjURTNENiORP7uteWZmbUmMi
KaoYwRbP9M N/KKWyvlmOtG5tbi2NjrFlNb/BeW5rTkVlUpIORo4qQfuzAxEQBAG12PL9jdIXzeefm
L+UN5phjlgNxfaUlRHqCp6s1rHUlYZ4l+J416iUdOhHSt2PIYkmAG/OPKz3g/oYyiDsfmwXzJq2q
3Fhb2N/psImiVI4tRQM7PGgAojcmQBqAnj3qaAs3LMwZIS3ifg0zjIcwnPlP8uvPXmK1GnzaZLFp
o+O3vLzlbrE3SqFlZnUg7qq/dlOUQhPjial18/2+bONkUeT3T8uvy3PlFrmefUPr91cw29vVYvRS
OO3UgKBzkLEk7sfuGYspgigK3J+JbQGbZWl2KuxVlWFiluuf3UX+sf1YpCT4EuxV2KuxV2KuxV2K
uxVguieT9Sg/MvVNdmjij0iOJ4tPT9t57oxzTTAUoN+SV7/fkoxjGJ/nSO/6lJJPkGX6pp639m9u
ZGiY14SIaFSQV+kEEgjKskOIUyiaeeeY/I8h1OC502MM WWrkBFmblJavROIZWCs6SIKcdqkjv9o4p
gQRQ/U7bR9o8EeCfqx/b/YeqQX+kapBcTW8mlNdw2q2lvE8MC3KRxwkO6sw+Mc/UdmPEMSB2JAb3
5cnY4tVjkLE+EniJskbnl5bUOqVw6ZdyzalLZ6Lc/VJo544JFgIMRE/NXLMKLSP4TRvbI2NyBs5M
tTARjxZI2CL3u9t+Xnunw8j6hcXkf6Xo1ndSm5WwtD6kv1h0HrcX4hUjdh8RTkBsDTrhkD83Xz7V
jGP7v6qqz3dPefe9N0jQ0sbiWcUjDjilvET6Sgft8aAcj7CgG3iTk48XCbdBKdpN+aPlXUvMXlpY
tLkVNT0+4S+s1c0WR4lZTGTv9pZDT3pXbMmBjuJfSRTXK+Y5hP8Ay9ZfUdDsbUxiJ44U9WMdBIw5
P4ftk5VGPCK50yJvdMMKHYq7FXYq7FXYq7FXYqyrCxS3XP7qL/WP6sUhJ8CXYq7FXYq7FXYq7FXY&M #xA;q7FXYqslhimjaKZFkjb7SOAyn5g4CAeaUHPoWlztyaIo228bvGNgANkKg7DIHFEpEioQeV9Hh+zH
IRUtQyyUqxqdgwB3yIwRCTMplHbW8cjyRxIkklPUdVAZqdORHWlctEQGNqmFDsVdirsVdirsVdir
sVdirsVdirKsLFLdc/uov9Y/qxSEnwJdirzr80fP99ostvpujTrHfMDJdvwDtGm3pqOYZPj3r3+/
KM2Ux2Dveyezo5QZ5B6enmwew8ueePMcD6lb3Ut3KX+L98RxZhyoXdkToeiE8ehAykQlLd2+TVaf
AeAgRHu/B+fPzZxpqeZbP8vdZs9WmuINS0+J5IpRKRKgA9VOM0Zqw2/mO3w+2XCxA3zdRlOKWqhK
ABhIjpt3cj+OrEfy+8weYbvXVFxqd3OqGDjHLPK6fvLqGJ6ozFTWN2G/z6jKsUiTzdn2lpsUce0Y
jnyA/myP30ivzA1TWrLz21lZ6pe29rM MYWMMdzMFUyU5cRy2Feww5SRKrauzcWOem4pRiSL/hHRMf
Pmqa5a+UdFvodSuYbiWaVWaKV4yY2qUVipBfgqgcmqeu++SykiINtHZ2LHLPOJjEgAdOv47mGjWP
PC6YNTTWbx7cNR/9JmJWrcQWBNKFhTKeKVXbtfA03HwcEb/qh6f+VfnK/wBesZ7TUSZryyoTc0A5
Rv8AY5AU+LY75k4chkN3n+19DHDISjtGXRhfnbUvMcfn+60jTdVu7eOaaCOCP6zMEV544yf2jReb
9unbKckjx0C7XQYsR0oyThE0D/COhKV23nTzpoOqRfWdRnuEAhmeGaQzJJDIqyrQycuPNGG4oR7H
IjJKJ5uTLQafNA1EDmNhVEbdO4vW/MmppqHke/1GwnlgeOBpopYXeJ1eMV6qVNP1jMqZuJIeY0uL
g1EYyAO9b7vJPL9x5916V4bDWrozIVURyXcyliyu2xqRsIz1OYsDOXIvTamOmwi5M QjX9UeX62fX4
8zR/l/qQvbq5tdT0wwNFMsrJJ8MERlBkQ/vAWeTck7/IZeb4D3h02M4Tqo8IiYTvp5mtunRjX5Z+
fdRi1w2es6jNPZ3a8YzcO0pWao4UZuRAIqKZXhym6Jc/tXs6Jx8WOIEh3bbMv/N64vrPy/bX1heX
FpOlysZaCaSIMjoxIYIwB3UUrluckCw6zsWMZZTGQEhXUAr08zS6D5LutQvrlp5xNPbaaJqyM0kV
YlVmryaskTOxY9PoGHj4Y2xOlGbUCMRQoGVee/3GnnFvc+d/ONyiyahJIWDrFEh4KTEFZv3cQVFo
JB8b8QenKu2YwMp9XfTjp9KNo/g+Z93IX7maeQdG83aFf/VNWEq2t/KqJWQSjikE7tujP6Z5cO4r
75dijKJ3dT2jnwZo8UKuI7q6x+fVhepa75y8s+Z3tbnVLyYWcwISWd5EliJqpKsWU80Pht88pMpR
lzdti0+DUYbEYjiHdM yP9rMPP/mK6u7Ty/BpGoSw6hfRi4kltpZIUELL8TOFKinIE77jicuyyuqLq
+ztMIyyHJEGMdtwDv+PvZ15WkuJdBtJJy5LhmiaVi0jQl2MLOSSeTRcS1d65dDk6fVgDIQPwev2p
rknGdirKsLFLdc/uov8AWP6sUhJ8CXYq+bPNNxJqHnPUXnYkyXrxAnsiP6aD6FUDNfM3J73RxENP
Gv5t/pfQuiQW0OlWy20QhidBL6a9A0v7xvvZjmfEbPEZ5EzNm+ny2QfnT/lEdZ/5g5/+TZyOT6S2
6H+/h/WH3vGPyy/47/8A0j/9RkGYmHm9X2t/dfP/AHMkx/Mv/wAmRF/0a/wyWX62jsr/ABQ/5yY/
mP8A8oH5f/4yn/iDZLN9Icfsv/GcnuYaNYih8ptp6MGmumVZE6lUSVpK+xqFyri9NO18AnPxnkP1
U9D/ACf0q7sTLKYmMV3AJZ7ihEYbkvoxIx2ZgvqGTj9nYHfL8EaM dH23mjOhf0nYfefurv5sZ86TR
Qfm2Z5nEcMV1YvI7bBVWOEkn5DKsn947DQxJ0NDmYy+8pFdEa/rlrHBzMCW9nbyMq1cLDDHFJxWv
xHnUIOrGgG5GQPqLmQ/c4yTzuR+ZJH2c+563c2E9n+WmqC4iME09vPMbcmpiVgfTjPukYUH3zLIq
BeZhkEtXGjYBAvv7z8S8m8n+Y9Q0K7e7s7T62VKs4IagokiCvH/jIfuzFxzMXpddpY5o8Mjw/gfq
ez+cL2K98iavPEGCelNHRqA1ikMbdCe6bZlzNxLymixmGpgD3j7Rbwi90u4tLe1vY1f6vKiN69Nl
lI5ceQ77VH9mYRjW72WPMJExPMfczfzB5k/TX5WWfrzLJqFvdpHcqKBqKJAjFR0qtMulO4Oo02l8
LWGh6THb7Eu/MS8mNppllX9ykuoTcexZr6Va/QFyOU7Ae9v7MgOKUutQH+wDOvyd0ezg8urqiIPr
N5yjM kfvSKVx9Fdvuy7BH026ftvNI5eDpH9IDP8vdK8t/O7Q4DZ2WtotLhZBazEV+JGDOhPb4SpH0
5jaiO1vRdgag8UsZ5c2JeQ9Mn17W4Fu52SGKMWsXYOhU+pAKfzW4lqR/HK8Q4ju7PtHKMOM8I3O/
6j/pqe/KqqoVQAoFABsABma8W3ih2KsqwsUt1z+6i/1j+rFISfAl2Kvnn8ytGl0nzheEAiK8c3cD
+Pqks1P9V+QzAzRqT3HZWcZMA747H4fse4eU9Uj1Ty7YXqBVMkKh0U1Cuo4sv0EZmwNi3kNZhOPL
KPmh/OVxbt5b1m0Eim5+oXEvogjnwCEcqdaYMn0n3M9DE+LCXTjDxr8tZEXzEqMaNIbcIO5IvIDQ
fQCcxMPN6rtUfuvn/uZI78xbiOb8yaIQ3pPbRsR/MApI+iuSyn1tPZkSNJv14k2/Mf8A5QPy/wD8
ZT/xBslm+kON2X/jOT3MDurIfoGzvVABVmik8TM yZ2X7uBygj0gu5hk/eyj8fuewflL5kXUdBXTpK
CfTlEYArUxjoe/t/mMy8E7FPL9s6Xw8vEOUmD+c4Y5vzcMMqh4pLuxR1PQq0cIIyjJ/efJ3GhJGh
sfzZfeWOaVcXPl7zHY3LkBoWgnaoJUxTIsgqB/kPXIRPDJzs0RnxSA62PiNvve6+brmK58j6pcRG
sctnIy9+q9NszZ/SXj9FEx1EQf5weV/lTYWV9qclteQpcQNJGWikAZSRDcEbHMbALL0XbGSUIAxN
Gj98XpnnKCzs/JWr2UBofQmmEZarUkkLsd96cmOZGTaJdBoZSlqISPeB8gxLy35Yh8x+R57BmKTI
IJrVwaATLEwXl1+E8iDlUYcUadlqtWcGoEum4Put5ZKLq1aezlDRsr8Z4T2eMkbjxXfMXls9GOGV
SHw+L0Hz/okkvley1iIEi2vL6C4p2SS8lKN9DCn05kZY+m3Sdm5wM0sZ6xiR/pQn35J6v6ukM 3Wlu
687aT1IY/wBrg/2ifblk9PLanD7ew1MTHV6LcXVtbIJLiVYkLBFZyBVmNFUV6knoMyCXRRgZbAWw
v84/+UNb/mIi/jlOf6Xa9if4x8CxT8m1U6gpIBKmcqfA8Ix+o5Xp3ZduH0/L9L2TMp5Z2KuxVlWF
iluuf3UX+sf1YpCT4EuxVj/nLybp/miwS3uHMFxAS1rdKORQtTkCtRyVqCorkMmMSDm6HXS08rG4
PMPKLn8s/N+mXUi2vqtESUW4t6/vErt8MbMwr4NTMbwZB6SPauDJEcVe4/tZV+X/AJG1OxuvVv4H
S1LNNK0/APK5ieBU9NXkIULNISWIrtt3yzFjI5uu7S7QhMVE78tum4POh3Bj2v8A5RaraaixsOdz
prtWNo1DyopP2ChZasPGoB8RlcsBvZzdP21CUPVtP7G/+VT+YYls7iGB1mUBpIw0MhDq1Qz8pYgC
f5V5AfzHD4BX+WcRsE7fH9R+eM 3uZR5o8n61rXlfTbRIJLeaxkflan0Xdgfsty9ZUoB719ssnAyAd
dpNbjxZpSJsSHPf9Voby1+Xt/wDoq90bVreSK3uIm9K6b0TwkDq0dFjlkNQ1T7jbBDFtRbNV2lHj
jkgdweW/x5gIbyv5I8z+VvMT3ltbSX8AV4Sym3jWWMkEH4p+S/ZB3U4IYzEtmr1+HUYuEkRPPqa/
2P6V/mTyN5jvPOb69b27sBLBNGq+hxrCiALVp0P7FDt8sZYyZWjS9oYo6fwiehHXrf8ARVfMP5XT
6tptlewcrTU7W1jtp7NxG5m9ACNG5rJwDFF/mp0FRhnhsMdN2uMU5RPqgZE3vtfwtGaF5c8yx+Tb
/wAt3UEsXqo/oXUpgJCtx/dBEmep2NCWAwxieGmnUarEc8coINcxv894sNH5S+ZwaiCYHxH1b/sp
yrwC7b+WcPeP9l/xKd6L+X3mS10jVtNMTwi/hPOd/QJZo3Ro40RJm3YeoKsM wArk44iAQ4eftLFLJ
Cd3wnlv52fp9zKvy80fWNGtXsb61eNAg4zs0NGKsxpxjklP2Xp9GW4okCi67tLPDLLiifhv+kBLP
zC/LE61czaxpkpXUmVRLbNThMVAQEMSOBCD5GnbIZcPFuObkdm9reEBjmPR39362TaBp/r+W5bK/
gdI7qS9WaCQFG9Oe4lO/cckfLIjai6/UZayiUTyEfmIh5lr/AOT2sWNz6mkSteWxPJDRVkj3NA3x
Vagp8Sj6BmPLARyeg0/bcJisg4T9hWaP5B82SagtzNFPJOqsizXFESMyIyCTlI/qExluQVU3p1GM
cUrTn7RwiFCq8vu2Fb8ub0f8w/L15r3l42VoT6qzJLwUKS4UEcRzeJR9qu57ZfljxCnRdm6mOHLx
S7vx0LGvy98na9oOqhrm2k+ryE8pWMACfAw6JNIx5Hj2yGLGYlz+0tbjzQ2Iv4/qD0vL3QOxV2Ks
qwsUt1z+6i/1M j+rFISfAl2KsE/N7UtT03Q7O70+7ltJvrQiYxMV5K8bNvTrQplOeRA2dz2LihkyG
MwCOG/tSLzbqvmC08iaBq9vqc8U8/ppKVdqv6sPMlyTuecbEexp2yE5ERBty9FhxS1OTGYggX9h/
am9/5uvNR/KmbWbWc2+pRLFHPJEaMkqzoj9OnNTWngckZkwtxseijDWjHIXDf5UWP+dNc1+w0Hyv
cWep3Mc99bP9ab1G+N19NuR+mQ/RTIZJEAUXN0GnxTyZRKMajLbb3/qXQeZfPPlDV7GPzFc/XNLv
j8Ts3qUQMFZ0egcFQQ3E9vweOUDvyRLS6fU45HEOGcUf+a2q67Y63pcWl6hNaC9j4MiSMqcg4Aag
/wBbfJZpEEUWnsfDjnjmZxB4Ve6j856P5E1c6reynUYJFntr2OUseBaNOAbr2aoI74TxCJvmwgdP
l1MOCI4TsRXvYhD5m/MHTNNsvMLak9xYXEnpiOVvUBYM44M OjDbl6TbqfpynjmBdu0lpdLknLFw1I
fs/WmvnHzH5huvMWlJo+oz2UWsWdtcJB6jBEabkvav8AKK0yc5kkUebjaHS4o4p+JESMJSHyZLfQ
+a9P/L6+F/ezJq1kPWS9SQkuPUJpyG5HA8aHvlh4hDfm4GOWGeqjwxHBLavh+tU/KnzXPrejzWl/
OZtRs3NXY/G8L7qxPchqr92OGfEN2PbGjGLIJRFRl97FYte8xH8tp9UbU7j66t2hSf1G5cCTGY/D
jtX55XxHgu3YnT4vzYhwjh4eVfFCQ63+ZGk6Vb+ZH1A3enSMitHK3qg8xyAdWFV8Kg5HimBxXs2y
waTLM4uHhl8mU/mD5ovH8j6TrmlXMtnJdzRhvScigeKRnQkUrxdKfRluWZ4QQ67s3SRGonjmBLhB
+8NeTNP88S2rXOpajLPZanZ8rSdZSzQvInNWINCrD2rjjEq3PNddk04lUIgShLfbmlf5YfmHeSak
M ;dI1u5kuDeMPqdxIeRWSlOBJ7Ptx9/nkMOXei5Pa3ZkRDjxiuHmP0sp0u9vYPOXmJbi9kbT7ERTen
KzMkcTwmWTiO1HK09gRlsSeIuuzY4nBjqPqlfxN0GFWmp+evPmpzNY3smmWMJIRIWeNEB6c2QqXP
StT32FK0pBlM7bO1ni02jgOKPHI9/wCNk680XXmvRvy9txdXk0OrWt2sct2khYyowcj951YUI6+G
TmZCHm4ukhhy6o0AYGPLu5L/ACBZee5b+x1TUNSe70iaIu8bSliPUi5JVGA6Fh9OHEJcydmPaOTT
CMoQjwzB7vN6Vl7oXYq7FWVYWKW65/dRf6x/VikJPgS7FXnn53/8otZ/8xyf8mZco1H0u87A/vj/
AFf0hD6lBDceRvJkE6CSKS4tFdGFQQbeTY4CPTFnikY6jMRzqX+6DANfi1Dytf6z5bEpksbkIKGv
ErySaKShoOYA4k/PKJXEkO60xjqIwy16hM +0EfpT38wv+Ua8mf8YJf1Q5PLyi4fZn97m94/3yb/nR
LD+iNEg63DM7IO/EIoP3kjJ6jkHF7CB45noln5kRXLy+WLeSQpciJoGlqSQ6SrGWr7EZHN0cjssg
DKa25/ZbK/MOm6vpv5ZajZ6pdm+uIoxW6ZmcvyueQqX+LZSo3y2QIgQXXabLDJrIygOEXy/zWO+X
PK2o+ZfKWkWfNI9MgMtxMOREkkommVErxPAUZvio3yyuEDKI7nN1Wrjgzzl/GaHuFD5/YgvPulTx
+ctE02Of6vN9VgjSaIECImaWgjFQQqVoor0GRyx9QDd2dmB085kWOI8+uw5+/qzfV9O1TTfyz1Ky
1O7a+u4oZa3TMzl1Z+S1L1bYGm+XkEQILqMOWGTVxlAcIJGzANchu/Jnmex1nTQUtLtPV9JfhjYB
qTQbfs7A+1R4ZRL0SsO608o6vDLHP6o/gFVi/wDJPz/8xMf/ACebH/JsT/j4936E8u5M oI/yXYS0r
IsCRA935xnb6ATkz/duJCJPaG3n+lj2rCdfym0uOQniL5WUHtzFy1P8AgSG+nK5f3Yc3DR10yP5v
/Es//LbSdZsdESe7v2vLK8tYZbSN2Y+iCgPphWJCgV245fiiQHS9qZsc8lRjwyjIg+fm8st/Ll+P
KkHmrT34yWFyyT8dnTgytHKtB2Zt/ozGEDw8Qejlqo+McMv4ht+kMt0jVp/Mln5wv4EMdxdWEQeM
d3jgCSBaV2YoaZdGXEJF1mfCMEsMTyEj9+yZ/kdcwtoeo2w/v4rkSP8A6skYVfxjbDpzsWjt+J8S
J6cP6f2o785v+UOH/MVF+psln+lo7D/v/wDNKH/LLQtetI7bUJdTe60y4tkC2bs9IiyK68UYstAP
hqKfdgwxI3ts7V1GORMRGpiXPveh5e6N2KuxVlWFiluuf3UX+sf1YpCT4EuxVh/5meWtX8w6RbWe
nCNjFP60gduJ2RlHGop+M 2a75VlgZDZ2nZWqhgmZT6ikHeeXPMsnl7y3Zw28fq6RNE93E0i1b0V4A
ofs0ZS3euAwNAdzbDVYhlySJ+sGtu9FfmH5Ij8x6Z9atYaa3Aqi3LMF5Jyq0TmpXuSPfvTDlx8Q8
2vszXnBOif3Z5/rSLzX5D8zaro3l+2to4g+mQMkyNIOQkfjX/JoPTHfITxkgeTmaPtDDjyZCb9Z/
H3qVr5F836lrdne+ZJGna14JC6fV1jRUbkC3GvIqTUL6R5dCwGAY5E2WU+0MGPGY4hV/1vx9u3QI
/wDMLyRr+rX+mS6OkQgsIuEfJ/jVwwIJ59eg7nvXJZcZJFNHZuvxY4yGS7kVKXy9+Zep6TqVnrFy
kzzwqlqpMKRgiVHeoiUVYhKLX33Hd4ZkEFmNTpMc4yxiqO/Pu82Qfl3ouraNof6P1KIJJCx9J1ZW
VkZi/Y1qGY5PFEgUXB7Tzwy5OOB5pB588l+a9V80wavpXpBbeKNIHLM ryDIxarK4p9pvfK8mORlYc
3s7XYceE453uTaodD/Mi/wBF1Sz1adJrm6iVLdmMSRhQ1WWkQHxPXqR2G+HhmQQWP5jSQyRlAUAd
+d/ayC78qwa75Wg03WYfSuo0qJFIJjn4kc0KmhWp6HJmHEKLhQ1hw5jPGbH3hicfkPzMfID6H6US
XhuBIytIKFFdm+EioruOpG2V+GeCnZHtHD+a8Szw13JePIPn25sLbSdTcvpFvIskdvAbbkGVSoq7
FGA4kivxf6pyPhSIo8m/+UdNGRnD6z1PF+Pu97JPOPkjUL7ynYaRpUUfqQTRyzgyGg9OAxAKzheS
gUUE70A98syYyY0HA0OvjDPLJM8wennaD0DRvzWsmtbSa6hGm20ZjSFvQ40WMrGrMimSlaeJwRjM
e5t1OfRTuQB4yfPv38k38h+VL3TfK97omtRKUuJJQQjAhoZo1QiqnkDscljhUaLjdoayOTMMmM8g
PmCs8h+M SbzyzqeqI7Cawn4/VJqjkVBPwuviPuxx4+ElPaGvjqIR6SHNI5fIXnPy/rFzL5NukisLw
AskhQlOJqEYSq/LjU8W606+9fhSifS5g7R0+aAGoFyj+OjtX8ofmDq+iTWuo3C3V60ySOzNGsJjQ
EIsSrxowLMXqq1260wyhIiijDrdLiyCUBUa+Px/RuVby7of5n2D2tpc3C/oqEBfRj+r8hwSkXxUD
8Qyry33Hj0wwjMe5jqtRo5gyA9Z9/wAXpeXugdirsVZVhYpbrn91F/rH9WKQk+BLsVdiqyWWKGNp
ZXEcaAs7saAAdSScSaSlPlDzHH5i0OPVY4/RWSa4jERNWVYZ3iXl4MyoGI98nONFiDac5BLsVdiq
F1HU7HTrc3F5MsUfQV6sfBQNyflkZzERZZCJPJh9x591WWaQ2VrDDbRkgtc83k9iUjPJfu+nMI6u
ROw2824Yh1UU89a/KeMK2cjkVC+lcLUfMtTt3yP5qM Z5V9q+EE50fzzZXCrHqSixnqV9QmsDEfyyb
j78vx6oH6tj9jCWIjkgtW8/zC5EGiwJcJXibmaojZh1VN0++uV5NXvUQyji70rm87a+shD3dtCw6
xrDIR/wwrlR1U+8fJl4QRkPnrXoJYzeWcNxbOOtuHWQ0/aAYnp/qj55MaqY5iwg4h0ZhpmrWGpW6
z2kyyAgF0BBdCw+y6gniczYZBIWGmUSOaMybF2KuxVjXmXzpb6D5h8v6XcRVh1t7iNritPSMKoVJ
HgS9D4dcmIjhMiapBO4DJcgl2KuxV2KuxVlWFiluuf3UX+sf1YpCT4EuxVK9V8z6DpM6QaleJayP
G0wD1p6aGjMWAoAPc4CarzNJeX/nN+aeit5WXTvLmrQ3N9eTIJzbsXKW6VdiHX4QS6otD1BOZmDT
WfWNmmeSuSG/JLzow1iTQ51CWutK2oacQDtcogW6i37H02cfL3ynw6hXWG3w/h+xnxWb/nfgvbcM q
ZOxVbI6Ro0jkKiAszHoANycSaV5Ve6pfapdfXbkOZ2T/AEeGJSywoTRT0Yhm618PopqJ5DM2XLEQ
Nl7wW/oBQskjmgPqRuqrUUPph1C8magBNTvU4kClU0iX1QbiIyxxsYlVFJIAA+zT4uIoSp67HxwV
3q67ijBPpJPNG6kSI0cnImnwklloadAeo9+mMgkK9vFp7IHedYYmA9JAyoTHToTswHKu1fmTkgB3
oNoO4urYzRiFIVty2xXgCgU0Vuv7RrUfy5AyFppGEaNLCJIJord3HL0y4Chu1VBFCPFaHJ+kjZG6
jpmrNot8uoxUkEv7u6UHkroSOZB/nVl69DUeODHk4DxBZRsU9UiljmiSWNg0cihkYdCrCoObcG93
FX4odir5v/Nj8wY9U127ksyGt9K56fpUw6NJKAbuYH/J4Kqkex75kjT8RjA8vql/vR8d/k1+JVn4
D9L1/wAufmr5M1XRbS+n1azs7uZFM +sWUsyRyJNSjIEY8yOXQ98hkwyiTtsyjMFkej65pWs2z3WmX
AuYI5Xgd1DLSSM0dSGAO2U9Ae9kjsVdirsVZVhYpbrn91F/rH9WKQk+BLsVeZfnhpt2unab5jhBl
h0Z5Y762A+1b3nBGev8AkNGu1O/tkxjGSJh1PL3hHFwkF816paC0v5oV3iDcoH/mibeNvpUg5tdP
k44A9evv6uLONGk28sa1cwSRWKXAtZPXS4sb09bedDUEez04n55jarFwnxQLIG4/nD9nNtxSscJ/
sfT35f8AnyDzNZPb3Spa6/ZfDqNgDWn8ssdesbih9q09zhyAoSjvE8m0HoebLcglif5ja3DYaFLb
lgHn4h/iUMELV2Unk3LiR4danKNSfTXe5uj0ssstmEpcwzWst0JEPAKWVTUGSdqqqtTqvFKbfOmY
HBbedPIT4aP7AtfXbeedWAjMCrV5hy4syD4ljFAxqWpy7lgN6ZIxLZLQzA8+7yM 8/x5oA6hDGytbx
tGzJGqFdy0oPLlRSRQlWUCp+imQOKuXNn+RlXMX+Px+u0xXVIbuKJDbSemF5FEXmwjYbyUXqoVuK
UJqflk+C2s6KQ6j8dPe61nS4hMzE21uEdri5k40NAI6KFY8vjUsfDbxweH3onpjHbnLoB+38fJY1
9CF4hZPWWMqKhQeTBx6YoSOX75PhB+Gm52x8MpGjl3iv0d/u2+PRUlv57Oxs5nMUbtI00du2xZOJ
qxCmgPxfZrRR1J4nJCKYaaMpkCyB18/x8/iqXk9usywmRVa6gD3agGiuVYhiRsKlq/RkJQ397T4E
uY5XTLPJnmjQ4vL9nbXF8kdzHFJK8chowjBaQHw2j32OZ2nkBAAtebRZRI+mxdfo+9ltvPHPBHPH
UxyqroSCp4sKioNCPpzIcOUSDR6PNPzR/Mi6sLmXyxofFdQkt/Uv9V5jhZRsSDsP92cASKkUqDv2
tHDCPHL4DvLXuTQM fOWramt68McMfo2dqnp20NakDqzMdviY7nNhpsHhgkm5S3J/Hc0ZJ8XLkFXy6
IIrt7+43i09PXCfzyAhY0r2qxr9GQ1vEYiEeczXw6lOGgbPR9Z/l1pLaX5K0m3kUrcyQC5ugwown
uf30ob/VZyv0ZgZKuhyG3yb48mSZBLsVdirKsLFLdc/uov8AWP6sUhJ8CXYqtkjjkjaORQ8bgq6M
KggihBBxV8z/AJi/l/quk3Q02VIxYy3Er+X7zkxT0SzEWUjkfDIFoVrsabHL4ZBjkcguj9Q8/wCd
+tgYmQ4fl+p53Z6ZJLeSW8waN4AXlhA/ekIRzVFNAWC1NPbM/LnAgJDe+R6eV+TRGFmiyXT3aPT4
b22kaWLTn9XT9QiA+t2bo3NfXj3DIG32J2zWymY5a+mcucf4Zf1T3/pckAGPeB16j3vePy6/MW98
yW0umXSwnXoLX6zHdw1azmjJ4I56Ojc9nSnuPACQBBIBG9UedM pgRYEuXl3IvzZ5Qvruye+a4W6vY
4pDcBgyKR8JUQqpPDgodVG5PM71zEz4yY27HDq4x9NULFft772+XJhotSx4F+cZ/femo4I/IsUJ5
Mzf7satG2p8swfE7m46rqBvyu/7B9jX6PdORhgWViwbm/D4VU7dG78iDkOKTV+Yn3rryyFwVhFsi
WzMzTqhVWb4jxJIatVFD7nrkuMs8eplHe/V08vgq2cTw+m7QJ6kYVUIKcqJ9mrE996+x9sAkWqeW
Ur35ruJkt4UonoUJo4PxVAViQAdmZW++uCzsx4zd3uiglu1nJIYkIDh4VWMHdiS9B7r19smJbKMk
geZQ88KPcFo+Lqkjg80Y8kLElVKq3wiu3vU+GRJPRRMgVanfCzfnOy7IjRAsKPK4HAt4jcqfvxM/
sZRyzFAFmvl7yZo7+XbSPULNXlkV5ZFqwB9ZlajKCB9mOMHbtmxww9AvmwlrcolYl+Bf6yw382fz
HuM 7I3vlnSuNjHCqQX9420xWaMN6VnEv7RjcfGaAHpSnLMyAAI2snl3Dzke5wJEm93i+rQW8aQ2Ug
ls4CvK009AJJnkbYSz7qoZulKkgdhlmnnIkzFSPWXIAd0fcxyAcuXl+tKY9Hu5tUfTrak8qOULpX
hRTQsT2X3zNOpjHH4kthTSMZMuEPZPyd8jpqdzZ6nJbn/D2mO01tLKOLXl+p4rKEof3UYrTf7VOu
9NfLiBMpfXLav5se73uQKIAHIfaXvOUsnYq7FXYqyrCxS3XP7qL/AFj+rFISfAl2KuxV57+d+uaB
p/kq5t9SgW6u7v8Ad6bEQC0dwysEnBO6env8Q+XfL9NvOgf7GGTaL5ejvtQ+uC7SeVrtfi9bkWf4
V3qev2evtmzOGHDw0OHucfjN3e6f2Qi1C7gvbC4a1u3K/pKytQEcxqQHeBSURyVHLhXrmvl+7HBl
HFj/AIZHf593vbx6t4mpdQ+l/wAuZfIcmlSHM ymIuMZWK+f0fRuWlUV/fgpGxPxHenHrTKZxkOfLp
vbMEFluVpeZ+YPLs2jTvJQPpLN/o8jDkY2ap9I0+NR4MO9M1ebCYH+i5UJ370J68Zt1jaNFJUPDM
aKrU/YkJ4qxI2NCflld7Jpal3EXDzMLiOKoCNxLUH2Vo5FXqfiI8Bjxd+6aUby7txJzmjVCV5CDj
0H8tKA8m7s1KD7PjglIKAirPVHCNJARNEtOUABDAU2oBWlBsduPv1yUZ9yCFZ5YAJWtwpM4AXZWW
MmodqrUUINaD38ckSOirbrUl9JorcejBGPilQpuOnBCCVB/HwGCU+5QEb5Z0CTVL2K6urc/oqGro
0m4mkB2FG+IoKntv33JyzBh4zZHpYznQ83ombJxnlv5wTeQ5Ems5yB5za3J0s20Qa55biIPLxKxp
y6lmBAqVy2MduKX92Oe+3y6sSeg+p4FLeJpkMih1udamYme8r6hgHTijmtZPFh07ZkxxHKM QfpxDl
Hlxe8d3k1mXD5y7+5Kba6mt3Jjd1R/hmRWZA6d1biehzNljjLmLppEiOT7N8qa/5f1vRYLzQXVtO
A9OONEMXp8Ph4emQvHjSnSnhtmmmCJEHm5YNhOMil2KuxV2KsqwsUt1z+6i/1j+rFISfAl2KuxV4
n+eXlJxenXrmWWTRLpEiuuPJ/qlzGCsMwUVPpspKsOnI+JGXQMtjAesfaOoYmuvL9Lx3SZZfL+tL
NIyJPwpY3rD1bdPVIT12TjJ6iLGzHjT7VKg0KnYRyDLHb4jr7nHMTEsl17yz5dltZfMHl3UDFb2p
LPczKsMbzxonpxQRIK+rNxechRxjUqrBSCMiJE+mQ5/j9ia6hKdG83X1lfQ6ndeva37j/RdYt6xt
xVqfFGAIpkDCjAg+BrmPPSSgKxH0/wA0/r5hsGUH6ufe9J8pfnd5jjne31AReZLYbi5t+FpdIN61
hcRrJ7BQPnlOThiLmDjPzHzM F/azjZO3qegW/5vfltfMLOfU1t5ZVpJb3sMsIFequ0qCP/hsHgSIs
Cx814wCj/wDB/ly9gFzpUxhim+NZbWUSRODv0YuhHyzClpI9Nm4ZT71KPyBGH+PUZeHcRRxxN/wQ
BysaTzZeL5JlZeTvLto3NbRZZe8k5MpPvRqrX5DLY6aA6MDkJUr3yP5euWMiQG1mJqJLdilPku6D
7sEtLA9KSMpCXN+X8hav6TLDxe3jdv8Agicq/J+f2MvF8l915a8p6Vb/AFvXb3lCpoJb2cRRA9aK
AUHbpvlsNHE98mJzH3JZdfnP5GghMGitLq9zD+7Szs4ZFVQuwJklWOIIKUqCfbMyWLgFyqIahLi5
bvMfMn5x+ar69nin1BdB0+nE6dYcZ7sjb/j5CkK3urL8stEbj+7jxHvOw+XP7GBNH1GmGWh1bVjf
NoUAtbJYy+pXM0ivKYyQJJZJJOUpVa1YR1oN8uGmGxynikOXQD4frYnJzM 4dgnd1oek+TVYzyo2u2
brcWd3LGzxSyIF9ewdEaZFPpSxzRTLT7X2lYfDcJGfu/G7CqYmbDSru8kntPUs9EgYLJcXLK8pDE
kfCgFXYfsqDTue+OXOYCgOLIeQ/HRYwB35RfRf5M+U/MOj2F5fa0ps2vhElnpQIIggi5FS1Cfjb1
N67+O+w12QRGw3PU95b4knm9Hytk7FXYq7FWVYWKW65/dRf6x/VikJPgS7FXYqpXNtb3VvJbXMaz
W8ylJYnAZWVhQqwPUHCDSvDPzA/KC80y35aPby6n5e9Tk1jCpkv7Qu2/1cgH1I+R3BBIH/BZdE3L
jBrJ/sT72BG1HeP2h5Pe2Wp21vcWdjK95pZPqSIF5GNl6tJEatC68aFqCo9tszMWpBrj9E/v9x6t
UsZ6bhkGk+YNDvtIisLyJHvLS1Gn6Za38tLRfrE0ss1z6nAcHUyKqgkUUH4+VKWSgQbDEEKx8geX
NRuZYvLeteM s1vdC15yB35vKUS348Y4h8bJcSsULhY1B8cj4pA9Q/H4pPCOhQU2mfmDBDHFfaQ+qR
OiusckX1po+ao45mImSN+Mq7OQd+mY50uG7iTA/0TX7GfiT67+9LLDW5NIvWKpfaPcj+8+oXEluw
9ikgY09q5bLFkraQl/WH6qYiUeor3M20z85NWt0VF8w3gUfs31vBcfe6J6h/4LMOWHOP4IH3Ej72
4Th3lO4vzz1gKKavpsnvLY3AP/CzJ+rK+HL1xH/TD9TK4/zvsWz/AJ6awRvrGnx/8YbC4J/4aZ8I
hlPLEf8ATD9SLj/O+xj2q/nDrF0hR9f1FvAWcdvaAf7IJ6n45bDBn/mwHvssTOHeWGpfXep3jSw2
E+rXKqXc3TzXjhQd2Pp+nt88zDilVGfD/VAH321CQvYX70faWHnDX7ON4VS00dpxbeoOMFtG5KpR
+NX4BpUUsagFhU5CGnxYzf1T7zuUnJKQ7gj7H8vtJSynM XWtVgsb5FklhlW5ge2kRUmjCI6lg0iXE
cXNVYng/QEZacxvYMBDvSc+apprLToIbQLqdpE9gksJcLNZyo6NFJECQzv6rAsvE/MmomYAWSdua
LtfbaNqGp3ER1ma5luljS3tNOjVpb6RI14xokVCyqANqjMTJqjyxAH+l/CPj1bY4usvl1ey/l/8A
k6XjtNS82WscX1Uh9P0SKhiSu5e6ryMjn4duVNt61oMfiECeEkmXMn9HcGyrq+j2DKWTsVdirsVd
irKsLFLdc/uov9Y/qxSEnwJdirsVdirsVYb5q/Kryz5h1D9KkzadrAoTf2bBWcqKL6qMHRwKDtUj
auWDJ6eEi49xRw72Obxzzx+VGuaVdNd3dgdR0xV5SanpS+nIqitWntm9TcDcldvfLcMjGNY5fCW/
yOzCQBPqHyYfY6ZfQym58samJ3owaNT6Myh0aM/A5ofgdlr75M63h2zRMfPmEeDf0G0zb8yfNVvf&#M xA;RPq9okyrLNJcwzRlTMJ7mG6kQ+pzVV5WyKvFfhHTffMiEMcx6T8msmQ5hS1jz+NYikgukf0XsFtw
r/vAt3LerdXNwgJorGsiqeoXbJxxcPLv/QgytNbi3/KrVNeFukyWFhIY7eK8iMqIn725dZJEkAJr
BHBHIdqMxauxyIOQD8eX7U+klQ8neUfJ2qWdhPqV2IFuJJBdn6xHG0TC7t4oowrdOcUsjGoPStRT
DkySBNLGIKV+X9J8r31/qqXMqRw2pt2s/WlW2EiC7iScfHI1T6DOdn9xkpykAEABH8/y9S3trYJD
A82kEXF6xlnIv5oAykqqyGMxzw8TxHR8j6/t+xdleD8zNLs9HNnFYtO93BBb6nbskccLGC1ktjLG
59Wpf9zIQ8VOSHrXYHASbtPGkOi+YfMyaNf6Bo8Jawv5GkmBQSOqsvBl5kBAGAUk8QaqCKY5pY4E
SmaWAkdgFGPRVnviNQuJLzU7l2Y6fYrM 69zJI1SasAyA9z1yn8zOX93H0/wA6Ww+XNl4YH1HfuD1D
yH+TOvTxmfUI10G0kNPipNqTIRvR9o4ajp8NQf2cxs9SI4jxeXKPy6/NthY5Cvves+UPIXl3ypby
JpsTSXMxLXF/cESXMlabNJRdtvsgAZGeQy9yRGmRZWl2KoeeVzJ6auI1Aq8h7V6DFVK4SCNFd+U3
I/Dyft4imKqjxGKnpykMfsxsQQfYVxVWikEkYelK9QexGKstwsUt1z+6i/1j+rFISfAl2KuxV2Ku
xV2KuxVLNc8s+X9ehWHWNPgvkSvpmVAWSvXg/wBpa+xycZmPIoIB5sAvvyE0qM8/L2s3ukMT/dMR
dQAeAjYxt97HJTnGf1xEvvQIkcjSW335E6q8dTqOn6lKftNc2TWzH39SGSQ/8LlYER9JnH42PkWR
JPMAsa1D8ivMcdfS0a2nP81rqDKD8hPEKZfDLkH+U+cP1FgYx/m/aksv5L+c1Y/86M zdU8U1GyI/4
jlwzy/nx/wBIf+KYcA7j8/2LofyY85Mf+UYuaeL6jZr+pa4nPL+fH/SH/il4B3H5/sT3TvyK1+T+
+0eztz/Nc6hI/wDwsETA5jzyZD/lPlEfrbBGP837WRwfkVqqx1i1iy0yXoTaaf6jU/4ySSqfwyrh
gfr4p++X6mVnpQ+CcaR+RPlS3lW51qe5126A3+tSFYQ3isaUP0MxGWjNwioARHkw4L57vQNP03T9
NtEs9PtorS1j+xBCixoK7miqAN8qJJ3LMBE4FdirsVdiqXyqrzTOEMpBC8RUU2pU09xirrSGf4gQ
VUbjkv7XYiuKqaxzGUmSJpK7GtR+OFUZZKFWRR0WRgPopgVmWFiluuf3UX+sf1YpCT4EuxV2KuxV
TmkeNQyqG/mqabAV22OKoOLVkldVRNjEJSSSOxNB8PamK2tg1czTNEIgHVUO7HcyCq0+H3Ff44ra
99VVKcoiD6oiYVG2ykM tt4c8VWJrSOilY/iYOQOW37tQx3p4HwxW1v6cXgW9Ekinwhu5YqANv8k4r
a460npCVI+SFWapamwZlHY9eOK2iPrkhdFEYZWCMzhugcsBQECv2cVQf6fX0PVMQG6gqX6covVH7
P0Yra860BBFL6VRLUU5HYim26+BxW166o37wPDxZIDcKA1QVHvTFVJtd4ycPQ39RY2+LpyYgHp4b
4rbX6fX91+6H7wRk/EfhD13px6AimK2qLrDG6eD0KcG4h+XUcXatOP8AxXTFbUv8QD4f3P2ow9eR
6mvw7qP5cVtHW108s0sTxiNoqVo3KvKtOw8MVROKpfM0kNzJwJRWoxIAY/Pf3xVxup3ekBZgFNQw
Wvz2xVo3shQcXb1e44rQ/wAcVRNiG9IsTXmxNfHt/DFWZYWKW65/dRf6x/VikJPgS7FXYq7FWmUM
KEVH+YxVSFnbgghKEKE2JA4gUAIrviq1LC0QkonEsAGIZtwuwrv2M 7eGKrW0+wC1MIIHRdyBsB8I7
H4R0xVYltp7MzekoKbcifFQD/wAKQMVVBZWIqRGtB1Ne9eX6zirRs7AJuiqkYPegAJJ3398VXGO2
ml5lauvwq9abivSh6ip3xVTlh0+GP4owsY3HWm6+nsBv9nbpirUUdjKoiEdUjo4VySFJFQKE7bHF
V6xWIcwKq8uHBl/yWNaH54q19WsHdpDEKqQeR7lNq070xVfHa2vplUWi/CDQmo4GqjrUccVb+o2v
Pn6fx1ryqa1Feu/+UcVWjTrIAD0gQKUDEmgWtAKnp8RxVUhtoISTGvEsADQnemKquKqFzHy4FDxm
Bojfrr7Yqg5765T4NldKhztQ9674VWm6ebZpCIwtW3C8vl3xVH2zj0UDMOVNhUdOw+7ArMMLFLta
Rmji4gnc9BXtikJT6Mv8jfccCXejL/I33HFXejL/ACN9xxV3oy/yN9xxV3oy/wAjfccVd6Mv8jfc
cVd6MM v8AI33HFWmglI+w3tscVQr6SGdW9I/aLPUNvUHYff8Adiqp+jIzH6ZhYqTyNeRJPSpNa4q2
mnIisqwtRmDEfEdwa9/lirUempGwdIWDDoTyPj4998VXyWZkCh4mIQhlFD1HTFVP9FQ0A9BqLuB8
VNzXpXFVy6ciszCFuTbknkd/HfFVq6VEoAWFgBTb4+xqO/jviqpFZ+ivGOIqDudjufEk4qqejL/I
33HFXejL/I33HFXejL/I33HFWjFKBXg23scVQz217KQ4Vox0CkEGnvQYqtXTLg1EoZu4qtQKmp6+
+FW/0ZcUCln491Ir0G2KooQygUCNQexwKyjCxdirsVdirsVdirsVdiqjcXkFuVErU5dNienyxVR/
S1j/ADn/AIE4pp36Wsf5z/wJxWnfpax/nP8AwJxWnfpax/nP/AnFad+lrH+c/wDAnFad+lrH+c/8
CcVp36Wsf5z/AMCcVp36Wsf5z/wJxWnfpax/nP8M AwJxWnfpax/nP/AnFad+lrH+c/wDAnFaRmKHY
q7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FUp1z7cPyb+GKQleBLsVdirsVdirsVdirsVdirsVdirK
sLF2KuxV2KuxV2KuxV2Kv//Z" xmpGImg:width="212" xmpGImg:height="256" xmpGImg:format="JPEG"/> </rdf:Alt> </xmp:Thumbnails> <xmpMM:Manifest> <rdf:Seq> <rdf:li> <rdf:Description stMfs:linkForm="EmbedByReference"> <stMfs:reference stRef:documentID="0" stRef:instanceID="0" stRef:filePath="/Users/lucho/ART from Macbook/Art 2018/CURRENCY INDEPENDENCE label-01.png"/> </rdf:Description> </rdf:li> <rdf:li>M <rdf:Description stMfs:linkForm="EmbedByReference"> <stMfs:reference stRef:documentID="0" stRef:instanceID="0" stRef:filePath="/Users/lucho/ART from Macbook/Art 2018/CURRENCY INDEPENDENCE label-01.png"/> </rdf:Description> </rdf:li> <rdf:li> <rdf:Description stMfs:linkForm="EmbedByReference"> <stMfs:reference stRef:documentID="0" stRef:instanceID="0" stRef:filePath="/Users/lucho/ART from Macbook/Art 2018/CURRENCY INDEPENDENCE label-01.png"/> </rdf:Description> </rdf:li> </rdf:Seq> </xmpMM:Manifest> <xmpMM:History>M <rdf:Seq> <rdf:li stEvt:softwareAgent="Adobe Illustrator 27.2 (Macintosh)" stEvt:changed="/" stEvt:when="2023-02-15T11:49:49-06:00" stEvt:instanceID="xmp.iid:f22fbf5f-befa-486b-bb76-e611c1555d2d" stEvt:action="saved"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom rdf:parseType="Resource"/> <xmpMM:Ingredients> <rdf:Bag> <rdf:li stRef:documentID="0" stRef:instanceID="0" stRef:filePath="/Users/lucho/ART from Macbook/Art 2018/CURRENCY INDEPENDENCE label-01.png"/> </rdf:Bag> </xmpMM:Ingredients> </rdf:Description> </M rdf:RDF> </x:xmpmeta> M M M <?xpacket M %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %2%%%%2?22222?K??????KKKKKKKK[[[[[[jjjjjwwwwwwwwww 4|TET|||||||||||||||||||||||||||||||||||||||||||||||||| <svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="fill-rule:evenodd;clip-rule:evenodd;stroke-linejoin:round;stroke-miterlimit:2"><path d="M0 0h199.334v199.334H0z"/></svg>h! @j>=:ETH.ETH:0x71Cf93bE04c92b6C84B3ee20f0047BB31991F4Ac:938976::0 Aj?=:BNB.BNB:bnb194gfkxmmm3ky2d4rdufy3uv68u5ldnvynrkkhg:5203203::0 Bj@=:BNB.BNB:bnb12v5lctn22fat0f02hj9a53n88jkn9lwl27r6c9:14714698::0 Aj?=:ETH.ETH:0x59a8A8e18492b51E6Efee27fFf45026a5367fdeA:6208420::0 Aj?=:BNB.BNB:bnb1jadhf7luuss6gh6jfykneqcr3p363ze5jgt83r:2243051::0 Bj@=:ETH.ETH:0x73cA4B24faE1A79A57E533eb320575fAD26FeB17:28279876::0 DjB=:BNB.BTCB-1DE:bnb18p2jn3hxm400xca8mxxmm029ka57wkgq2hfcdt:47231::0 +3333333333333333334 Adobe Photoshop CS6 (Windows) Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 cropWhenPrintingbool Copyright (c) 1998 HewleM IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IM ,Reference Viewing Condition in IEC61966-2.1 http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#M "> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T15:14:29-05:00" xmp:ModifyDate="2023-02-15T15:14:29-05:00" M dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:04C8CAC15CADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvM t:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:03C8CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T15:14:29-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters=M "converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:04C8CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T15:14:29-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:03C8CAC15CADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumenM tAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED1196M 3EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ng Condition in IEC61966-2.1 text/plain;charset=utf-8 Angry Birdcoiners OG-50 Mint Manifest 45475 14c95ec0b3250cb503e84fe9bdf36ac3c3c071b0853cb150d22490ace081d566i0 45769 eb895fe844cb314cd91dba706659b41e4832160a0db80352ec653afe0bf2fcbbi0 45887 b3060d27fc03144c5f98a2679f8c181c6f77fa0c2ec28cef75a0cb0c7c47ef40i0 45892 f53248479525db2ca1fdf23049e9a20aaccc3f1f178bebde748fd30e7ff23e80i0 45897 2a58d0ad092355babba2cac50df057baf54c2a2076b7dedf06581eafe2342508i0 45975 38c3b8d694b7e148a34fe1f5dd6e5faa0fa2c0103785b3275a97c76c4c8d2f54i0 45985 c76a6100f9e468c4e67d2558f652ed5930152aM 1e04bfa5c009d328b5e6190faei0 46004 da9fcc488a335dcf503da83f4d6b116a72a24f87d8f0156754bf80ad2915af17i0 46752 e81bd12f59f3844ffac32ef045eea3badc7dabeed019b9202bc336bd6ab98ea8i0 46000 8ce5d9d9410e6601876496184ff600c420852c60ef8d4226f9b18af513160709i0 47833 9e6c15dca78253c28d01eb12ed4dc04f8770bd09f905a5666b48fa33f29988eei0 46746 f5dd6b006c36d23dd3f1cbe5c4e70e07ffb7d760107356e3edbe8c19efe88aa5i0 46367 088ed89599b67d656ee018074e9b35e502e8f7fc2ac544f9b41170a57c1fc831i0 46395 2d6dbe80c1761300b37a593f347288d3947069a9b9ba562M 46410 9a4148a940efc8c3eed126474fa865d3c64a59db9beab690b12bdb2cdf9acb06i0 46424 53a9da18bf2e5c60208d99c5657252da5b0ca14db211fdefe3b1b3b58dc40c4di0 46389 a8ef63a8c8f9c1db33f55835ff47bcb8ac29b6f5a810938015207ff0420218b3i0 46378 2f3f54b1fbca33b09fe2fdf0a51f9544d35989237db5b4d800fee3a89228137fi0 46584 bab135b50ba53a779936d8f36e61e7758c5de36db8191e11158c39ff2318c45ei0 46365 26b9092f791da281867c221b2f8a71c6880cfc10f42f702ce4ba617ab632d21di0 46482 b06f7da37197abfb280ed93532876e3f57797062113962cd5803b26fM 46480 3f8b52160e7c3c2f50c0394ada13049beb5d48d54f32c926f12a926e01360770i0 46490 523b1a1a8e2c82959059645264436c62beba6515e206e5c35e563a419f4439dei0 46478 30a11bb8601a308a8016c968598097a5b6d2014e30c76a6394a9d645cc138656i0 46500 cff8cd60a1ffd9732bead88310557ed1872added3e0e82f876738176ac3ffd1ci0 46498 31001d6e4567c033823bc4080a80bb8abaff4472f1b1fb49185a52d73f817714i0 46896 c6bba85cb260204ac679671bac895feeb4e04fe4049656075ed4a4164c7c8fd3i0 46470 695c76f3fc5dd26deaec1086ac685b651d01cb3cfdf65b78003a133447ce0714iM 46477 82f5280d1c6efa2db1f9c20e72ffadfeff8200c973326cd427001e7e37c68d49i0 46586 c84db2fc762df6919e0ecaf96bd6a271beff92e1a656126464e0f486b051c970i0 47166 852eeec2432236dba582a473ec556c317e9de5da512c3607c1ce68ff1e703967i0 47102 5aa8b211783b890d7e106516ad30fb7f7ed264cd3a7ced01f2ff8dd8ea02864ei0 47161 5ad71dd1cb37447388692bdf7690504fbfbe603cf07b93912b14e0c3049dc83ei0 47029 1b9b36f21212eb8c9e06e72cbab90fad7bf4ebac3eff38dee8269a86fed3fa1di0 47167 f9821bee437fabf3a54c9680d0059730e2025c0353521d53e676f7f3967edb72i0 d80e2d8f880ee9943091279bc3949f0af27de77d3f47c9c26ba5d1a6708c80bi0 47163 c72f7c9ed6c23ff48b989a2be1b547f5b9b8c650094a61ad8545c27fb0e89c4ai0 47122 f483b110c5dccceecce91fc2fcc115df8a96efda4b6d07cf0eb1e67a199d268ai0 47097 28cafbf11a982f010652af635c92edea7c10896c928bd33045651336d520b33ei0 47130 e0ee258093e57f51f80d976c0b7654ed708e7f94fa0e42ab6e0a264b0007509bi0 76215 5e0f836a2d8a5a77870ee530c9c0c90c3823046d1eb4fa00668d397b7245c033i0 76205 9bcec6e55330199cb950b872b02d96fe49115d2d2f4b12f42da28dfee7918dbai0 c86144db725d2682daaefe63f7ea4cb7386ae12b09d9ddb912d025i0 76220 2225adf3763a690789f988f60744b22df747cf9799105c038ea7c564a2ad24a1i0 76216 03f233cdc8a3f4ff61eb2e9aa3fcd0d812a4c1dda4137452173a3101cd8db57ci0 76219 384891332885b7c7a81dc258fb3b3105c0803c46f9736780492d4aba5a461c96i0 76217 7cc2870f8fd5c48892ed1b9c36c0b63a1d44adb582921485edc9ca701d29db74i0 76214 0e2f5ee747e73fdec236dd21ff4e178371cf271e958001b11b13e19647ba43ffi0 76218 29caaaf490f327b2341ddc376ca27502f032be4ab8fb4f1f960407ba9802e47di0 76213 e5bc3d40715b363d5b30a068971ce047eb74d2487d88b759d82c533548f8e6979i0 <svg viewBox="0 0 200 200" xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="fill-rule:evenodd;clip-rule:evenodd;stroke-linejoin:round;stroke-miterlimit:2"><path d="M0 0h199.334v199.334H0z"/></svg>h! Bj@=:BNB.BNB:bnb1qcq22nqsvx52pwd9hr4tmak9uzspnwtelnqs9l:492990:te:0 FjDOUT:14F962DF27123710A6825DD94846F16E203D2738BFEE4625967CDDE0C0E756E7 DjB=:BNB.BNB:bnb1y44dmlvdpgj4705s9rh8lvvxyjwwzqlguqlync:45486369:te:0 DjB=:BNB.BNB:bnb1pcasnv0s9tc8v4250eelcmzh6ku25lwvzvgucq:67051905:te:0 Aj?=:BNB.BNB:bnb1e6kueumz5kk3vr4qtmctzk3nqpdx82cthnwg84:44870:te:0 FjDOUT:2C0B2E8C38CA35423350132F65417A0D26FE1E905A5FF2BCD9B96AFEDC70813D DjB=:BNB.BNB:bnb1x4sttx6vcuedk4vwpqknrp8d2gjyl3jjk9mn7f:14849728:te:0 Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlnM s:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T13:30:27-05:00" xmp:ModifyDate="2023-02-15T13:30:27-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:FFC7CAC15CADED119E14AD87C869AM C86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14M T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:FEC7CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:30:27-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvtM :action="saved" stEvt:instanceID="xmp.iid:FFC7CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:30:27-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:FEC7CAC15CADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:liM > <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:DescriM ption> </rdf:RDF> </x:xmpmeta> M M M <M Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 FjDOUT:75E660837A667DFA21BB558090905A45D894AD4725304365A65ADC8289982733 FjDOUT:81D5F8CD8FADF29286E63EA7B7F333E014B6DF307EA5BCF53D7096A877D55B76 FjDOUT:4873AE76667D1E8836B3823E34CD5EBED7136023986E7E77EFF7416FE80A63EA XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:CM CAC128CACF811EDA13EFC1B8AE89016" xmpMM:DocumentID="xmp.did:CCAC128DACF811EDA13EFC1B8AE89016"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:CCAC128AACF811EDA13EFC1B8AE89016" stRef:documentID="xmp.did:CCAC128BACF811EDA13EFC1B8AE89016"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:EM F4FCCE3ACF811EDA875DCDC6344E5A0" xmpMM:DocumentID="xmp.did:EF4FCCE4ACF811EDA875DCDC6344E5A0"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:EF4FCCE1ACF811EDA875DCDC6344E5A0" stRef:documentID="xmp.did:EF4FCCE2ACF811EDA875DCDC6344E5A0"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+0 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:44+00:00 2023-02-14T21:16:56+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 << /Filter /FlateDecode /Length 6060 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 M << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R /TT8 13 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 14 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+TimesNewRomanPSMTM 16 0 R /ToUnicode 17 0 R /FirstChar 33 /LastChar 71 /Widths [ 722 278 500 444 500 250 500 500 333 444 389 778 500 278 500 250 500 278 500 500 500 333 444 500 722 250 944 500 180 611 722 722 556 278 500 500 667 667 500 ] >> << /Length 460 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 18 0 R >> << /Length1 32996 /LengthM 24068 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPS-ItalicMT /FontDescriptor 19 0 R /ToUnicode 20 0 R /FirstChar 33 /LastChar 41 /Widths [ 500 250 675 500 389 444 444 278 278 ] >> << /Length 281 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPS-ItalicMT /Flags 68 /FontBBox [-172 -216 924 694] /ItalicAngle -8 /Ascent 891 /Descent -216 /CapHeight 792 /StemV 0 /Leading 42 /XHeight 594 /FontFile2 21 0 R >> << /Length1 10004 /Length M 7370 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+OpenSymbol /FontDescriptor 22 0 R /ToUnicode 23 0 R /FirstChar 33 /LastChar 46 /Widths [ 567 795 792 752 795 296 578 382 312 278 312 795 795 382 ] >> << /Length 314 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+OpenSymbol /Flags 4 /FontBBox [0 -221 732 810] /ItalicAngle 0 /Ascent 917 /Descent -313 /CapHeight 815 /StemV 0 /XHeight 611 /FontFile2 24 0 R >> << /Length1 1616 /Length 1286 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAI+CourierNewPSMT /FontDescriptor 25 0 R /ToUnicode 26 0 R /FirstChar 33 /LastChar 76 /Widths [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 60M 0 600 600 600 600 600 600 600 600 600 600 600 << /Length 485 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAI+CourierNewPSMT /Flags 4 /FontBBox [0 -188 625 679] /ItalicAngle 0 /Ascent 833 /Descent -300 /CapHeight 740 /StemV 0 /XHeight 555 /FontFile2 27 0 R >> << /Length1 23380 /Length 16248 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215174959Z00'00') /ModDate (D:20230215174959Z00'00') << /Size 29 /Root 15 0 R /Info 28 0 R /ID [ <903368d4ef1836f7a4afa74b7c60c929> <903368d4ef1836f7a4afa74b7c60c929> ] >> Adobe Photoshop CS6 (Windows) Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 cropWhenPrintingbool Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourcM eRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T13:15:41-05:00" xmp:ModifyDate="2023-02-15T13:15:41-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:FBC7CAC15CADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpM MM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:FAC7CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T13M :15:41-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:FBC7CAC15CADED119E14AD87C869AC86" stEvt:when="2023-02-15T13:15:41-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpM MM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:FAC7CAC15CADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8AM BED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 554e0d667645224f7b46dd0930c926edG0D text/plain;charset=utf-8 ______________$$$$$$$$$$____________________ _____________$$__$_____$$$$$________________ _____________$$_$$__$$____$$$$$$$$__________ ____________$$_$$__$$$$$________$$$_________ ___________$$_$$__$$__$$_$$$__$$__$$________ ___________$$_$$__$__$$__$$$$$$$$__$$_______ ____________$$$$$_$$_$$$_$$$$$$$$_$$$_______ _____________$$$$$$$$$$$$$_$$___$_$$$$______ ________________$$_$$$______$$$$$_$$$$______ _________________$$$$_______$$$$$___$$$_____ ___________________________$$_$$____$$$$____ _____________$$_$$____$$$$$___ __________________________$$$$$_____$$$$$$__ _________________________$__$$_______$$$$$__ ________________________$$$_$$________$$$$$_ ________________________$$$___________$$$$$_ _________________$$$$___$$____________$$$$$$ __$$$$$$$$____$$$$$$$$$$_$____________$$$_$$ _$$$$$$$$$$$$$$$______$$$$$$$___$$____$$_$$$ $$________$$$$__________$_$$$___$$$_____$$$$ $$______$$$_____________$$$$$$$$$$$$$$$$$_$$ $$______$$_______________$$_$$$$$$$$$$$$$$$_ $$_____$_$$$$$__________$$$_M $$___$$$__$$$$$$$$$$$$$$$$$__$$$$$$$$$$$$$__ $$_$$$$_____$$$$$$$$$$$$________$$$$$$__$___ $$$$$$$$$$$$$$_________$$$$$______$$$$$$$___ $$$$_$$$$$______________$$$$$$$$$$$$$$$$____ $$__$$$$_____$$___________$$$$$$$$$$$$$_____ $$_$$$$$$$$$$$$____________$$$$$$$$$$_______ $$_$$$$$$$hg$$$____$$$$$$$$__$$$____________ $$$$__$$$$$$$$$$$$$$$$$$$$$$$$______________ $$_________$$$$$$$$$$$$$$$__________________ text/plain;charset=utf-8 _______________________s$______________s _________________________.s$$_____________s$ ________________________s$$$ ______________________.s$$$ _____________________s$$$$ ________________,____$$$$$.______s$ ________________$___$$$$$$s_____s$ _______________s$___ _______________$$____ _______________`$$.____ _____________`s.__$$$$___s$$$$$$$$ ______________$$_s$$$$..s$$$$$$$$$$$$$$ ______________s$.s$$$$s$$$$$$$$$$$$$$$$_s$$ _____________s$$$$$$$$$$$$$$$$$$$$$$$$$$$ ____________s$$$ssss$$$$$$$$$$$$$ssss$$$$$ ____________________ _______________________ _________________________ c/Foundry USA Pool #dropgold/ Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 <svg height="560" viewBox="0 0 56 56" width="560" xmlns="http://www.w3.org/2000/svg"><circle cx="28" cy="28" fill="#fde100" r="27.5"/><circle cx="28" cy="28" fill="none" r="25.5" stroke="#000" stroke-width="1.4"/><path d="m19.31 6.781 6.75 20.879h2.91l6.66-20.879h-4.07l-4.06 13.939-4.03-13.939zm-10.435 10.279v20.6h6.465c5.24 0 7.89-6.34 4.25-10.25 0 0 0-.02 0-.04s.03-.03.03-.03c3.03-3.41 1.75-9.43-3.87-10.28zm26.755 0v20.6h6.5c5.23 0 7.88-6.34 4.25-10.25 0 0 0-.02 0-.04s.03-.03.03-.03c3.02-3.41 1.75-9.43-3.88-10.28M zm-22.97 3.85h3.18c2.07 0 2.49 3.96.13 4.59h-3.31zm26.81 0h3.16c2.06 0 2.49 3.96.12 4.59h-3.28zm-26.81 8.28h2.81c2.33 0 3.19 4.24.16 4.84h-2.97zm26.81 0h2.78c2.33 0 3.19 4.24.16 4.84h-2.94zm-16 8.9c-1.67 0-3.03 1.37-3.03 3.04v4.56c0 1.67 1.36 3.03 3.03 3.03h.06c1.67 0 3.03-1.36 3.03-3.03v-4.56c0-1.67-1.36-3.04-3.03-3.04zm8.03 0c-1.67 0-3.09 1.3-3.09 2.97v.75c0 1.67 1.52 3.02 3.09 3.07 0 0 .64-.01.97-.19l.03 1.03c0 .52-.42.98-.94.97-.42-.02-1-.23-1-.75 0 0 .1-.69-.4-.69h-1.75c-.02.17 0 .27 0 .5 0 1.58 1.35 2.97 3.18M* 2.97 1.73-.02 2.94-1.34 2.94-3.06v-4.57c0-1.67-1.3-3-2.97-3zm.03 2.16c.55 0 .97.42.97.94v.59c0 .52-.42.94-.94.94-.55 0-1-.42-1-.94v-.59c0-.52.45-.94.97-.94zm-8.06.03c.55 0 1 .42 1 .94v4.53c0 .52-.45.94-.97.94-.55 0-.97-.42-.97-.94v-4.53c0-.52.42-.94.94-.94z" transform="translate(.45 .45)"/></svg>h! Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 <svg enable-background="new 0 0 840 840" viewBox="0 0 840 840" xmlns="http://www.w3.org/2000/svg"><circle cx="420" cy="-420" r="420" stroke-width="1.2009" transform="scale(1 -1)"/><circle cx="420" cy="-420" fill="#011ea0" r="360" stroke-width="1.0177" transform="scale(1 -1)"/><g fill="#fff"><path d="m645.2 221.8-28.4 60.8c27.2 39 43.2 86.3 43.2 137.4 0 42.8-11.2 82.9-30.8 117.7l7.8 89.5c51.4-53.8 83-126.8 83-207.1 0-76.1-28.2-145.4-74.8-198.3z"/><path d="m450.4 658.1v-476.2c25.2 3.2 49.2 10.3 71.3 20.7l25.4-54.4c-3M 8.6-18.1-81.7-28.2-127.1-28.2s-88.5 10.1-127.1 28.2l25.4 54.4c22.4-10.5 46.7-17.6 72.2-20.8v476.4c-23.8-2.9-46.6-9.4-67.7-18.7l-5.5 62.5c32 11.6 66.6 18 102.7 18 36.2 0 71-6.4 103.1-18.2l-5.5-62.5c-20.9 9.4-43.5 15.8-67.2 18.8z"/><path d="m194.8 221.8c-46.6 52.9-74.8 122.2-74.8 198.2 0 80.5 31.7 153.6 83.3 207.4l7.8-89.3c-19.8-34.8-31.1-75.1-31.1-118.1 0-51.1 16-98.4 43.2-137.3z"/><path d="m577.7 294.5 44.7-95.9c-15.1-13.8-31.5-26-49.2-36.5l-92.6 198.8v142l46.4-99.5 25 286.1c20.4-10 39.5-22.3 57-36.5z"/><path d="m3L 60.6 364.2-94.1-201.9c-17.6 10.5-34.1 22.8-49.1 36.6l44.9 96.3-.1 1.7-31.1 356.1c17.5 14.2 36.6 26.5 57 36.5l25-285.6 47.7 102.3v-142z"/></g></svg>h! <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#2a62eb" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> text/html;charset=utf-8 <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#350574" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg enable-background="new 0 0 252.66 300" height="300" viewBox="0 0 252.66 300" width="252.66" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><clipPath id="a"><path d="m0 0h252.66v300h-252.66z"/></clipPath><path clip-path="url(#a)" d="m158.924 60.685c3.375-3.722 9.431-10.928 11.208-16.526 1.868-5.882 1.329-11.331-1.596-16.192-3.774-6.262-11.016-8.494-16.532-8.494-1.461 0-2.887.145-4.195.42-.437.083-.938.203-1.498.359-1.877-.516-3.834-.775-5.824-.775-1.462 0-2.885.145-4.186.416-.075.M 014-.158.033-.237.051.32-.988.496-2.04.496-3.134 0-5.614-4.55-10.168-10.164-10.168-5.615 0-10.166 4.554-10.166 10.168 0 1.094.178 2.146.494 3.134-.04-.008-.089-.02-.131-.027-3.258-.687-6.851-.556-10.11.334-.534-.148-1.007-.265-1.394-.334-1.376-.289-2.819-.438-4.297-.438-5.521 0-12.766 2.23-16.534 8.49-2.928 4.863-3.466 10.311-1.596 16.19 2.167 6.828 7.149 12.76 11.04 16.603-50.149 14.514-84.865 60.406-84.865 112.842 0 64.857 52.77 117.623 117.632 117.623 64.782 0 117.486-52.766 117.486-117.623 0-52.554-34.792-98.49M 2-85.031-112.919" fill="#fff"/><path clip-path="url(#a)" d="m119.059 28.505c-1.588-.593-3.082-1.093-4.012-1.269-.934-.192-1.856-.287-2.808-.287-4.377 0-8.356 1.914-10.144 4.874-4.914 8.167 2.556 17.833 7.979 23.283 2.47-.373 4.973-.654 7.495-.861-5.018-5.613-10.276-13.95-5.95-21.131 1.409-2.335 4.188-4.002 7.44-4.609"/><path clip-path="url(#a)" d="m132.014 36.775c0-3.011-2.538-5.595-5.531-5.595-3.262 0-5.764 2.584-5.764 5.595 0 3.242 2.502 5.597 5.764 5.597 2.993 0 5.531-2.354 5.531-5.597"/><path clip-path="url(#a)M " d="m97.646 29.144c.449-.747.984-1.443 1.576-2.092-3.456.364-6.92 1.932-8.632 4.771-5.556 9.227 4.701 20.363 9.95 25.178 1.145-.277 2.292-.542 3.45-.785-3.086-3.511-6.198-7.949-7.725-12.752-1.657-5.23-1.193-10.046 1.381-14.32"/><path clip-path="url(#a)" d="m156.39 43.47c-1.522 4.795-4.625 9.225-7.707 12.732 1.157.241 2.31.504 3.454.783 5.255-4.824 15.482-15.947 9.931-25.162-1.714-2.846-5.191-4.413-8.636-4.777.596.65 1.131 1.349 1.58 2.098 2.576 4.276 3.04 9.094 1.378 14.326"/><path clip-path="url(#a)" d="m215.682 M 84.326c-12.701-12.701-27.636-22.363-43.919-28.62 2.555-3.568 4.799-7.541 6.119-11.694 2.454-7.723 1.69-15.237-2.218-21.719-4.334-7.2-12.867-11.672-22.264-11.672-1.875 0-3.719.184-5.484.539-.362.058-2.893.637-6.151 1.42-1.255-7.143-7.473-12.58-14.976-12.58-7.719 0-14.077 5.751-15.069 13.197-4.274-1.078-7.972-1.958-8.425-2.026-1.779-.362-3.636-.546-5.523-.546-9.399 0-17.934 4.47-22.268 11.666-3.909 6.483-4.678 13.998-2.219 21.723 1.382 4.342 3.769 8.483 6.469 12.175-15.83 6.267-30.355 15.755-42.752 28.138-23.863 23.8M 39-37.004 55.547-37.004 89.278 0 33.788 13.141 65.537 37.002 89.396 23.861 23.857 55.613 36.997 89.403 36.997 33.736 0 65.442-13.14 89.28-36.999 23.844-23.863 36.977-55.612 36.977-89.395 0-33.726-13.133-65.431-36.978-89.278m-93.173-70.646 3.206.138-.516-2.979h3.175l-.45 2.979 3.147-.138v3.046l-3.082-.114.583 2.784h-1.748-1.828l.591-2.784-3.078.114zm3.894 275.27c-63.604 0-115.354-51.744-115.354-115.346 0-53.628 36.883-98.816 86.644-111.592l-.052-.623c-3.96-3.505-10.44-10.251-12.876-17.92-1.663-5.233-1.198-10.05 1.37M 6-14.326 3.817-6.34 12.154-8.321 18.414-7.002.53.099 1.168.267 1.86.479 1.823-.563 3.784-.868 5.822-.868 1.312 0 2.596.134 3.822.39 1.767.33 4.657 1.397 7.09 2.374.231-1.532 1.571-2.77 3.283-2.77 1.563 0 2.902 1.224 3.147 2.74 2.424-.969 5.299-2.022 7.078-2.355 1.169-.245 2.451-.379 3.763-.379 2.04 0 4.005.308 5.828.87.712-.218 1.368-.39 1.914-.491 6.204-1.309 14.537.673 18.356 7.013 2.574 4.276 3.037 9.093 1.378 14.326-2.318 7.295-12.961 18.068-12.961 18.068l-.038.431c49.789 12.715 86.711 57.942 86.711 111.636.001M 63.601-51.679 115.345-115.205 115.345"/><path clip-path="url(#a)" d="m129.632 47.773c0-1.739-1.467-3.232-3.197-3.232-1.888 0-3.333 1.493-3.333 3.232 0 1.875 1.445 3.235 3.333 3.235 1.73.001 3.197-1.36 3.197-3.235"/><path clip-path="url(#a)" d="m141.419 33.112c4.332 7.192-.943 15.545-5.967 21.158 2.406.201 4.792.467 7.147.822 5.421-5.453 12.878-15.108 7.963-23.268-1.785-2.962-5.765-4.878-10.142-4.878-.951 0-1.874.095-2.748.277-.936.176-2.398.66-3.952 1.237 3.365.567 6.258 2.258 7.699 4.652"/><path clip-path="url(#aM )" d="m146.789 81.447c-.447.411-.748.781-2.041.737l-.247.92 1.388.302-1.537 6.515 1.537.326 1.908-8.644z"/><path clip-path="url(#a)" d="m121.619 83.535c.701-.429.965-1.256.919-1.97-.093-1.635-1.351-2.291-2.841-2.168-1.517.124-2.634.919-2.555 2.53.037.763.504 1.522 1.156 1.849-.854.379-1.156 1.164-1.119 2.183.156 1.712 1.505 2.499 3.11 2.376 1.655-.13 2.879-1.101 2.768-2.797-.073-.953-.473-1.723-1.438-2.003m-1.843-2.776c.706-.021 1.164.428 1.208 1.015.033.67-.441 1.16-1.094 1.16-.546.083-1.073-.373-1.123-1.006-.04-.M 572.319-1.112 1.009-1.169m.429 6.198c-.965.083-1.347-.419-1.388-1.18-.091-.837.423-1.372 1.202-1.406.795-.095 1.334.411 1.471 1.244.039.763-.302 1.251-1.285 1.342"/><path clip-path="url(#a)" d="m106.609 81.22c-.289.639-.422 1.06-1.64 1.639l.228.918 1.297-.289 1.418 6.512 1.55-.282-1.884-8.699z"/><path clip-path="url(#a)" d="m133.725 79.431c-2.049-.154-2.966 1.05-3.097 2.849-.122 1.374.579 2.63 2.105 2.752.647 0 1.368-.168 1.946-.543l-.084.803c-.116 1.417-.622 1.773-1.496 1.749-.625-.083-1.06-.531-.961-1.139l-1.661-M .122c0 1.601 1.036 2.503 2.539 2.609 1.884.152 2.972-.932 3.12-2.771l.267-2.927c.159-1.875-.793-3.09-2.678-3.26m1.081 3.305-.031.5c-.505.301-.926.625-1.394.579-.736-.037-1.242-.541-1.146-1.536.079-.923.498-1.521 1.325-1.463.919.04 1.34.54 1.246 1.92"/><path clip-path="url(#a)" d="m153.582 267.865.868 2.754 2.714-.825.416 1.487c.541 1.926-.084 3.345-1.725 3.844-.451.099-.84.16-1.162.16-1.163 0-2.005-.779-2.505-2.489l-2.42-8.355c-.598-2.133-.038-3.345 1.878-3.893 1.716-.498 2.889.381 3.594 2.706l3.421-.946c-1.113-3.3M 81-3.039-5.05-5.666-5.05-.631 0-1.382.073-2.225.291-4.059 1.21-5.528 4.043-4.249 8.439l2.116 7.26c1.245 4.371 3.976 6.054 8.109 4.896 1.206-.431 2.084-1.287 2.883-2.92l.168-.368 1.21 1.694 1.635-.461-2.895-10.029z"/><path clip-path="url(#a)" d="m34.92 217.509-1.289-3.29-1.118.441c-.716.32-1.313.401-1.775.401-1.438 0-1.995-1.038-2.323-1.843-.366-.919-.426-1.58-.123-2.208.295-.681.904-1.208 2.049-1.677l8.072-3.221c.606-.324 1.196-.407 1.69-.407 1.433 0 1.984 1.01 2.384 1.839.343.867.374 1.587.125 2.179-.275.65-.959 1M .243-2.08 1.658l-.352.15 1.355 3.323c2.167-.909 3.512-2.121 4.137-3.642.498-1.372.407-3.013-.334-4.834-1.145-2.815-2.933-4.201-5.258-4.201-1.062 0-2.226.255-3.561.809l-7.062 2.843c-2.211.938-3.676 2.179-4.269 3.715-.577 1.343-.409 2.962.344 4.848 1.641 4.01 4.549 5.102 8.808 3.383z"/><path clip-path="url(#a)" d="m51.919 219.95-1.876-3.05-17.528 11.288 5.415 8.423 2.682-1.665-3.591-5.47z"/><path clip-path="url(#a)" d="m96.959 256.183-5.097-1.779-6.891 19.63 5.347 1.853c1.261.425 2.309.664 3.303.664 2.525 0 4.226-1.3M 28 5.133-3.966.842-2.507.293-3.854-1.115-5.722l-.259-.291.38-.091c1.836-.421 3.129-1.49 3.675-3.163 1.462-4.107-1.587-6.151-4.476-7.135m-1.451 14.942c-.508 1.459-1.548 2.252-2.926 2.252-.461 0-.916-.085-1.426-.255l-1.833-.663 2.14-6.186 1.569.51c1.088.376 1.854.905 2.238 1.665.526.757.647 1.677.238 2.677m2.455-8.578c-.381 1.133-1.336 1.809-2.692 1.809-.384 0-.809-.085-1.273-.241l-1.577-.604 1.826-5.218 1.75.633c.963.33 1.586.848 1.894 1.443.323.637.323 1.353.072 2.178"/><path clip-path="url(#a)" d="m114.179 260.431M -5.604-.767-2.756 20.601 3.497.475 1.192-8.603 2.279.322 2.343 9.063 3.857.56-2.719-9.866.241-.079c2.1-.476 3.383-2.012 3.693-4.684.281-2.022-.045-3.557-1.019-4.769-1.035-1.217-2.706-1.972-5.004-2.253m2.499 6.431c-.298 2.343-1.71 2.847-2.833 2.847-.216 0-.465-.057-.678-.099l-2.298-.334.833-6.241 2.38.219c.926.172 1.645.522 2.105 1.102.45.632.657 1.437.491 2.506"/><path clip-path="url(#a)" d="m139.586 260.548-3.596.265 1.069 14.558c.04 1.091-.116 2.024-.571 2.611-.498.577-1.262.919-2.258.996-2.092.115-3.178-.913-3.3M 54-3.13l-1.079-14.596-3.555.253 1.105 14.63c.263 3.966 2.42 5.945 6.212 5.945h.832c3.047-.216 6.596-1.592 6.179-6.895z"/><path clip-path="url(#a)" d="m171.811 260.593 1.392 2.507 2.468-1.326.693 1.405c.513.841.59 1.651.513 2.35-.208.747-.671 1.334-1.37 1.712-1.839.957-2.999.448-4.104-1.559l-4.014-7.667c-.986-2.009-.702-3.317 1.034-4.188 1.646-.834 2.945-.162 4.11 1.93l3.138-1.676c-1.55-2.595-3.344-3.923-5.522-3.923-.958 0-2.042.32-3.169.87-1.768.969-2.924 2.133-3.42 3.553-.477 1.504-.17 3.434.948 5.601l3.556 6.681cM 2.085 4.059 5.059 5.095 8.813 3.128 1.212-.552 1.88-1.623 2.323-3.421l.057-.369 1.588 1.407 1.465-.745-4.802-9.278z"/><path clip-path="url(#a)" d="m210.431 200.437-.716 1.742 14.043 11.551-.125.325-.182.048-17.914-1.881-.757 1.722 21.637 2.127.708-1.677z"/><path clip-path="url(#a)" d="m190.911 257.038-3.796-4.759 4.18-3.331-1.93-2.439-4.221 3.325-3.33-4.191 5.514-4.392-1.976-2.453-8.275 6.631 13.01 16.256 8.472-6.764-1.964-2.442z"/><path clip-path="url(#a)" d="m64.298 235.48-10.731 9.996c-.839.747-1.647 1.113-2.42 M 1.113-.76 0-1.475-.366-2.219-1.113-.676-.749-.967-1.55-.929-2.339.045-.72.562-1.461 1.346-2.169l10.687-9.988-2.422-2.642-10.737 10.019c-1.632 1.471-2.365 3.015-2.365 4.622.032 1.534.733 3.082 2.246 4.618 2.919 3.191 6.1 3.348 9.186.515l10.739-9.992z"/><path clip-path="url(#a)" d="m202.486 218.074-1.253 1.758 4.001 13.522-.195.303-.176-.104-8.898-6.216-1.074 1.517 16.997 11.937 1.119-1.491-5.724-4.031-1.542-5.628 13.034 1.381 1.262-1.714-14.879-1.589z"/><path clip-path="url(#a)" d="m75.381 244.884-4.444-3.118-12.03 M 16.993 4.684 3.262c3.593 2.557 6.775 2.25 8.979-.882 1.536-2.131 1.374-3.632.493-5.803l-.167-.373h.428c1.886.126 3.424-.56 4.478-2.003 2.455-3.516.07-6.319-2.421-8.076m-5.537 13.97c-.708.988-1.584 1.496-2.543 1.496-.706 0-1.422-.298-2.171-.763l-1.619-1.163 3.842-5.393 1.336.977c.92.65 1.495 1.399 1.762 2.192.187.894-.001 1.815-.607 2.654m4.736-7.615c-.494.758-1.257 1.117-2.139 1.117-.664 0-1.426-.235-2.123-.722l-1.3-.99 3.17-4.496 1.512 1.074c1.626 1.09 1.928 2.612.88 4.017"/><g fill="#d9a500"><path clip-path="url(M #a)" d="m224.476 184.813c3.729-.789 8.511-5.827 8.636-10.963-4.953 1.399-8.627 7.308-8.636 10.963"/><path clip-path="url(#a)" d="m222.558 129.34c-3.774 3.677-4.178 10.601-2.463 13.796 2.924-2.434 4.762-9.153 2.463-13.796"/><path clip-path="url(#a)" d="m225.126 163.369c3.396-1.773 6.465-7.981 5.19-12.97-4.415 2.77-6.255 9.495-5.19 12.97"/><path clip-path="url(#a)" d="m216.878 120.407c-3.126 4.122-2.42 11.098-.106 13.974 2.48-2.938 3.13-9.771.106-13.974"/><path clip-path="url(#a)" d="m226.251 173.958c3.495-1.519 7.13M 4-7.424 6.22-12.572-4.611 2.439-6.971 8.996-6.22 12.572"/><path clip-path="url(#a)" d="m218.416 143.248c-1.337-3.596-7.068-7.493-12.244-6.878 2.208 4.784 8.645 7.47 12.244 6.878"/><path clip-path="url(#a)" d="m206.063 117.867c-2.138-3.201-8.565-5.862-13.506-4.16 3.178 4.221 10.047 5.459 13.506 4.16"/><path clip-path="url(#a)" d="m215.247 135.162c-1.715-3.414-7.759-6.71-12.861-5.604 2.622 4.483 9.298 6.546 12.861 5.604"/><path clip-path="url(#a)" d="m210.674 126.177c-1.999-3.274-8.34-6.003-13.312-4.419 3.025 4.232 9M .89 5.691 13.312 4.419"/><path clip-path="url(#a)" d="m205.662 102.588c-2.863 4.357-1.594 11.246.807 13.927 2.299-3.075 2.441-9.981-.807-13.927"/><path clip-path="url(#a)" d="m191.672 87.736c-2.416 4.739-.477 11.392 2.211 13.852 2-3.31 1.469-10.179-2.211-13.852"/><path clip-path="url(#a)" d="m198.732 94.726c-2.578 4.584-.997 11.374 1.596 13.916 2.088-3.152 1.932-10.149-1.596-13.916"/><path clip-path="url(#a)" d="m211.621 111.293c-3.061 4.223-2.213 11.179.081 13.979 2.469-2.916 2.984-9.788-.081-13.979"/><path clip-pM ath="url(#a)" d="m222.959 153.252c3.142-2.156 5.631-8.642 3.78-13.436-4.039 3.189-5.172 10.055-3.78 13.436"/><path clip-path="url(#a)" d="m210.498 144.474c1.413 4.996 7.271 8.705 10.969 8.776-.737-3.821-5.809-8.521-10.969-8.776"/><path clip-path="url(#a)" d="m187.854 95.212c1.194-3.668-.679-10.252-5.04-13.104-1.401 5.057 1.872 11.225 5.04 13.104"/><path clip-path="url(#a)" d="m192.613 102.808c-2.483-2.906-9.197-4.697-13.871-2.361 3.572 3.685 10.623 4.116 13.871 2.361"/><path clip-path="url(#a)" d="m30.834 143.136c1M .716-3.195 1.311-10.119-2.462-13.794-2.301 4.639-.46 11.362 2.462 13.794"/><path clip-path="url(#a)" d="m25.805 163.369c1.063-3.476-.777-10.2-5.19-12.97-1.276 4.989 1.792 11.197 5.19 12.97"/><path clip-path="url(#a)" d="m34.051 120.407c-3.023 4.203-2.375 11.036.106 13.974 2.314-2.876 3.021-9.852-.106-13.974"/><path clip-path="url(#a)" d="m24.678 173.958c.751-3.576-1.609-10.133-6.219-12.572-.915 5.148 2.725 11.053 6.219 12.572"/><path clip-path="url(#a)" d="m32.515 143.248c3.598.592 10.037-2.094 12.243-6.878-5.174-.M 615-10.905 3.282-12.243 6.878"/><path clip-path="url(#a)" d="m44.865 117.867c3.46 1.299 10.332.061 13.509-4.16-4.942-1.702-11.37.959-13.509 4.16"/><path clip-path="url(#a)" d="m35.684 135.162c3.564.941 10.235-1.121 12.861-5.604-5.102-1.106-11.146 2.19-12.861 5.604"/><path clip-path="url(#a)" d="m40.255 126.177c3.422 1.272 10.288-.187 13.312-4.419-4.971-1.584-11.313 1.144-13.312 4.419"/><path clip-path="url(#a)" d="m45.267 102.588c-3.247 3.946-3.104 10.853-.807 13.927 2.4-2.681 3.671-9.57.807-13.927"/><path clip-patM h="url(#a)" d="m59.258 87.736c-3.681 3.673-4.211 10.542-2.212 13.852 2.688-2.46 4.63-9.112 2.212-13.852"/><path clip-path="url(#a)" d="m52.196 94.726c-3.527 3.768-3.684 10.765-1.596 13.916 2.594-2.542 4.174-9.332 1.596-13.916"/><path clip-path="url(#a)" d="m39.308 111.293c-3.064 4.191-2.549 11.063-.081 13.979 2.296-2.8 3.141-9.756.081-13.979"/><path clip-path="url(#a)" d="m27.971 153.252c1.391-3.381.258-10.247-3.781-13.436-1.85 4.794.639 11.28 3.781 13.436"/><path clip-path="url(#a)" d="m29.462 153.252c3.699-.073 9M .559-3.78 10.969-8.778-5.159.255-10.23 4.953-10.969 8.778"/><path clip-path="url(#a)" d="m68.115 82.107c-4.361 2.853-6.235 9.437-5.039 13.104 3.165-1.878 6.44-8.046 5.039-13.104"/><path clip-path="url(#a)" d="m68.536 91.517c3.606.357 9.921-2.73 11.841-7.574-5.222-.29-10.735 3.9-11.841 7.574"/><path clip-path="url(#a)" d="m58.315 102.808c3.25 1.756 10.3 1.324 13.873-2.361-4.673-2.337-11.388-.546-13.873 2.361"/><path clip-path="url(#a)" d="m63.707 96.509c3.25 1.755 10.3 1.324 13.873-2.363-4.674-2.333-11.389-.545-13.8M 73 2.363"/><path clip-path="url(#a)" d="m51.494 110.152c3.284 1.629 10.247.915 13.757-3.013-4.761-2.033-11.436-.024-13.757 3.013"/><path clip-path="url(#a)" d="m26.461 173.646c3.547-.919 8.404-5.864 8.483-11.075-4.963 1.46-8.679 7.265-8.483 11.075"/><path clip-path="url(#a)" d="m27.092 163.215c3.681-.479 9.088-4.844 9.877-9.963-5.095.837-9.467 6.094-9.877 9.963"/><path clip-path="url(#a)" d="m18.566 184.996c.733 5.097 5.944 9.654 9.761 9.994-.345-3.62-4.62-9.126-9.761-9.994"/><path clip-path="url(#a)" d="m26.453 18M 4.813c-.009-3.654-3.684-9.563-8.635-10.963.125 5.135 4.91 10.173 8.635 10.963"/><path clip-path="url(#a)" d="m27.872 184.225c3.506-1.186 7.972-6.492 7.806-11.681-4.84 1.802-8.256 7.811-7.806 11.681"/><path clip-path="url(#a)" d="m29.563 194.371c3.365-1.569 7.204-7.364 6.408-12.481-4.604 2.337-7.184 8.668-6.408 12.481"/><path clip-path="url(#a)" d="m182.396 91.517c-1.108-3.674-6.621-7.863-11.841-7.574 1.92 4.843 8.234 7.931 11.841 7.574"/><path clip-path="url(#a)" d="m187.222 96.509c-2.483-2.908-9.197-4.696-13.871-2M .363 3.572 3.687 10.623 4.118 13.871 2.363"/><path clip-path="url(#a)" d="m199.436 110.152c-2.322-3.037-8.997-5.046-13.758-3.013 3.51 3.928 10.472 4.642 13.758 3.013"/><path clip-path="url(#a)" d="m215.984 162.568c.081 5.214 4.937 10.158 8.483 11.077.2-3.807-3.519-9.614-8.483-11.077"/><path clip-path="url(#a)" d="m223.837 163.215c-.409-3.869-4.782-9.126-9.877-9.963.79 5.119 6.196 9.484 9.877 9.963"/><path clip-path="url(#a)" d="m222.604 194.99c3.813-.34 9.027-4.897 9.759-9.994-5.139.87-9.414 6.376-9.759 9.994"/><paM th clip-path="url(#a)" d="m215.251 172.544c-.166 5.19 4.302 10.493 7.805 11.681.451-3.87-2.967-9.879-7.805-11.681"/><path clip-path="url(#a)" d="m214.96 181.89c-.795 5.119 3.041 10.912 6.407 12.481.779-3.813-1.804-10.146-6.407-12.481"/></g><path clip-path="url(#a)" d="m126.396 70.029c-12.395 0-26.519 1.768-24.604 2.738 1.882.989 9.644 2.19 24.604 2.19 14.873 0 22.584-1.201 24.52-2.19 1.857-.97-12.172-2.738-24.52-2.738"/><path clip-path="url(#a)" d="m126.394 63.367c-1.185 0-2.223.919-2.223 2.173 0 1.241 1.038 2.175 M 2.223 2.175 1.206 0 2.131-.934 2.131-2.175-.001-1.254-.925-2.173-2.131-2.173"/><path clip-path="url(#a)" d="m148.947 65.542c-1.182 0-2.222.917-2.222 2.171 0 1.241 1.04 2.177 2.222 2.177 1.209 0 2.134-.936 2.134-2.177 0-1.254-.925-2.171-2.134-2.171"/><path clip-path="url(#a)" d="m103.837 65.542c-1.183 0-2.224.917-2.224 2.171 0 1.241 1.041 2.177 2.224 2.177 1.208 0 2.134-.936 2.134-2.177 0-1.254-.926-2.171-2.134-2.171"/><path clip-path="url(#a)" d="m137.27 64.759c-.807 0-1.513.625-1.513 1.477 0 .843.706 1.479 1.513 1M .479.82 0 1.449-.637 1.449-1.479 0-.852-.629-1.477-1.449-1.477"/><path clip-path="url(#a)" d="m115.444 64.759c-.801 0-1.475.625-1.475 1.477 0 .843.674 1.479 1.475 1.479.888 0 1.569-.637 1.569-1.479.001-.852-.681-1.477-1.569-1.477"/><path clip-path="url(#a)" d="m97.712 62.225.277 3.208c9.019-2.627 18.549-4.041 28.402-4.041 9.786 0 19.251 1.396 28.211 3.992l.272-3.166c-9.059-2.567-18.612-3.943-28.485-3.943-9.837-.001-19.464 1.349-28.677 3.95"/><path clip-path="url(#a)" d="m206.226 173.58c0-44.527-36.088-80.62-80.619-M 80.62-44.618 0-80.716 36.093-80.716 80.62 0 44.611 36.098 80.712 80.716 80.712 44.531 0 80.619-36.101 80.619-80.712m-80.62 70.732c-39.023 0-70.729-31.714-70.729-70.731 0-38.922 31.706-70.674 70.729-70.674 38.925 0 70.668 31.752 70.668 70.674 0 39.017-31.743 70.731-70.668 70.731"/><path clip-path="url(#a)" d="m173.688 221.756c-26.583 26.579-69.68 26.581-96.261.002-26.582-26.582-26.58-69.68 0-96.26 26.585-26.583 69.678-26.583 96.261 0 26.581 26.578 26.581 69.676 0 96.258" fill="#0078bb"/><path clip-path="url(#a)" d="M m59.713 156.407c-2.857 10.971-2.95 22.51-.251 33.51l82.386-82.385c-10.998-2.702-22.538-2.607-33.509.249z"/><path clip-path="url(#a)" d="m69.879 212.764c2.223 3.153 4.726 6.171 7.547 8.994 2.854 2.853 5.905 5.379 9.098 7.621l94.785-94.786c-2.24-3.189-4.769-6.244-7.618-9.097-2.825-2.821-5.844-5.324-8.997-7.55z"/><path clip-path="url(#a)" d="m191.654 157.335-82.389 82.387c11.003 2.702 22.541 2.609 33.51-.25l48.628-48.628c2.857-10.969 2.951-22.507.251-33.509"/></svg>h! text/html;charset=utf-8 <title>BLOCKLABYRINTH! By Chuiso</title> <!-- Uploaded to Bitcoin Blockchain by https://twitter.com/chuisochuisez from Spain :D --> <meta charset="utf-8" /> background: black; width: 1000px; height: 800px; margin: calc((100vh - 820px) / 2) auto; position: relative; position: absolute; <div class="container"> <canvas id="canvas"></canvas> <canvas id="ui"></canvas> function randomInt(...args) { if (args.length === 1) { const [n] = args; return Math.ceil(Math.random() * n); if (args.length === 2) { const [start, end] = args; if (start > end) throw Error("Valor inicial mayor que el valor final"); eturn Math.ceil(Math.random() * (end - start)) + start; function random(...args) { if (args.length === 1) { const [n] = args; return Math.random() * n; if (args.length === 2) { const [start, end] = args; if (start > end) throw Error("Valor inicial mayor que el valor final"); return Math.random() * (end - start) + start; function normalize(n) { return n < 0 ? -1M function clamp(v, min, max) { return Math.max(min, Math.min(max, v)); function between(v, min, max) { return min <= v && v <= max; * Vector Library class Vector { constructor(x, y) { this.x = x; this.y = y; this.x += v.x; this.y += v.y; this.y -= v.y; this.x *= n; this.y *= n; return Math.sqrt(this.x * this.x + this.y + this.y); return new Vector(this.x, this.y); normalize() { this.x = normalize(this.x); this.y = normalize(this.y); Vector.mult = (v, n) => new Vector(v.x * n, v.y * n); Vector.div = (v, n) => new VecM tor(v.x / n, v.y / n); * Canvas Library const canvas = document.getElementById("canvas"); const context = canvas.getContext("2d"); const uiCanvas = document.getElementById("ui"); const uiContext = uiCanvas.getContext("2d"); const width = 1000; const height = 800; canvas.width = width; canvas.height = height; uiCanvas.width = width; uiCanvas.height = height; context.beginPath(); context.rect(x, y, w, h); context.strokeStyle = "#ffffff"; context.stroke(); context.closePath(); function fillRect(x, y, w, h, color = "#171717") { context.save(); context.beginPath(); context.fillStyle = color; context.fillRect(x, y, w, h); context.stroke(); context.closePath(); context.restore(); function circle(x, y, r) { context.beginPath(); context.arc(x, y, r, 0, Math.PI * 2); context.lineWidth = 3; context.strokeStyle = "#fff"; context.stroke(); context.closePath(); function fillText(text, x, y, fontSize, color = "white") { uiContext.fillStyle = "white"; uiContext.font = `${fontSize}px Arial`; uiContext.fillText(text, x, y); function clear() { context.clearRect(-100000, -100000, 200000, 200000); * User Code const BLOCK_START_WIDTH = 300; const BLOCK_HEIGHT = 50; const SLIDE_START_LEVEL = 10; const X_TOLERANCE_PERCENT = 0.02; constructor(x, width, level) { this.velocity = new Vector(5 + ~~(level / 15), 0); this.height = BLOCK_HEIGHT; this.level = level; this.width = width; this.moving = true; this.position = new Vector(x, thisM this.position.x, this.position.y, this.width, this.height - 1, this.color get color() { return `hsl(${this.level}, 100%, 50%)`; fitStack({ stackStartX, stackWidth }) { const stackEndX = stackStartX + stackWidth; const fit = between(this.position.x, stackStartX, stackEndX) || between(this.position.x + this.width, stackStartX, stackEndX); return fit; trim({ stackStartX, stackWidth }) { Math.abs(stackStartX - this.position.x) < this.width * X_TOLERANCE_PERCENT this.position.x = stackStartX; const stackEndX = stackStartX + stackWidth; const blockEndX = clamp( this.position.x + this.width, stackStartX, this.position.x = clamp(this.position.x, stackStartX, stackEndX); this.width = blockEndX - this.position.x; this.velocity = new Vector(0, 0); this.moving = false; this.velocity = new Vector(0, 30); get targetY() { return height - this.level * this.height; get finishMoving() { return !thiM update(state) { this.position.add(this.velocity); if (this.moving && this.finishMoving && this.fitStack(state)) { this.stop(); this.position.y = this.targetY; checkEdges() { if (this.position.x > width - this.width) { this.position.x = width - this.width; this.velocity.x *= -1; } else if (this.position.x < 0) { this.position.x = 0; this.velocity.x *= -1; if (this.position.y > height - this.height) { this.stop(); this.position.y = height - this.height; class Slider { constructor(t) { this.t = t; this.t += t; update(state) { if (this.t > 0) { this.t -= 2; context.translate(0, 2); get finishSlM return this.t <= 0; class Scaler { constructor(level) { this.level = level; this.totalHeight = BLOCK_HEIGHT * this.level + 150; this.ratio = (height / this.totalHeight) * 100; this.t = 100; const totalHeight = BLOCK_HEIGHT * this.level + 150; const ratio = this.t / 100; if (totalHeight > height && this.t > this.ratio) { this.t -= 1; const scaleX = ratio; const scaleY = ratio; const translateX = 5 * (100 - this.t); const translateY = (totalHeight - height) * ratio + 150; context.setTransform(scaleX, 0, 0, scaleY, translateX, translateY); const getBestScore = () => localStorage.getItem("stackBestLevel") || 1; const setBestScore = (score) => localStorage.setItem("stackBestLevel", Math.max(getBestScore(), score)); constructor(state) { this.state = state; uiContext.clearRect(0, 0, width, height); if (!this.state.start) { fillText("Start with spacebar", 300, 150, 40, "white"); fillText(`Best Record ${getBestScore() - 1}`, 380, 300, 40, "white"); const levelLength = this.state.level.toString().length; const levelTextOffset = 15 * levelLength; fillText( this.state.level - 1, width / 2 - levelTextOffset, "white" if (this.state.over) { fillText("Game Over", 410, 250, 50, "white"); fillText("Restart with spacebar", 300, 350, 40, "white"); * Main Code let blocks = []; const state = { over: false, blockFalling: false, stackWidth: 300, stackStartX: width / 2 - BLOCK_START_WIDTH / 2, function setup() { //blocks = [...Array(state.level)].map((_, i) => new Block(state.stackStartX, BLOCK_START_WIDTH, i + 1)) //blocks.forEach(i => i.stop()) //context.translate(0, BLOCK_HEIGHT * state.level - 500) blocks = [new Block(state.stackStartX, BLOCK_START_WIDTH, state.level)]; slider = new Slider(0); ui = new UI(state); function draw() { blocks.forEach((block) => { block.update(state); block.checkEdges(); block.draw(); slider.update(state); if (scaler) scaler.update(); function run() { const block = blocks[blocks.length - 1]; if (state.start && !state.over && blocM if (block.fitStack(state)) { block.trim(state); state.level += 1; state.stackWidth = block.width; state.stackStartX = block.position.x; blocks.push(new Block(0, state.stackWidth, state.level)); if (state.level >= SLIDE_START_LEVEL) { slider.slide(50); setBestScore(state.level); console.log("game over!"); block.down()M state.over = true; scaler = new Scaler(state.level); requestAnimationFrame(run); window.onkeypress = ({ key }) => { if (key !== " ") return; state.start = true; if (state.over) return location.reload(); const block = blocks[blocks.length - 1]; block.stop(); requestAnimationFrame(run); (((((((((((((((((((((((((((((((((((((((((((((((((( |http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:1618173AA8B111ED8BDFA7F56238E6D1" xmpMM:InstanceID="xmp.iid:16181739A8B111ED8BDFA7F56238E6D1" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:e0d18448-e896-5e43-a0da-1b9382b0ded8" stRef:documentID="xmp.did:e0d18448-e896-5e43-a0da-1b9382b0ded8"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDD &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#1fc062" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#151dd9" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:261D4C65ACBF11EDAA09C0AD819655A4" xmpMM:InstanceID="xmp.iid:261D4C64ACBF11EDAA09C0AD819655A4" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:34a5d12d-353a-f542-8aba-b1c75b943ca8" stRef:documentID="adobe:docid:photoshop:e0d05554-da0b-ae46-acc2-17e585f02175"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD text/html;charset=utf-8 <title>BLOCKLABYRINTH! By Chuiso</title> <!-- Uploaded to Bitcoin Blockchain by https://twitter.com/chuisochuisez from Spain :D --> <meta charset="utf-8" /> transform: translate(-50%, -50%); position: absolute; border: 3px solid black; display: flex; background: #111; box-sizing: border-box; border-left: 1px solid black; border-right: 1px solid black; border-top: 1px solid black; border-bottom: 1px solid black; background: white; background: red; border-radius: 50%; background: blue; position: absolute; display: flex; justify-content: center; align-items: center; margin: 0 5px; border-radius: 5px; background: white; padding: 10px; box-shadow: 3px 3px 10px rgba(0, 0, 0, 0.4); background: #b8b6b6; tainer center"></div> <div class="buttons" style="margin-top:30px"> <button onclick="generateMaze(10)">Very Easy (10 x 10)</button> <button onclick="generateMaze(20)">Easy (20 x 20)</button> <button onclick="generateMaze(30)">Normal (30 x 30)</button> <button onclick="generateMaze(50)">Hard (50 x 50)</button> <button onclick="generateMaze(100)">Hell (100 x 100)</button> <button onclick="print()">PRINT</button> <center><h2>BLOCKLABYRINTH! By Chuiso</h2></center> const range = (n) => Array.from({ length: n }).map((_, i) => i); const delay = (n) => new Promise((r) => setTimeout(r, n)); const createGrid = (n) => Array.from({ length: n }).map(() => Array.from({ length: n }).map(() => 0) const draw = (container, grid) => { const template = grid `<div class="row">${row.map((i) => i.draw()).join("")}</div>` container.innerHTML = teM constructor(x, y, size) { this.size = size; this.visited = false; this.walls = { left: true, right: true, top: true, bottom: true }; const classes = Object.entries(this.walls) .filter(([k, v]) => v) .map(([position]) => `${position}-wall`) .join(" "); const visited = this.visited ? "visited" : ""; const size = `width:M ${this.size}; height: ${this.size};`; return `<span style="${size}" class="cell ${classes} ${visited} "></span>`; this.visited = true; randomNeighbor(grid) { const { x, y } = this; [x - 1, y], [x + 1, y], [x, y - 1], [x, y + 1], .filter(([x, y]) => grid[y] && grid[y][x] && !grid[y][x].visited) .map(([x, y]) => grid[y][x]) .sort(() => MaM th.random() - 0.5)[0]; function removeWall(cell1, cell2) { const xDiff = cell1.x - cell2.x; const yDiff = cell1.y - cell2.y; if (xDiff === -1) { cell1.walls.right = false; cell2.walls.left = false; } else if (xDiff === 1) { cell1.walls.left = false; cell2.walls.right = false; } else if (yDiff === -1) { cell1.walls.bottom = false; cell2.walls.top = false; } else if (yDiff === 1) { cell2.walls.bottom = false; const generateMaze = async (n) => { const size = 750 / n; const grid = createGrid(n).map((row, y) => row.map((_, x) => new Cell(x, y, size)) const initialCell = grid[0][0]; initialCell.visit(); const stack = [initialCell]; let currentCell; while (stack.length) { currentCell = stack.pop(); const neighborCell = currentCell.randomNeighbor(gridM if (neighborCell) { stack.push(currentCell); removeWall(currentCell, neighborCell); neighborCell.visit(); stack.push(neighborCell); const container = document.querySelector(".container"); draw(container, grid); document.body.onkeydown = createNavigator(n, grid); function createNavigator(n, grid) { const index = (x, y) => y * n + x; const inGrid = (x, y) => 0 <= x && x <= n && 0 <= y M const point = '<div class="wrapper"><div class="point"></div></div>'; const cells = document.querySelectorAll(".cell"); let currentCell = cells[index(x, y)]; let nextCell = null; currentCell.innerHTML = point; currentCell.classList.add("passed"); cells[cells.length - 1].innerHTML = point.replace( "blue point" return (e) => { if (!e.key.startsWith("Arrow")) returnM const key = e.key.slice(5).toLowerCase(); if (key === "up") { if (!inGrid(x, y - 1)) return; if (grid[y][x].walls.top) return; } else if (key === "down") { if (!inGrid(x, y + 1)) return; if (grid[y][x].walls.bottom) return; } else if (key === "left") { if (!inGrid(x - 1, y)) return; if (grid[y][x].walls.left) return; } else if (key === "right")M if (!inGrid(x + 1, y)) return; if (grid[y][x].walls.right) return; nextCell = cells[index(x, y)]; nextCell.innerHTML = point; nextCell.classList.add("passed"); currentCell.innerHTML = ""; currentCell = nextCell; generateMaze(30); <!-- Uploaded to Bitcoin Blockchain by https://twitter.com/chuisochuisez from Spain :D --> <svg height="316" viewBox=".297 -.205 381 380" width="316" xmlns="http://www.w3.org/2000/svg"><path d="m368.759 121.928c-17.768-47.579-60.899-90.71-108.265-108.478-55.404-23.477-128.577-15.437-176.996 17.767-64.071 43.132-94.311 117.358-80.142 193.481 10.362 60.899 58.782 120.316 117.778 142.302 67.25 26.647 150.777 12.693 202.369-38.271 54.984-51.377 72.958-136.601 45.256-206.801" fill="#018749"/><path d="m134.89 359.182c-63.444-19.029-115.891-84.581-121.592-149.715-9.728-73.164 28.543-145.061 93.89-178.464 49.688M -26.648 118.62-25.8 167.467 2.109 35.313 19.037 62.168 48.007 79.293 84.368 27.068 59.004 18.402 137.457-25.157 187.565-46.73 57.102-125.391 76.765-193.901 54.137" fill="#fff"/><path d="m348.882 118.543c-17.348-38.279-53.708-73.585-92.835-88.816-56.674-24.737-131.099-13.947-177.203 26.013-54.343 44.614-74.434 119.048-53.502 184.181 15.444 54.128 66.616 103.824 121.386 116.724 66.394 17.768 135.118-3.806 178.052-55.824 41.648-47.795 50.956-125.185 24.102-182.278" fill="#018749"/><path d="m153.07 356.011c-59.638-11.6M 24-115.875-67.242-128.569-126.873-16.698-68.305 7.826-138.298 65.974-179.534 47.159-35.314 121.378-41.015 174.238-13.74 32.784 16.071 61.961 43.345 78.453 76.122 28.765 52.868 24.53 128.149-11.632 176.569-41.014 57.521-109.953 82.884-178.464 67.456" fill="#fff"/><path d="m182.042 52.989c2.958 0 5.708-1.055 7.397-3.592 2.751-7.405 1.062-15.437-.634-22.628-2.537-4.02-8.246-4.86-12.266-2.958-2.323 1.055-4.226 3.798-4.44 6.763.634 6.129-.634 13.955 2.751 19.457 1.689 2.538 4.654 2.538 7.192 2.958" fill="#018749"/><pathM d="m176.959 28.038c2.125-2.537 6.351-2.117 8.246.428 2.125 5.074 1.063 10.783 1.704 16.277-.214 1.903-.856 4.448-3.179 4.868s-5.495.207-6.137-2.331c-1.054-6.128-2.109-13.113-.634-19.242" fill="#fff"/><path d="m209.95 53.417c2.537-.634 4.226-2.751 5.082-5.296.42-6.97 4.433-15.644-.635-21.78-2.545-2.323-6.771-2.744-10.37-1.896-2.117.42-4.012 2.744-4.646 4.646-.428 7.405-4.233 16.285 1.055 22.628 2.537 1.698 6.136 2.325 9.514 1.698" fill="#018749"/><path d="m203.394 30.155c.428-1.482 2.116-2.544 3.385-2.965 2.117-.42M 3.592.634 5.074 1.482 2.545 5.922 0 13.114-.848 19.029-.635 1.276-1.689 2.545-2.958 2.751-2.751.428-5.502-.42-6.137-2.751-.42-6.129.429-12.052 1.484-17.546" fill="#fff"/><path d="m159.833 55.32c0-4.44-2.323-8.674-1.688-13.114l9.094-1.911c.214-1.055-.214-2.323-1.055-2.958l-8.673 1.697c-1.689-2.117-1.689-5.289-2.538-8.04 2.323-2.323 6.763-1.482 9.935-2.537l.214-1.689-.849-1.689c-4.012.841-8.238 1.689-12.472 2.323l-1.062 1.055 5.93 27.282c.842.208 2.11.001 3.164-.419" fill="#018749"/><path d="m229.406 32.478-6.136 22M .834c0 1.696 2.33 1.696 3.599 1.696l5.701-21.994c.428-4.226 5.296-.848 7.825-.634.429-1.055 1.269-1.903.635-2.958l-17.546-4.654-.635.42c0 1.062-.848 1.911 0 2.751 2.332.636 4.869.85 6.557 2.539" fill="#018749"/><path d="m252.241 64.834c2.323-.428 3.806-2.958 4.86-5.074 1.062-2.545.428-5.708-1.482-7.826 1.482-.84 3.606-1.055 4.867-2.751 1.063-2.117 1.903-4.44 1.269-6.977-2.529-5.074-8.459-5.708-13.105-8.032-3.6 8.88-8.246 17.554-11.211 26.434 4.868 1.903 9.307 4.861 14.802 4.226" fill="#018749"/><path d="m250.973 38M .821c2.537.849 6.129 1.689 6.984 4.654.421 1.903-.428 3.592-1.91 4.646-2.958 2.338-5.709-.841-8.238-1.475.627-2.743 1.688-5.28 3.164-7.825" fill="#fff"/><path d="m253.724 54.472c.42 2.109-.214 4.226-1.696 5.709-2.958 2.537-6.764.428-9.515-1.063l-.206-.634 3.806-8.666c2.536 1.276 5.914 2.117 7.611 4.654" fill="#fff"/><path d="m132.56 63.986c3.164-.42 6.136-1.269 8.459-3.378 1.895-2.331 1.269-5.922.42-8.674l-1.055-.206c-4.234.206-1.269 3.592-2.117 5.915-.849 1.688-2.545 2.965-4.44 3.385-6.343-1.903-6.771-9.514-9.522-M 14.596-.841-1.903-1.896-5.067 0-6.763 1.482-1.483 3.179-2.117 5.296-1.697 1.269.634 1.895 2.125 2.323 3.393 1.269.207 2.538-.428 3.592-1.07 0-1.475-.848-2.323-1.688-3.592-2.958-4.218-9.308-1.895-12.479 1.269-4.654 6.985 1.903 13.542 3.806 19.877 1.482 2.546 3.813 6.351 7.405 6.137" fill="#018749"/><path d="m123.251 68.64-14.168-24.325-.634-.206c-.848.634-2.117 1.062-2.537 1.911l14.382 24.309c1.055.421 2.323-.841 2.957-1.689" fill="#018749"/><path d="m86.883 62.297c2.109-1.055 3.806-3.592 6.137-3.806l15.215 19.877c.M 848-.634 2.338-.849 2.545-2.117-4.868-7.183-10.156-12.899-14.803-20.091 1.475-2.323 3.592-2.743 5.502-4.44.207-.841-.855-2.109-1.91-2.529l-14.169 10.149-.42 1.055c.634.634.849 1.688 1.903 1.902" fill="#018749"/><path d="m256.261 69.061c1.482 1.482 3.806 1.482 5.074-.42 4.02-5.922 8.032 2.323 12.06 3.378.626 2.544-1.697 4.662-1.063 7.191.848.848 2.116 1.697 3.171 1.482 2.744-9.308 5.281-19.028 7.405-28.55-1.482-.634-2.124-2.323-4.027-2.323l-22.62 18.188z" fill="#018749"/><path d="m268.098 63.352 10.149-8.246c-.841 4M .02-2.109 9.094-4.013 13.114l-6.137-4.02v-.848z" fill="#fff"/><path d="m247.381 70.963c-37.852-19.243-93.47-17.126-128.562 7.191-47.373 29.819-68.518 86.064-56.253 139.994 8.88 45.241 51.171 88.38 95.999 98.742 46.104 11.418 93.042-1.054 125.818-34.045 36.797-36.154 47.794-94.523 28.551-141.889-10.783-29.604-37.431-57.093-65.553-69.993" fill="#018749"/><path d="m293.905 268.67c-30.239 38.921-76.979 56.475-125.818 48.221-44.201-7.19-87.126-44.613-100.446-87.753-15.644-48.007-2.965-104.673 37.423-138.083 34.687-31.50M 8 91.987-40.602 135.332-20.932 28.765 11.417 56.039 37.423 68.526 65.974 19.028 41.021 13.946 97.267-15.017 132.573" fill="#fff"/><path d="m288.189 92.537c.848-.428 1.688-1.269 1.688-2.323l-6.549-5.93-.429-1.475 16.071-17.974c0-1.269-1.688-2.117-2.743-2.537-6.557 7.405-12.899 13.32-18.608 21.359z" fill="#018749"/><path d="m246.953 79.003c-41.229-22.2-99.805-16.919-135.539 13.74-37.644 30.026-52.226 79.087-41.022 125.611 9.514 41.443 47.579 80.982 89.236 90.711 43.773 11.846 89.228-1.269 120.324-32.563 33.823-33.831M 43.346-86.072 27.061-130.472-10.998-28.542-31.93-52.866-60.06-67.027" fill="#018749"/><path d="m277.406 270.374c-31.08 33.411-81.41 46.097-124.97 30.232-38.065-12.258-71.048-50.537-77.612-89.442-8.032-43.987 6.771-87.968 43.147-115.884 33.617-27.061 86.905-31.508 125.184-11.417 24.104 12.265 43.346 31.722 54.549 55.825 19.456 42.298 12.479 96.633-20.298 130.686" fill="#fff"/><path d="m104.009 81.746c1.689-1.261-.634-2.323-.841-3.164-3.171 1.269-5.296 5.281-8.673 6.335-5.716-5.701-11.417-13.32-17.34-18.188-.634.436M -1.903 1.276-2.117 2.339l19.242 20.718z" fill="#018749"/><path d="m91.109 92.957c-.634-.848-1.269-1.903-2.323-1.903l-6.343 7.397-1.483.429c-2.537-2.109-4.868-3.386-6.557-6.343l5.923-7.191c-.207-.848-1.269-1.697-1.903-2.117l-6.763 6.977c-2.751-1.055-4.226-2.958-6.771-4.86v-1.063l6.343-7.825c-.42-.841-1.054-1.903-2.109-2.109-2.965 3.806-6.985 7.611-9.515 11.417l21.986 18.188c3.593-3.171 6.351-7.183 9.515-10.997" fill="#018749"/><path d="m290.727 95.708 7.825 9.094c.848 1.903 2.957.207 3.385-1.063-1.696-2.965-5.074-4.M 86-6.128-8.246l18.601-16.285c-1.055-1.055-1.269-2.323-2.537-2.537l-21.146 18.189z" fill="#018749"/><path d="m227.29 205.876c-3.592-.215-7.611 1.269-9.935-2.323-3.172-3.172-2.331-8.246-.849-11.838 2.109-4.233 6.557-4.447 10.569-5.082 17.554 2.323 37.858 5.701 53.295-3.6 10.362-5.915 15.857-17.332 15.644-28.963 1.055-15.865-13.74-25.8-25.8-32.143-9.721-6.564-12.052-18.188-21.565-24.737-10.783-7.191-27.917-8.253-38.699-.428-12.472 9.522-9.515 26.006-8.674 39.754.214 9.515 2.124 21.779-4.012 29.605-1.483.634-3.172 0-4.M 234-1.476-5.281-14.39-2.109-30.461-4.012-45.47-1.903-9.094-6.771-16.285-11.417-24.11-3.386-4.012-5.923-8.659-10.997-10.569-14.803-3.171-27.282 5.502-35.528 16.491-10.148 15.865-30.025 14.596-41.022 29.185-5.288 8.88-6.136 23.255 0 32.143 13.106 20.503 39.968 13.533 60.899 12.686 5.289 0 10.997-.421 15.437 1.902 1.482 1.055 3.592 3.172 2.751 5.717-.428 3.592-3.806 7.184-6.985 8.245-19.449 7.818-40.38-4.653-59.837 1.682-9.514 3.813-15.009 13.542-16.499 23.056-2.537 14.169 9.094 24.523 20.091 31.715 12.059 6.771 14.38M 2 19.464 22.628 28.757 9.729 9.942 23.683 14.382 37.217 11.211 17.768-11.417 12.265-37.423 9.094-54.977-.634-3.378-.84-7.611 2.117-9.935 2.109-1.063 6.129-1.49 7.397 1.261 3.385 14.803.214 31.088-1.483 46.097-3.377 7.833-3.592 17.76-11.837 22.842 8.246 1.055 16.492 1.903 24.531 1.475-5.288-21.771-1.269-44.82-.42-67.242 1.261-1.269 2.109-4.432 4.853-3.592 3.393 1.055 4.447 4.646 4.661 7.826-.848 15.009-7.618 31.294 0 45.256 6.336 10.354 18.181 14.16 30.026 13.526 10.148.848 18.394-8.246 22.834-16.277 9.094-14.803 28M .123-15.224 36.162-30.874 3.798-11.631 5.708-28.337-3.806-37.851-17.339-15.016-43.987-5.289-62.595 1.055" fill="#018749"/><g fill="#fff"><path d="m289.465 220.258-1.49.841c-20.083 1.696-38.484 7.619-56.031 15.017-2.116-.635-4.02-2.537-5.074-4.227 6.558-4.447 15.017-6.137 22.621-9.094 12.272-3.592 25.165-6.557 38.699-6.984z"/><path d="m285.231 211.164c-9.308 1.475-18.822 2.957-27.702 5.28-1.903-1.055-2.117 1.063-3.806.849-9.935 2.965-20.083 6.137-29.605 10.568-2.116-.626-2.965-2.743-4.653-4.226l.214-.627 12.265-4.44M 7c1.483 1.475 1.697-1.055 2.958-1.055 14.803-4.227 29.605-8.04 44.828-11.417 2.116.841 4.653 2.744 5.501 5.075"/><path d="m230.882 210.743c13.327-3.385 25.799-10.79 40.815-8.245l.635.626c-2.117 1.697-6.137.849-8.666 2.537-16.285 3.172-31.516 9.095-47.373 13.32-2.743-2.743-4.654-6.129-5.923-9.729 6.985-1.054 13.542 4.869 20.512 1.491"/><path d="m260.7 185.15c-13.319 2.331-24.736-3.172-37.43-4.02.848-2.109 3.171-3.378 5.074-4.646 12.051 3.378 25.173 3.171 37.851 5.28-.206 2.332-3.591 2.546-5.495 3.386"/><path d="m259M .853 177.325c-8.872-.841-17.554-2.529-26.006-4.227.214-1.482 1.482-2.537 2.751-3.171 13.947 2.743 28.337 2.743 42.719 4.439-3.814 8.667-12.694 2.118-19.464 2.959"/><path d="m283.543 170.562c-14.383-.428-28.551-2.116-42.513-4.226-.635-1.903 2.124-2.331 3.393-2.958 4.013-.214 8.032 1.055 12.052 1.055 11.203.841 22.2-1.269 33.411-1.91-.643 3.178-3.386 6.556-6.343 8.039"/><path d="m291.368 155.339c.206.849 0 1.269.206 2.323-13.962 2.323-30.025 3.592-43.987 1.688.849-7.397 9.522-2.529 14.176-4.012 9.301-.635 18.188-2.33M 1 27.068-4.233 2.537-.42 2.109 2.545 2.537 4.234"/><path d="m288.403 146.459v.42c-10.791 3.172-22.835 4.227-34.466 4.227.42-2.109 1.475-4.013 2.537-5.701 8.88-.214 19.663 0 28.123-2.973 2.538-.206 3.172 2.124 3.806 4.027"/><path d="m261.977 121.928c3.799 1.476 6.55 4.233 10.148 6.557-.214 1.476-2.322 1.896-3.813 2.323-2.117 0-4.44.841-6.336 0v-8.88z"/><path d="m261.335 135.454c4.86-.626 10.362-.206 13.954-3.592 3.6.635 6.771 4.02 7.619 7.191-6.984 2.323-15.444 2.537-23.477 1.903.001-1.902.422-4.439 1.904-5.502"/><pM ath d="m247.587 103.526c7.825 4.448 2.331 14.596 5.716 21.36-1.054 2.751-1.902 6.129-4.233 7.825-4.226-8.674-2.117-18.608-1.483-29.185"/><path d="m237.232 98.245 5.494 1.903c.849 13.319-2.117 25.379 3.386 37.851-.635 1.689-1.903 3.798-3.813 4.433-5.066-12.893-5.495-28.329-5.701-42.711z"/><path d="m227.924 97.191c1.482-.856 3.172-.214 4.654 0l.206 3.377c-.206 16.499 1.276 31.08 6.137 46.097-1.055 1.903-2.537 4.654-5.074 5.495-8.246-17.118-6.137-36.154-5.923-54.969"/><path d="m223.271 96.763.428 2.117c-1.269 19.456-.M 849 38.905 6.977 56.879-1.482 1.689-3.171 4.227-5.494 4.44-9.522-18.822-8.039-40.809-8.674-60.479 1.481-1.895 4.224-2.957 6.763-2.957"/><path d="m211.425 104.374.428.207 1.063 22.001-.634.42c2.322 5.709 1.688 12.472 3.377 18.402 1.483 6.121 2.752 12.678 5.495 18.601-1.688.849-2.958 2.537-4.86 2.331-6.557-9.309-9.935-20.512-9.721-32.15-2.118-9.514-2.118-22.201 4.852-29.812"/><path d="m212.693 168.865c-1.902 1.482-4.226 3.172-6.756 3.6-.848-4.227 1.262-7.818 1.689-11.846h.42z"/><path d="m185.213 144.77c.848 4.854.42 M 9.714.42 14.581-1.896.635-2.751-1.475-3.6-2.957-1.269-4.233 1.269-7.825 2.545-11.624z"/><path d="m177.387 109.028c3.378 5.28 4.646 12.266 6.137 18.608-2.331 6.977-1.911 15.223-4.654 21.986-1.697-1.055-3.386-2.744-4.654-4.654 1.062-11.837 1.903-23.888 3.171-35.94"/><path d="m164.495 90.42c5.067.848 7.184 6.557 9.079 10.569-1.269 12.694-1.269 25.379-3.164 38.279-2.117 0-3.592-2.957-5.288-4.02-.627-14.589-.42-29.605-.841-43.98z"/><path d="m159.833 90c1.269 13.74 1.269 26.426.634 39.753-2.323.207-3.798-2.116-4.86-3.813M 0-11.196-1.276-23.889-1.91-35.1 1.491-1.268 4.448-2.109 6.136-.84"/><path d="m149.265 92.323c1.269 10.148 2.537 20.511 1.903 30.232-1.696-.421-4.02-.841-5.074-2.743l-2.331-24.952c1.49-1.696 3.385-2.331 5.502-2.537"/><path d="m139.537 98.245c1.689 5.701 1.482 12.472 2.537 18.395-.214 1.482-1.689 1.063-2.751 1.269-5.288-1.482-3.591-8.031-5.288-12.059.847-2.745 3.392-5.702 5.502-7.605"/><path d="m130.229 111.352c1.696.42.634 2.537 1.269 3.6-1.269.412-2.529.412-3.592-.207.213-1.062 1.482-2.339 2.323-3.393"/><path d="mM 110.359 122.982c1.055-.428 2.529 0 3.377-.428-3.377 2.331-7.825 4.233-12.051 5.082 1.269-3.377 5.709-3.171 8.674-4.654"/><path d="m94.28 136.944c4.448-3.813 9.942-5.716 15.017-8.039s10.363-4.02 15.644-5.502c2.125 0 4.027.42 5.502 1.91l-.634.848c-12.051 4.854-23.896 10.355-35.734 15.85-1.269-1.475.205-3.377.205-5.067"/><path d="m93.86 155.974c-1.269-2.545-.634-5.289-.42-8.04 12.899-8.46 27.488-14.16 42.077-19.242 2.117.428 4.02 1.688 5.502 3.171-4.654 2.966-10.577 4.448-15.651 7.191-10.576 5.082-21.145 10.783-31.508M 16.92"/><path d="m95.969 161.04c14.39-12.472 31.73-19.243 49.062-25.158 2.544.849 4.868 2.752 5.708 5.075-18.608 3.599-35.528 11.417-50.743 22.842-1.482 0-3.171-1.483-4.027-2.759"/><path d="m103.161 167.811.214-1.269c14.81-12.258 32.142-19.028 51.171-21.772 2.125 0 3.6 2.53 4.654 3.799v1.055c-17.125 3.179-32.563 11.417-46.517 21.779-3.386-.841-6.985-1.269-9.522-3.592"/><path d="m120.08 172.251v-.849c12.899-9.729 27.282-16.698 43.979-16.919l3.393 4.867c.42 1.269-1.269 1.269-2.117 1.269-11.845.849-21.994 5.717-31.72M 2 11.418-4.225-.421-9.307 1.062-13.533.214"/><path d="m145.673 170.562c6.129-4.226 13.955-5.915 22.2-5.915 5.067-1.269 4.86 4.853 6.771 7.391-8.888-1.476-19.456-2.11-28.971-1.476"/><path d="m155.822 198.471c-.634 1.269-1.689 3.179-3.179 3.385-1.903.207-3.378-1.688-4.012-2.957 1.902-1.063 4.86-.428 7.191-.428"/><path d="m128.119 195.94 8.04 1.689c2.744 4.868 9.514 2.751 12.258 6.977-.42 1.483-1.689 1.903-2.744 2.752-5.288.206-8.88-3.386-13.748-4.234-9.308-1.269-18.402-2.743-27.496-3.806 5.93-5.28 15.865-4.011 23.69-M 3.378"/><path d="m97.039 203.767c15.644-.643 30.026 2.529 43.98 6.755l-.214 2.117-1.269.642c-14.803-2.537-30.874-4.233-45.891-2.116-.419-2.967 1.484-5.504 3.394-7.398"/><path d="m93.226 216.024c2.537-2.323 6.557-1.055 9.728-1.903 11.203-.634 21.986.849 32.563 2.537.428 1.689-1.269 3.378-2.751 4.227-12.472-2.109-26.013-2.744-39.12-1.903-1.269-.42-.84-1.903-.42-2.958"/><path d="m93.44 224.063c11.417-2.323 24.317-1.269 35.734.635l.634.42c-.206 1.269-.84 2.743-2.109 2.957-10.577-1.688-22.842-2.957-32.57 1.697-1.269-1.6M 97-1.689-3.599-1.689-5.709"/><path d="m120.08 252.187c-1.475 0-2.53-1.269-3.378-2.323.42-1.49 3.171-2.331 3.806-.429z"/><path d="m113.317 246.478c-1.903.627-3.171-2.117-4.654-3.172 2.958-2.322 8.04-2.751 12.052-1.902l.428 1.269c-1.063 3.591-5.931.84-7.826 3.805"/><path d="m103.588 239.913c-1.689-1.896-4.02-3.378-5.288-5.487 2.537-3.171 7.397-3.171 11.211-4.027 5.28 0 10.362.214 15.009 1.49 1.062 1.903-1.055 3.378-1.689 5.067-6.763-.635-13.106 1.062-19.243 2.957"/><path d="m135.517 272.277c-.848.84-2.323.42-2.751-.6M 35-5.915-4.027-1.475-10.148-2.744-15.864-1.482-4.013-.42-7.826 1.903-10.997 2.109.634 1.689 3.171 2.53 4.86 1.49 7.406 1.276 15.017 1.062 22.636"/><path d="m142.708 279.889c-8.46-2.537-.634-11.838-3.386-17.554 0-7.611-1.269-15.23-3.377-22.208.42-2.109 2.109-4.012 3.592-5.494 4.012 9.728 4.226 21.993 4.44 33.418-.429 3.592.206 8.658-1.269 11.838"/><path d="m154.767 282.632c-2.125 1.269-4.868.214-6.985-.634l-.634-1.262c1.269-16.499.848-34.259-3.806-49.069-.428-2.108 1.689-3.806 3.171-5.066.848 0 1.482.42 1.903 1.261 M 2.958 17.981 8.254 35.742 6.351 54.77"/><path d="m159.627 281.791-.634-.42c0-20.305-2.751-39.968-8.674-58.156 1.055-1.475 2.117-2.743 4.012-3.798 6.557 18.601 8.253 39.12 10.164 59.417-.641 1.902-2.973 2.743-4.868 2.957"/><path d="m168.714 273.966-.627-1.482c-2.751-18.814-5.082-38.058-9.942-56.039 1.482-1.896 3.377-3.806 5.495-4.012l2.331 4.646c1.482 12.907 4.226 25.173 6.335 37.851.634 6.77.634 14.175-3.592 19.036"/><path d="m170.41 216.658c-1.062-2.109-4.02-4.86-2.537-7.611 2.109-1.269 4.012-3.386 6.771-3.171.42 M 4.02-.848 8.039-4.234 10.782"/><path d="m210.791 273.117c-5.487-4.653-4.646-12.258-3.592-19.242 1.062-5.923 3.385-11.417 3.592-17.76.848 0 1.49.42 1.902 1.269-1.688 11.425-.412 24.11-1.902 35.733"/><path d="m220.099 282.426c-3.172-1.689-5.28-4.233-4.44-8.254.215-10.989-.206-21.985 1.063-32.349 1.896 1.269 4.646 2.958 5.495 5.495-.421 11.425-.849 23.896 1.055 34.894-.422 1.482-2.325.848-3.173.214"/><path d="m227.504 285.169c-1.482-10.997-1.689-23.675-1.269-34.672 2.323 1.055 6.137 1.903 6.549 5.281 0 9.941 1.063 18.M 822 2.751 27.916-2.108 1.689-5.494 1.896-8.031 1.475"/><path d="m239.762 281.998c-2.744-7.826-2.529-16.492-2.529-24.951 2.957.634 6.129 1.696 7.825 3.813 0 4.646-.428 9.721 2.529 13.313-1.261 3.591-4.226 6.563-7.825 7.825"/><path d="m251.179 270.374c-1.055.206-1.896-1.055-1.688-1.91-.207-2.323-.841-5.074 0-7.604l8.039.421c-1.483 3.377-4.441 5.914-6.351 9.093"/><path d="m229.406 248.587c-17.125-13.954-30.453-32.563-40.181-51.171-28.123 5.502-52.646 31.08-65.125 56.459-2.537-18.395 11.417-32.135 23.476-44.408 11.204-M 9.086 22.2-16.491 34.672-22.62-6.969-29.604-28.757-53.93-56.253-67.035l-.626-.849c6.343-1.688 12.266 1.063 17.76 2.965 6.557 3.806 12.907 8.452 18.394 13.526 12.273 12.907 23.69 27.71 31.088 43.773 4.44.428 8.666-1.902 13.113-2.957 23.049-9.729 42.291-31.08 52.226-53.502l.635.214c1.269 18.395-11.838 33.839-25.8 46.097-10.148 8.674-21.146 15.23-32.349 21.359l-.214 1.276c6.771 28.115 31.088 53.914 57.308 65.752-10.577 1.911-19.878-2.956-28.124-8.879"/><path d="m267.044 256.626c-3.378-.214-6.771-.848-9.515-2.537.42-2.M 537 3.171-2.751 4.654-4.012 6.129-3.18 13.319-4.027 20.297-5.082l.214.42c-4.233 5.281-10.148 7.826-15.65 11.211"/><path d="m287.135 239.913c-11.846 2.124-23.683 3.813-33.411 10.783-2.965 1.275-5.709-1.262-8.032-3.164v-.428c12.679-6.978 26.854-9.935 41.443-12.472l1.91.214c.42 1.903-.856 3.592-1.91 5.067"/><path d="m289.886 230.2-1.482.841c-16.706 2.116-32.777 5.708-47.159 13.319-2.117-1.269-5.495-2.743-5.28-5.502 16.705-7.191 34.893-12.258 53.922-13.32v4.662z"/></g><path d="m70.598 118.757c3.592-1.689 6.137-5.717 6.M 137-9.942-.841-2.323-2.751-4.868-5.074-5.701-5.93 3.798 4.233 4.646 1.269 9.293-1.063 2.759-4.226 3.6-6.763 2.545-5.082-2.752-10.584-5.709-14.596-9.935-.634-2.338-.214-4.448 2.109-6.136 1.063-1.055 2.751-.635 3.813.206 1.903 1.903 2.323-1.261 3.171-2.323-2.117-2.331-6.557-3.164-8.88-.84-1.696 2.109-4.02 4.226-3.806 6.969-.42 2.331.42 4.654 2.109 6.137 6.129 3.804 12.265 10.567 20.511 9.727" fill="#018749"/><path d="m308.914 115.585c-1.688 4.44 1.482 8.46 4.646 10.989 2.965.635 5.716.635 8.253-1.055-.214-1.269-1.062M -2.109-1.482-3.171-1.902-.421-2.537 1.482-4.226.848-2.117 0-2.965-1.269-3.813-2.957-1.055-1.911 0-4.02 1.696-5.502 5.288-2.744 10.362-7.405 16.491-7.826 2.117 1.055 3.394 2.958 3.592 5.281.222 1.696-1.902 2.33-2.957 3.393.42 1.055.634 2.743 1.688 3.164 1.49-.635 3.18-1.689 4.234-3.164 1.062-2.323.634-4.661-.635-6.984-1.475-3.378-5.074-5.701-8.88-5.281-6.555 3.591-14.595 5.281-18.607 12.265" fill="#018749"/><path d="m64.255 133.345c-.42-1.269-1.903-1.902-2.958-1.482-1.062 3.592-2.331 6.985-4.02 10.148l-5.708-1.688c-M 6.977-1.269 0-7.191 0-10.783l-.841-1.055c-.642-.214-1.704-.848-2.545 0-.848 2.958-1.903 5.915-3.377 8.674-2.751-.642-5.93-1.269-8.04-3.179l3.171-9.515c0-1.482-1.696-1.062-2.537-1.696-2.117 4.227-3.385 9.094-5.281 13.748 8.666 3.6 17.967 7.191 27.061 10.156z" fill="#018749"/><path d="m316.525 134.193 5.288 12.686 2.323-1.269-3.171-9.308.642-.841 22.62-8.888c-.214-1.269-.42-2.957-1.688-3.378l-25.8 10.148z" fill="#018749"/><path d="m354.162 160.833c.429-.848 0-2.322-.42-3.377-7.405.42-13.954 3.592-21.565 4.432-2.109-.M 42-4.448-.634-5.082-3.171-.421-1.689-1.261-4.646.848-5.923 7.191-3.164 15.438-4.226 23.057-6.335v-.849l-.429-2.545c-3.385-.206-6.343 1.697-9.514 1.697-5.502 2.33-12.693 1.482-16.706 6.557-2.322 3.6-.42 8.245 1.269 11.417 1.903 2.323 4.448 2.751 7.191 2.751z" fill="#018749"/><path d="m29.79 146.665-.634.635c-.42.848-1.055 2.116-.214 3.171 3.806.849 7.825 1.055 11.631 2.545-.634 3.164-.634 6.764-2.323 9.515l-11.21-2.125c-1.055.856-1.475 2.339-1.055 3.6 9.514 1.903 19.036 3.806 28.123 5.494l.428-3.377c-4.027-1.269-8.6M 73-1.055-12.273-2.958.42-3.179.42-6.771 2.125-9.308l11.624 2.117c1.482-.215 1.482-2.323 1.269-3.6z" fill="#018749"/><path d="m355.859 171.402c-9.309-.206-19.243.849-27.917 1.269l-.84.635c1.054 4.867-1.063 12.272 4.02 16.078 2.323.841 5.28 1.896 8.023.635 2.125-.635 2.974-2.965 3.813-4.868 1.055 0 1.269 1.063 1.903 1.903 1.902 1.696 4.868 1.902 7.191 1.482 7.827-2.744 3.379-11.203 3.807-17.134" fill="#018749"/><path d="m339.582 185.364c-1.49.849-3.6 1.689-5.503.849-3.6-1.482-3.179-6.137-3.179-9.309 2.759-1.055 6.557M -.634 9.315-1.055l.833 1.689c-.197 2.752.436 5.924-1.466 7.826" fill="#fff"/><path d="m352.688 183.247c-1.482 2.117-4.233 1.697-6.137 1.276-2.743-1.91-1.902-5.502-2.109-8.459 2.53-.849 5.709-.635 8.246-.635.42 2.538 1.054 5.496 0 7.818" fill="#fff"/><path d="m27.887 171.83c-.848-.206-2.117-.841-2.958-.206-.42 6.335-.848 12.892-.42 18.814h2.744c.42-2.331-.42-5.502.634-7.397l25.379.841v-3.172c-8.253-1.261-17.554-.634-25.165-1.688z" fill="#018749"/><path d="m123.465 323.234c-2.323-5.289-3.171-11.203-6.771-15.651-3.592M -4.86-10.362 0-14.161-3.592-2.751-1.902-1.269-5.708-1.062-8.46-1.689-4.653-6.763-.634-9.935-1.269-4.448-1.475-3.386-6.557-4.234-10.148-2.958-8.031-12.265-6.343-18.822-8.031-4.646-4.44-2.537-12.266-6.977-16.92-1.269-.634-2.537-1.902-3.806-1.063 1.689 5.297 2.958 11.211 3.171 16.92 0 3.806-2.958 6.771-2.117 10.156 6.136-1.063 12.693-2.331 18.402.42 2.537 1.269 4.44 3.799 5.074 6.343.428 2.538-.207 5.281-2.331 6.978-4.226 7.397 6.557 2.751 8.674 7.611 3.386 2.323 4.868 5.923 6.343 9.515 2.751 2.116 4.654-3.378 6.985-4M .012 1.903-.421 4.646-1.063 6.335.214 7.619 4.432 7.405 13.74 7.619 21.771h.634c6.977-5.494 17.125-4.432 26.006-3.806-2.528-8.879-13.104-3.384-19.027-6.976" fill="#018749"/><path d="m321.18 262.335c-7.619 2.957-4.447 12.472-9.308 17.554-5.709 1.475-12.473.42-17.126 3.806-3.172 2.957-2.537 7.184-3.386 10.997-2.529 5.074-7.611 1.482-11.203 1.482-3.179 1.269-1.49 4.86-1.49 7.184-1.261 7.833-9.515 2.537-14.16 5.074-4.646 2.759-4.868 7.825-6.771 12.051-.841 9.309-12.258 4.44-17.966 6.985-1.482 1.055-3.386 2.323-2.966 4.M 226 9.095-1.062 19.029-1.062 26.014 4.654l.841-.42c.214-7.191-.42-14.811 5.296-19.671 2.109-1.903 5.28-2.537 8.024-1.688 3.179.626 3.813 6.129 7.404 4.646 1.903-2.743 2.323-6.557 5.717-8.88 2.957-2.957 7.39-2.537 10.783-4.439 0-2.537-2.125-4.227-3.18-6.343-.848-2.744 0-5.717 1.696-7.826 2.744-3.377 6.97-3.806 11.204-4.012 3.591.206 7.404 1.688 10.782 1.475-3.798-8.459-1.475-18.394.849-26.647z" fill="#018749"/><path d="m161.951 323.234c-1.903 1.688-6.557 1.688-5.289 5.494 1.483 0 2.751-1.688 4.02-.849-1.055 7.619-3.M 179 14.811-4.02 22.414l3.386.222 5.28-25.165c.849-2.323-2.109-1.902-3.377-2.116" fill="#018749"/><path d="m223.271 336.348c.42-.849.848-1.696 1.482-2.537 1.055-2.545.42-5.716-1.063-7.825-2.529-3.806-8.666-2.751-11.624 0-1.054 1.902-1.688 4.439-.848 6.557.428 2.109 2.323 3.806 4.226 4.646.214 1.269-1.055 1.482-1.688 2.323-1.482 2.759-.214 5.922.42 8.674 1.269 2.108 3.394 4.233 6.351 4.02 2.744 0 5.066-1.055 6.771-3.18 1.475-2.108.84-4.432.626-6.969-.428-2.545-2.116-4.869-4.653-5.709" fill="#018749"/><path d="m215.02M 4 331.693c-.421-1.482 0-3.385.841-4.439 2.545-1.696 5.296.42 5.502 2.743.214 2.125-.206 4.654-2.323 5.082-2.117.42-3.6-1.696-4.02-3.386" fill="#fff"/><path d="m221.795 348.819c-2.323.642-3.592-1.482-4.226-3.171-.643-1.903-.856-4.013 0-5.923.634-1.055 1.902-1.055 2.743-1.269 2.323-.214 3.172 2.109 3.806 4.02.206 2.324.841 5.71-2.323 6.343" fill="#fff"/><path d="m184.999 328.942c-2.109-4.02-7.191-4.226-10.783-2.957-1.689.848-2.751 2.537-2.751 4.439-.841 2.958.428 5.923 2.331 8.032-2.538.848-3.6 3.171-4.02 5.716-.214 M 2.958-.214 5.915 2.117 8.024 1.903 2.124 5.281 2.124 8.032 1.49 2.331-.635 3.806-2.965 4.226-5.082.634-3.378.849-7.825-2.529-9.721l2.744-2.537c1.267-2.116 1.481-5.286.633-7.404" fill="#018749"/><path d="m178.228 350.302c-1.689.841-3.798-.428-4.432-1.902-.428-2.537.206-4.654.84-6.771 1.903-2.743 6.557-1.055 6.137 2.323-.214 2.33-.214 5.288-2.545 6.35" fill="#fff"/><path d="m178.862 336.768c-2.109.421-3.592-1.475-3.798-3.171-.214-1.696 0-3.386 1.261-4.654 1.696-1.688 4.868-.42 5.082 1.903s-.214 5.074-2.545 5.922" filM l="#fff"/><path d="m202.759 339.305c-.841-1.054 1.063-1.054 1.482-2.108 1.055-2.117 1.689-5.082.635-7.619-1.689-3.806-6.771-4.433-10.148-3.172-2.117.849-3.592 2.965-3.806 5.074 0 3.18 1.269 6.343 3.806 7.825-1.903 1.689-3.172 3.378-3.172 5.709 0 3.172.214 6.343 2.957 8.246 2.117 1.696 5.717 1.696 8.04.642 2.743-1.055 3.592-4.027 3.798-6.557-.206-2.958-.42-6.557-3.592-8.04" fill="#018749"/><path d="m197.685 328.736c1.688 0 3.6 1.055 3.813 2.743 0 1.689 0 3.806-1.063 5.288-1.063.635-2.545 1.055-3.6.215-1.688-1.055-1.M 902-3.172-1.902-4.868-.205-1.689 1.269-2.958 2.752-3.378" fill="#fff"/><path d="m201.918 350.088c-1.269 1.055-3.179 1.689-4.653.849-1.483-1.482-2.537-3.386-2.117-5.923 0-1.688.849-3.806 2.743-4.226 2.117-.635 4.027 1.055 4.448 2.957.214 2.117.848 4.441-.421 6.343" fill="#fff"/></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:1609CF17AB2D11ED83BDCE7CD1E493AE" xmpMM:InstanceID="xmp.iid:1609CF16AB2D11ED83BDCE7CD1E493AE" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg enable-background="new 0 0 608.6 426.1" viewBox="0 0 608.6 426.1" xmlns="http://www.w3.org/2000/svg"><path d="m456.6 218.8c0 90.4-73.3 163.7-163.7 163.7s-163.7-73.3-163.7-163.7 73.3-163.7 163.7-163.7 163.7 73.3 163.7 163.7" fill="#fff"/><g fill="#3c6caa"><path d="m289.3 99-.8-14.3c-1.9 0-3.9.1-5.9.2.4 4.8.6 9.5.7 14.3-2.5.1-5.3.3-8 .4l-1.8-34.5c2.5-.3 5.2-.4 7.9-.5.3 4.4.6 8.8.8 13.2 2-.1 3.7-.3 5.7-.3-.1-4.3-.3-8.8-.5-13.2 2.6-.3 5.3-.1 8-.3l1.9 34.6z"/><path d="m257.3 68.6c2.2-.7 4.3-1.3 6.8-1.9 3 11 6 22 8.M 8 33.1l.1.4-8.2 2.2c-4.4-7.1-9.1-14.7-13.2-21.7l.4 1.5 5.9 22c-2.4.7-4.6 1.3-6.8 1.9-3-11.1-6.1-22.3-8.9-33.6l8.4-2.3c4.5 6.4 8.8 13.1 12.5 19.9z"/><path d="m338.4 71.4c-.9 8-2.4 16.1-3.6 24 3.8-7 7.6-14.4 11.2-21.6 2.5.8 5.3 1.8 7.7 2.5l-.3.6-17.3 29.8-.3.2-8.9-2.9v-.3l3.6-34.9c2.8.9 5.4 1.7 7.9 2.6"/><path d="m314.4 72.7c-1.8 4.8-3.1 9.9-4.4 14.5l4.4.8c-.1-5 .1-10.3 0-15.3m5.9-6.1c.9 11.8 1.5 23.6 2.4 35.4-2.9-.3-5.5-.7-8.3-1.2 0-2.4.1-4 0-6.6-2.1-.2-4.1-.6-6.3-1-.5 1.1-.6 2.1-1.1 3.3l-1.1 3.1c-2.6-.1-5.3-.9-8-1.M 2l.8-2.2 12-30.9z"/><path d="m215.9 84.9 16.8-8.5c1.1 1.9 1.9 3.7 2.9 5.5l-9.5 5c1 2.1 2 4.3 3.3 6.3l9.1-4.5c1 1.7 2.1 3.7 3 5.6-2.9 1.5-6.3 3.1-9.3 4.7l3.8 7.4c3.4-1.3 6.6-3.3 10-4.8 1.1 1.9 1.9 3.7 2.9 5.5l-17.4 8.8-.3-.6z"/><path d="m366.6 84.1c-1.6 7.5-3.4 15.1-5.5 22.4 3.6-6.4 7.5-12.9 11.4-19.3 2.2 1.3 4.1 2.4 6.1 3.6l-17.6 30-.4-.2c-2.3-1.5-4.8-2.8-7-4.3 1.9-8.3 3.9-16.4 6.1-24.3-4.3 6.8-8 13.9-12.3 20.6l-6-3.8 17.5-29.6 7.7 4.3z"/><path d="m214.9 111.5c-2.1-1.3-4.1.6-5.6 1.9l5.8 7.1 2.4-2.3c.8-.9.8-2.2.4-3.M 4-.7-1.3-1.9-2.3-3-3.3m-9.7-10.9c-1.9-.8-3.5.9-4.8 2l4.9 6 2.3-2c.5-.6.9-1.5.6-2.4-.6-1.4-1.6-2.7-3-3.6m9-1.7c.8 1.8 1.1 4.1 0 5.9.5.1 1.1-.4 1.8-.4 3.1-.4 5.3 1.8 7.3 3.9 1.7 2.6 3.5 5.9 2.3 9.4-2.6 5.6-8.4 8.7-13.1 12.6l-1.9-2.1-20.1-24.9c3.6-3.3 7.5-6.1 11.3-9.1 1.8-1.1 4.1-1.6 6.3-1 2.5.7 4.8 3.3 6.1 5.7"/><path d="m191.6 126.5c1.4 3.7 2.9 7.3 4.3 10.9 2.4 1.4 3.6-.7 3.5-2.1-.7-3.9-5-6.2-7.8-8.8m-10.4-5.1c-.4.8-.8 1.5-.4 2.4 2 3.5 5.8 5.9 8.8 8.6-1.3-3.9-3-7.6-4.5-11.4-1-.9-3-.9-3.9.4m4.5-9.1c6.5 2.1 11.3 8.3 1M 6.6 12.8 3.2 3 6 7 4.1 11.6-1.5 3.4-4.4 6.8-7.8 8.5l.9 2.5-3.4 1.4-.1-.5c-1.4 2.1-2.7 4.5-4.1 6.8l-12.9-2.2-.1.1 2.5 3.8c2.3 1.4 4.5 2.8 6.9 4.1-1.5 2.4-2.8 4.7-4.1 7l-.4-.2-29-17-.4-.3c1.3-2.4 2.6-4.6 4-6.9 4.4 2.5 8.8 5 13.1 7.5v-.4c-3.5-4.1-6.6-8.6-9.8-13 1.1-2.4 2.7-4.8 4.1-7.1l9.5 14 .5.4 19.9 2.9c-.4-.7-.5-2.2-1.5-2.4-6.8-2-11.8-8.8-17.4-13.4-3.3-2.8-4.8-6.9-3.4-10.9 1.4-3.5 4.8-7.2 8.3-8.7-.3-.8-.6-1.6-1-2.5l3.4-1.3z"/><path d="m175.1 171.5 7.2 2.5c-.8 2.4-1.9 5-2.6 7.4-2.5-.7-5-1.5-7.4-2.4z"/><path d="m156.M 6 177.2c-.2 2.4-.9 5-1.4 7.4-2-.2-4.4-1.5-6.1 0-.9.8-1.1 2-1 3.1.2.8.9 1.4 1.6 1.6l18.3 3.8c.9 0 1.8.3 2.4-.5.9-1 1.1-2.5.5-3.8-1.5-1.9-4.2-1.8-6.5-2.4.5-2.6.9-4.9 1.4-7.4 4.4.5 9.4 1.5 11.5 6.1 1.2 4.3.2 9-2 12.5-2.4 3.4-6.8 4-10.5 3.1l-17.1-3.8c-2.4-.6-4.8-2.8-5.6-5.1-1.1-5.1-.1-10.6 3.8-14.1 2.8-2 7.4-1.5 10.7-.5"/><path d="m174.6 206.3-.8 8.2c-2.7-.3-5.3-.6-7.8-.8.3-2.7.5-5.5.7-8.2z"/><path d="m145.6 217.4c2 .3 4.3.3 6.5.3.1-3.3.1-6.9.2-10.3l6.4.1v10 .2l14.9.4-.1 8.1h-.8l-33.8-.6c0-6.6 0-13.2.1-19.6l6.6.3z"/></M g><path d="m174.5 236.6c2.1 12.4 5.8 24.1 11.4 35l-.5.5-10.5 5.4c-6.3-11.8-10.3-24.5-12.4-38-.1-.5-.3-1.4.5-1.3 3.8-.4 7.6-1.2 11.5-1.6" fill="#c13f3f"/><path d="m152.9 240.6c2.1 14.6 7 28.1 13 41-3.5 2-7.1 3.8-10.9 5.5-7.1-14.1-12-29.3-14.5-45.3 4-.9 8-1.5 12.1-1.9z" fill="#c13f3f"/><path d="m226.5 318.1c7.9 5.3 16.1 9.5 24.9 12.8-.1.1 0 .2.1.2h.1l-2.1 12.4c-3-.6-5.9-1.9-8.8-3.1-24-9.5-47.5-30.6-60.9-53.5 3.1-2.4 7-4.3 10.5-6.5 8.9 14 21.9 28.5 36.2 37.7" fill="#c13f3f"/><path d="m171.6 291.6c16.9 29 46.3 51.9 76.M 5 61.5.2 4.3-.4 8.6-.1 13-34.3-10.3-68.2-35.1-86.9-68.3 3.5-1.9 6.9-4.3 10.5-6.2" fill="#c13f3f"/><path d="m292.4 184.1c-5.8.6-1.5 7.4-5.4 9.8-1.5 1-4.8.8-4.4 3.4 1.6-.3 3.1-1.3 4.6-2 6.3-1.6 12.6-2.3 19.4-2.9l.7-.4c-.1-.3-.3-.5-.5-.8-4-4-8.9-6.4-14.4-7.1m128.3-51.2c12.6 18.9 20.8 39.6 24.3 62.4-16.9-5.1-34.4-9-52.4-11.5l-.1.1c18.8 6 36.6 14.1 53.9 23.8 1.4 19.9-.9 39.3-6.5 56.8-15.4-7.6-30.8-15.4-47-21.1 3.3 2.6 7 4.9 10.6 7.4 11.1 7.5 21.9 15.9 32.6 24.5-7.1 18.1-17.6 34.9-31.9 49.9-15.6-12.8-30.9-28.6-43.9-44.2 M 4.1 9.5 10.4 18.4 16.1 27.3 6.1 8.6 12.1 17.1 19.1 25.3-15.8 14.3-33.6 24.3-52.5 30.9-9.9-14.4-16.5-30.3-22.9-46.2.4 6.5 1.9 12.9 3 19.3 2.4 10.4 5 20.5 8.1 30.4-19.8 5.4-44.1 6.5-64.8 2.5-1.8-11.8-2.7-24-1.9-36.4.3-6.1 1.1-12.3 1.5-18.1 1.1-4.4 1.1-9.1 1.1-13.6-.1-.9-.4-1.8-1.3-2.3-2.4-.2-4 1.4-5.9 2.1-5.9 2.8-11 7.6-17.4 9.4-2.4.6-5 .1-6.8-1.5-3.5-3.8-4.6-8.5-6.3-13-2-7.8-5-15.5-4.1-24 .5-1 1.1-2.1 2.3-2.8 3.8-1 7 1.5 10.1 3.3 6.3 3.8 11.8 9.4 19 10.8 1.2.2 2.4-.3 3.4-.9 2.3-3.5 2.6-8.8 1.3-12.6-1.4-2.6-3.9-5.3-7M .1-4.9-5.5.4-10.1 2.6-15.6 2.9-3.8.1-7.5.3-11-.7-3.1-1.1-6.6-1.9-9-4.6-3.6-5.6-4.4-12.5-4.9-19.4.1-1.9.3-3.9 1-5.5 4.1-2.9 9.3-4.9 12.1-9.4.9-2.3.9-5.6.2-8-1.5 1.6-2.5 3.6-4.5 4.6-2.6 1.6-5.9 2.6-9 1.9-3.5-2.9-2.1-8-1.9-12.1.5-2 1.1-4.3 3-5.6 14.1-10.5 30-16.9 45.8-23.5 6.9-2.8 13.8-5.5 21-7.5 1.3-1.1 1.3-3 2-4.4 1.6-3.4 5.3-5 8.1-7 6.8-4 13.9-7.3 21.1-9.9l.9-.6c1.5-5.4 4.1-10.5 8.6-14.6 7.3-5.6 15.1-9.5 23.8-11.6 16.8-3.6 36-3.4 53.4-1.6 7.4.6 14.6 1.6 21.3 3.5" fill="#3c6caa"/></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:9EEF6F7BAB2411ED8C36903606E8BC51" xmpMM:InstanceID="xmp.iid:9EEF6F7AAB2411ED8C36903606E8BC51" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:C523F00CACBC11EDACE1D83657860E2E" xmpMM:InstanceID="xmp.iid:C523F00BACBC11EDACE1D83657860E2E" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:34a5d12d-353a-f542-8aba-b1c75b943ca8" stRef:documentID="adobe:docid:photoshop:e0d05554-da0b-ae46-acc2-17e585f02175"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg enable-background="new 0 0 652 652" viewBox="0 0 652 652" xmlns="http://www.w3.org/2000/svg"><path d="m297.1 353.2c-26.1 0-50.4-7.5-71-20.6 22 28.5 56.3 46.8 94.8 46.8 46 0 85.9-26.1 106.1-64.3h-.1c-2.4-.7-5.9-2.1-10-3.7-4.6-1.8-13-5.1-15.8-5.5-.5.3-1.5 1.2-2.3 1.8-1.6 1.3-3.3 2.6-5 3.7-24.3 25.8-58.6 41.8-96.7 41.8zm0 0" fill="#d9d9d9"/><path d="m670.4 224.5c1.4-2.1 1.4-6.1.3-8.5-1.3-2.7-5.2-3.5-7.7-4.4-3.2.7.3 3.4-2.4 4.6l-6.1-.8c-3.8-4 4.1-3.4 4.6-5.6.7-3.1-2.2-5.9-.3-8.9-.4-.7-.8-1.5-1.6-1.8-3.1-1.1-21.8-5M .6-24.4-5.5l-.8 1c.8 1 3.9 3.9 4 4.2 1.3 2.3-7.1 3.8-8.5 4.2-6.7 1.4-24.6 3.6-22 14.2 1.2 5 19 17.8 21.2 23.3.5 1.2 2.8 3.6 1.2 4.8-3.3 2.2-19.8-.8-20.7 1.8 1 3.5 10.8 6.1 13.9 7.4 3.8 1.4 7.3 2.5 11.2.6 4.4-2.2 7.3-8.1 6.5-13-.4-2.2-2.8-7.7-4.2-9.6-1.3-1.7-12.1-10.4-9.1-11.5 3.7 1.2 8.7.1 11.2 3.6 6.8 1.9 14.1 3.2 21.1 4.4 4.8.7 9.9-.5 12.6-4.5zm-149.3 84.8c.6-1.2.8-2.8.1-4.1-.6-.6-1.1-1.3-2-1.4-3.2.7-6.3 2.2-9.8 1.3-3.3 0-8.6-2.9-10 1.5-.6 2.8-2.2 5.2-2.8 7.9 0 1.5 1.4 2.8 2.7 3.5 2 .5 4.5 1.6 6.3 1.2 3.4-2.4 3.1M -6.7 6.5-9.1 1.8.4 2 2.9 4 2.7 2.1-.4 4-1.6 5-3.5zm81.8-52.6c.6-3.2-3-3.7-5.2-4.4-5.1-1.7-10.3-3.3-15.6-4.9-3.9-1.1-7.7-3.1-11.5-3.9-4.8-1-8.8-1.1-12.1-5.4l.8-.5c4.6 1.9 12 5.9 16.8 2.6 2.3-1.6 4.7-5.7 3.6-8.5-.9-2.1-3.4-2.4-5.2-3.2-7.6-3.3-15-7.4-22.4-11.1-15.6-7.8-31.2-15.7-46.7-23.7-7.1-3.6-15.1-7.8-22.9-9.5-6.3-1.3-13.5.4-19 3.8-5.5 3.3-5.3 11.1-9.4 10.3-.6-.6-1.1-1.4-1-2.4-1.7-2.6-6.8 4.8-11 6.9-9.3 4.7-25.7 22.7-32.5 31.3-4.2 5.4-5.9 12.3-7.5 18.9l.9 1.3c2 .5 3.9-.4 5.7-1.3 1.7.4 1.5 2.6 2.5 3.9 6.8 9.2 24.9 M 3.8 34.8 7.2.2.6 0 1.1-.7 1.2-4.4.6-10.3-.4-14.8-.5-10.5-.3-21-.4-31.4-1l-1.3.7c-1 2.2-6.7 14.6-7.6 15.6-1.4 1.5-3.5 2.7-4.9 4.4-4.1 4.6-7 10.1-12.1 13.6-1.5 1.1-4.6 1.6-5.2 3.4l.8.9c15.5 1.2 17-15.1 27.4-18.8.5.1.8.7.6 1.3-2.5 2.6-5.3 6.3-6.9 9.6-6.1 12.3-10.4 8.6-16.2 14.2l.9 1.4c17.1-.5 20.2-10.2 25.8-11 4.8-.7 22.6 7.7 28.5 9.4 3 .8 5.9 1.8 9 1.8 1.1 0 2.5-.6 3.4-.6 2.3.1 2.7 4.2 7.7 1.8 3-1.4 3.2-5.8 3.6-8.7.4-3.6-3.9-6.5-3.6-8.5.5-2.7 3.8 1 4.6-1.5.4-1.4-1.3-4.3-2.2-5.4-2.2-2.9-8.6-7.9-7.7-12.1.1-.4 1.3-1.3 1M .7-1.2l20.8 2.6c.7.1 3.9 7.5 3.9 8.3 0 1.1-3 8.7-3.6 10.3-1.7 4.1-4.8 7.2-4.7 12 0 5.9 4 11.4 7 16.3 3.2 5.4 8.5 2.9 13.2 4.4 1.9.7 4 2 6 2.9 6.1 2.6 12.8 5.4 19.2 6.9 3.5.9 8.9-.3 11-3.6 1.5-2.4-3.6-3.2-1.4-5.8 1.2-1.4 2.7-1.3 4.4-1.1 3.6.4 22.1 2.6 24 .5.7-.7-.3-1.6-.9-1.9-3.8-1.8-9.5-2.7-13.6-3.8-4.9-1.4-10-1.8-15-3.3-4.2-1.3-4 3.1-7 4.9-4.5 2.9-16.7-2.9-18.2-8.1-1.4-5 3.2-11.4 6.4-14.8 2.6-2.7 5.7-3 8.2-5.1 1.6-1.3.4-3.9.4-5.5 2.5-3.2 11.9 1.8 15.7.8 4.1-1.2 1.1-6.7 4.6-7.8 3.1.9 5.6 3.1 8.6 4.3 2.3.8 6.3 1.3 7M .8 3.3 1.1 1.6 0 3.8-.3 5.5 1.1 2.1 4.6 2.7 6.7 3.1 3.4.5 7.2.3 10.7.7s7 1.4 10.4 1.7l11.7 1.1c2.8 1.4-.7 3.8 1.9 9.3-2.7-.4-14.2-3.9-15.5 0 10.1 9.5 32.9 16.1 46.4 18.1 8.3 1.2 17.1 1 25.4.2 1.2-.1 2.4-.3 3.1-1 0 .1 4.5-3.7 6.9-3.3 3.2.6 7 6.8 13.8 9.4 4.6 2.6 9-1.9 12.6.1 4.4 2.5 7.1 15.1 14.1 13.1 1.4-.4 7.5-2.5 8.4-3.4 2.3-1.9-1.6-6.9-3.6-10.3-.7-1-1.2-1.8-2-2-8.2-2.1-4.3-11.4-16-13.7-5.2-1-6.5-1.4-11.8-2.4-1.4-.3-4.6.4-4.8-1.6.3-.3.6-.7.9-1l9.3-.2-.2-1.3c-14.9-1.9-29.5-6.2-44.4-7.9-1.1-.7-2.6-4.1-2.4-5.2.4-2.8M 4.7 2.4 7-3.1 1.2-3.1-1.8-5.8.7-7.4 6.5.9 13.1 1.7 19.6 2.6-37-8.9-74.3-16.3-111.3-25.2-8-1.9-16.2-3.2-24.1-5.7l.1-.9c32.6 4.6 65 12.5 97.8 16v-.8c-18.1-3.5-36.1-8.1-54.2-11.4-27.1-4.9-54.3-9-81.5-13.2-17.7-2.7-35.7-6.1-53.6-7.6l-.6 1.3c1.2 1.5 2.9 2.2 4.5 3.1.2.3.2.8-.1 1.1-2.3-.2-12.5.4-12.5-2 3.8-3.6 4.7-5.5 10.2-5 8.6.8 17.2 2.1 25.7 3.2 49.1 6.4 98.6 13 147.3 21.5 51.5 8.9 78.7 13 120.9 21.2-14.3-5.2-79.1-23.5-112.2-29.2-1.6 0-3.6.2-4.3-1.6zm-12.1 58.2c2.6.2 3.9.1 7.3.9 5.5 1.1 11 1.5 16.6 3.2 1 .5 1.7 1.4 2 M 2.5-.3.6-1.1.7-1.6.7l-21.9-5.6zm-120.8-9.1 6.1-14.4c.2-1 1.2-2 2.3-1.9 1.3.4 3 .7 3.5 2.3l-5.2 11.2c-3.6 4.8-1 11.3.2 16.1-.1.7-.8 1-1.3 1.1-3.6-3.7-6.9-8.8-5.6-14.4zm-46.1-10c-1.4 1-3.8.4-5.5.2-2.1-1.1-2.5-3.6-2.8-5.9 0-.6.1-1.2.7-1.6 2.4 0 4.9.6 6.4 2.6.8 1.4 2.1 3 1.2 4.7zm73.7-58.7 3 1.4s-44.4-6.3-65.9-9.5c-.9-.1-3.7-.4-3.2-2 .6-.4 1.3-.5 1.9-.4zm11.4-20-.4.5c-11.4-2.3-22.8-4.9-34.1-8-.9-.2-2.8-.4-2.6-1.7 4-.8 22.7 4.1 27.3 5.8 2.1.7 3.3.2 5.4 0 1.6 1 3.2 1.9 4.4 3.4zm-388.2 88c-.6 1.3-.5 2.8.1 4.1 1.1 1.9 2.9 M 3.2 5 3.4 2 .2 2.3-2.3 4-2.7 3.4 2.5 3.1 6.8 6.5 9.1 1.8.3 4.2-.8 6.3-1.2 1.3-.7 2.7-2 2.7-3.5-.7-2.7-2.3-5.1-2.8-7.9-1.5-4.4-6.7-1.5-10-1.5-3.6.9-6.7-.5-9.8-1.3-.9.2-1.5 1-2 1.5zm152.5-2.6.8-.9c-.7-1.7-3.7-2.3-5.3-3.4-5.1-3.6-8-9.1-12.1-13.6-1.5-1.7-3.6-2.9-4.9-4.5-.9-1-6.7-13.4-7.6-15.6l-1.3-.7c-10.4.6-20.9.7-31.4 1-4.5.1-10.4 1.1-14.8.5-.7-.1-.9-.6-.7-1.2 9.8-3.4 28 2 34.8-7.3.9-1.3.8-3.4 2.5-3.9 1.8.9 3.7 1.7 5.7 1.3l.9-1.3c-1.5-6.5-3.2-13.5-7.5-18.8-6.7-8.6-23.1-26.6-32.5-31.3-4.2-2.1-9.3-9.5-11-6.9 0 .9-.4 1.M 7-1 2.4-4.1.8-4-7-9.4-10.3-5.5-3.4-12.7-5.1-19.1-3.8-7.8 1.7-15.8 5.9-22.9 9.5-15.6 7.9-31.2 15.9-46.8 23.7-7.4 3.7-14.8 7.8-22.4 11.1-1.8.8-4.3 1.1-5.1 3.2-1.1 2.8 1.3 6.9 3.6 8.5 4.8 3.2 12.3-.7 16.9-2.6l.8.4c-3.4 4.3-7.3 4.4-12.2 5.5-3.9.8-7.7 2.8-11.5 3.9-5.2 1.5-10.4 3.1-15.6 4.9-2.2.7-5.8 1.2-5.2 4.4-.7 1.8-2.7 1.5-4.2 1.8-33.1 5.7-97.8 24-112.2 29.2 42.2-8.2 69.5-12.2 120.9-21.2 48.8-8.5 98.2-15.1 147.3-21.5 8.5-1.1 17.1-2.4 25.7-3.2 5.5-.5 6.4 1.4 10.2 5 0 2.4-10.2 1.8-12.4 2-.4-.3-.4-.8-.1-1.1 1.6-.9 3.3-1M .6 4.5-3.1l-.6-1.3c-17.9 1.5-35.9 4.9-53.6 7.6-27.2 4.2-54.4 8.3-81.5 13.2-18.1 3.3-36.1 7.9-54.2 11.4v.8c32.8-3.5 65.1-11.4 97.8-16l.1.9c-7.9 2.4-16.1 3.8-24.1 5.7-37 8.8-74.4 16.3-111.3 25.2 6.5-.9 13.1-1.7 19.6-2.6 2.5 1.5-.6 4.2.7 7.4 2.3 5.4 6.5.3 7 3.1.2 1.1-1.3 4.5-2.4 5.2-14.9 1.8-29.5 6.1-44.4 7.9l-.2 1.3 9.3.2s.9 1 .9 1c-.1 2-3.4 1.4-4.8 1.6-5.3 1-6.6 1.4-11.8 2.4-11.6 2.2-7.8 11.5-16 13.7-.8.2-1.3 1-2 2-2 3.4-5.9 8.4-3.6 10.3.8.9 6.9 2.9 8.3 3.4 7 2 9.8-10.6 14.1-13.1 3.6-2.1 8 2.5 12.6-.1 6.8-2.6 10.5-8M .9 13.8-9.4 2.4-.4 6.8 3.4 6.8 3.3.8.7 1.9.9 3.1 1 8.3.7 17.1 1 25.4-.2 13.5-1.9 36.4-8.6 46.4-18.1-1.3-3.9-12.7-.4-15.5 0 2.5-5.5-.9-7.9 1.9-9.3l11.7-1.1c3.5-.3 7-1.3 10.5-1.7 3.6-.4 7.3-.1 10.7-.7 2.2-.3 5.6-1 6.7-3.1-.3-1.7-1.5-3.9-.3-5.5 1.5-2 5.5-2.5 7.7-3.3 3.1-1.2 5.5-3.4 8.7-4.3 3.6 1.1.4 6.6 4.6 7.8 3.9 1.1 13.2-3.9 15.7-.8 0 1.7-1.1 4.2.4 5.5 2.5 2 5.6 2.4 8.2 5.1 3.3 3.4 7.8 9.8 6.4 14.8-1.5 5.2-13.6 11.1-18.2 8.1-3-1.9-2.7-6.3-7-4.9-4.9 1.5-10 1.9-15 3.3-4.1 1.1-9.9 2-13.6 3.8-.6.3-1.5 1.3-.9 1.9 2 2.1 M 20.4-.1 24-.5 1.7-.2 3.2-.3 4.4 1.1 2.3 2.6-2.8 3.4-1.3 5.8 2.1 3.3 7.5 4.5 11 3.6 6.4-1.5 13.1-4.3 19.2-7 1.9-.8 4-2.2 6-2.8 4.8-1.5 9.9 1 13.2-4.4 3-4.9 6.9-10.3 7-16.3 0-4.8-3-7.8-4.7-12-.6-1.5-3.7-9.2-3.6-10.3 0-.8 3.2-8.2 4-8.3l20.8-2.6c.4-.1 1.6.8 1.7 1.2.9 4.2-5.5 9.2-7.8 12.1-.8 1.1-2.6 4-2.1 5.4.8 2.4 4.2-1.2 4.6 1.5.3 1.9-4 4.9-3.6 8.5.4 2.9.6 7.3 3.6 8.7 5 2.4 5.4-1.7 7.7-1.8.9 0 2.3.5 3.3.6 3.1 0 6.1-1 9-1.8 5.9-1.6 23.7-10 28.5-9.4 5.6.8 8.7 10.5 25.8 11l.9-1.4c-5.8-5.7-10.1-1.9-16.1-14.2-1.8-3.6-4.2-6M .8-7-9.6-.1-.5.1-1.1.7-1.3 10.3 3.7 11.9 19.9 27.3 18.7zm-222.1 12.4-2.4 1.6-21.9 5.6c-.5 0-1.3-.1-1.6-.7.3-1.1 1-2 2-2.5 5.6-1.6 11.1-2 16.6-3.2 3.3-.7 4.7-.7 7.3-.8zm120.7-9.1c1.3 5.6-1.9 10.7-5.5 14.3-.6-.1-1.2-.4-1.4-1.1 1.3-4.8 3.9-11.3.2-16.1l-5.1-11.2c.4-1.6 2.1-1.8 3.5-2.3 1-.1 2 .9 2.3 1.9zm-1.8-98c.2 1.3-1.7 1.5-2.6 1.7-11.2 3.1-22.6 5.8-34.1 8l-.4-.5c1.1-1.5 2.8-2.5 4.4-3.5 2.1.2 3.3.7 5.4 0 4.6-1.4 23.2-6.4 27.3-5.7zm37.2 21.2c-21.4 3.2-65.9 9.5-65.9 9.5l3-1.5 64.2-10.5c.7-.1 1.4 0 1.9.4.4 1.7-2.3 2-3.2M 2.1zm19 61c-.2 2.4-.7 4.8-2.7 6-1.7.2-4.2.8-5.5-.2-.8-1.6.4-3.3 1.1-4.8 1.6-2 4.1-2.5 6.5-2.5.5.3.6 1 .6 1.5zm-190-72.7c2.6-10.7-15.3-12.8-22-14.2-1.4-.3-9.8-1.9-8.6-4.2.1-.3 3.3-3.1 4-4.2l-.8-.9c-2.5-.2-21.2 4.3-24.3 5.4-.8.3-1.3 1.1-1.6 1.8 1.9 3-1 5.9-.3 8.9.4 2.1 8.4 1.5 4.6 5.5l-6 .8c-2.7-1.2.8-3.9-2.4-4.6-2.5 1-6.5 1.7-7.8 4.4-1.1 2.3-1.1 6.3.4 8.5 2.6 3.9 7.7 5.2 12.2 4.4 7-1.3 14.3-2.5 21.1-4.4 2.5-3.5 7.6-2.4 11.2-3.7 3.1 1.2-7.8 9.8-9.1 11.5-1.4 1.9-3.7 7.3-4.1 9.6-.8 4.9 2.1 10.8 6.5 13 3.9 1.9 7.4.9 11M .2-.6 3.2-1.3 13-3.9 13.9-7.4-.9-2.6-17.4.4-20.6-1.8-1.6-1.1.7-3.6 1.2-4.8 2.3-5.3 20.1-18 21.3-23zm-82.5 102.1c-.5-1.8-11.6.2-12.2 2.4-.9 3.1 8.3 7.3 12.2-2.4zm-24.8 19.4c.2.4 1.5 1 2.1 1.3 2.3 1.3 4.6 3.6 6.1 1.5.8-1 5.1-8.6 6-11.4.3-1.2-.4-2.8-3.2-2.9h-.6c-6.9.8-9.1 6.9-10.4 11.5zm771.4-17c-.6-2.2-11.7-4.1-12.3-2.4 4 9.7 13.2 5.5 12.3 2.4zm-1.7 8.5c.8 2.8 5.1 10.4 6 11.4 1.6 2.1 3.8-.2 6.2-1.5.6-.3 1.9-1 2.1-1.3-1.3-4.6-3.5-10.7-10.5-11.4h-.6c-2.7 0-3.5 1.6-3.2 2.8zm0 0" fill="#bd1041"/><path d="m553.1 409.4v-72M .6h-13.5v72.6c0 25.8-2.9 31.9-8.9 42.3-45.5 68.6-122.5 106.1-209.7 106.1-87.3 0-164.2-37.5-209.7-106.1-6-10.4-8.9-16.5-8.9-42.3v-72.7h-13.5v72.7c0 27.4 3.3 36 10.7 49.1l.5.8c49.8 74.9 132.3 112.1 220.9 112.1s171.2-37.2 220.9-112.1l.5-.8c7.4-13.1 10.7-21.7 10.7-49.1zm-333.3-204.6c5-11.3 10.8-22.3 17.1-33-9.8 9.7-17.9 21.1-24 33.5 1.3 1.1 2.6 2.3 3.9 3.5 1-1.4 2-2.7 3-4zm207.9 285.4 22.3-14.1-5-8.1-14 8.8-20-63.5-4.8-7.8-22.4 14.1 5.1 8.1 14-8.8 20 63.5zm-11-273.5c-11.7-8.2-29.2-16.9-29.2-16.9-12.4 17.6-22.7 39.3-22.M 7 39.3 6.1 12.9 15.2 27.4 20.3 36.4 6.8-10 9.6-19.4 13.7-33 3.1-9.7 7.2-15 17.9-25.8zm-103.3 23s-15-24.1-30.7-42c0 0-33 14.9-45.2 21.3l-.5 9c.2.6 4.5 6.9 6.4 13.8l3.7 11.9.8 2.5c.9 2.4 2 5.5 3.4 8.7 1.3 2.8 2.7 5.8 4.3 8.5 1.3 2.2 2.8 4.1 4.8 5.8l.1.1c1.7 1.4 3.6 2.4 5.7 3.1 5.7 1.6 12.2 3.3 19.2 5-.1 0 20.8-33.5 28-47.7zm7.6-102.5c-13.6 0-26.6 2.3-38.7 6.4l22.8 18.2s27.9-2.7 53 .6c2.7-4.5 4.8-9.2 6.3-14.2 26.5 12.6 47.5 35.1 58.4 62.6 2.1-2 4.1-4 6.2-5.7-19.5-40.2-60.5-67.9-108-67.9zm155.1 319.2 6.7-6.7-57.8-58.8-M .4-.3-6.7 6.7 57.8 58.7zm4.8-64.2 22.9 14.6-4 6.3-53.8-34.3 4-6.3 7.2 4.6 5.1-8.1-4.7-3c-2.1-1.4-4.5-2.1-7-2.1-4.6 0-8.8 2.3-11.1 6.2-3.9 6.2-2.1 14.4 4.1 18.3l48.7 31c2.1 1.3 4.5 2 7 2 4.6 0 8.8-2.3 11.2-6.2 3.9-6.2 2-14.4-4.1-18.3l-28.4-18-7 11.1 8 5.1zm-97 115.8-10.7-35.3 7.5-2.3c2.3-.7 4.2-2.3 5.3-4.4s1.3-4.6.6-6.9l-8.2-27.1c-1.4-4.8-6.4-7.5-11.2-6l-16.7 5.1 24 79.1.1.5zm-13.4-44.4-7.9-26.1 7.1-2.2 7.9 26.1zm-24.9 52.1-7.2-83-9.4.9 7.1 82.9zm-35.7-8.1-16.8-2 3.2-27.1 12.7 1.5 1.1-9.5-12.6-1.5 3.2-27.1 16.8 2 1.M 1-9.5-17.3-2.1c-4.9-.6-9.4 2.9-9.9 7.9l-7.6 64.7c-.6 4.9 2.9 9.5 7.8 10.1l17.3 2.1zm11.1-128.2c46 0 85.9-26 106.1-64.3h-.1c-2.4-.7-5.9-2.1-10-3.7-.2 0-.4-.1-.6-.2-10.5 19-26 34.7-44.8 45.4l-9.6-27.2-52.1 1.5-20.4 28.8s8.6 6.4 23.8 11.9c-24.2-.2-47.7-8.1-67.3-22.5.7-.5 1.2-1.1 1.7-1.6 0 0-14.1-20.5-22.7-36l-.2.1c-4.1 1.6-7.6 3-10 3.7h-.1c20.4 38.1 60.3 64.1 106.3 64.1zm-55.8 121-16-5.5 23.8-69.7-8.9-3.1-27 78.7 24.9 8.7zm-56.4-62c.4 0 .8.1 1.1.1 2.1 0 3.8-.9 5.5-2.9l16.9-19.7c3.2-3.8 2.8-9.5-.9-12.7l-13.2-11.4-53.9 M 63 13.2 11.5c1.6 1.4 3.7 2.2 5.8 2.2 2.6 0 5.1-1.1 6.8-3.1l16.2-18.9c2.6-3.2 3.4-5.7 2.5-8.1zm-7.4-.5-.2.2-17.9 20.9-6.2-5.3 18.1-21.3zm5.7-7.2-5.6-4.9 17.7-20.7 5.6 4.9zm-40.8-31.3 4.2 6.1-24.5 17.3c-1.9 1.3-3.2 3.6-4 5.2l-.2.3 5.7 8.1.4-.8c.9-1.9 1.8-3.8 3.6-5l22.2-15.7c3.2-2.3 4.6-4.5 4.4-7 .8.3 1.6.6 2.6.6 1.5 0 2.9-.5 4.5-1.6l21.2-15c4.1-2.8 5.1-8.5 2.2-12.5l-9.9-14.4-67.7 47.7 5.4 7.8zm7.3-5.6.3-.2 22.4-15.9 4.7 6.7-.3.1-22.5 15.9zm366-197 13.5 6.3v-131.7h-464.2v131.6l13.5-6.4v-111.7h437.3v111.9zm0 0" fill="# http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:54F75E3AAB2A11ED9DEBB84DA9955EAB" xmpMM:InstanceID="xmp.iid:54F75E39AB2A11ED9DEBB84DA9955EAB" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD GjE=:THOR.RUNE:thor10dwkhs68smvftyxadpcck957ayryqzlukfcp9y:317252567:t:0 {wuc^cQNQCB:012&"$22 lje<>J9;H/++*&*/.$*)!22 pmlheiaWMTSHIG>659]B8..4:8."") XrsbZb`SdIGEBGJJ7906>>*_<&(' yx{Wl]>TsOQN7CG7<kE.g< IjGREFUND:325AA5D27C6C277AA1EB08800BDA339D2346B7B9EEDC4F30C664511903657C86 IjGREFUND:CA2CEB626323DBFA5E92EF1685F506F937702BAE0667A86EE5C0EEB406665440 IjGREFUND:5A9FD97C093ED99B3A1A57478128E824F039FD844DA6AB7C4FD379ACA8C95D57 Qhttp://ns.adobe.com/xap/1.0/ ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:Attrib='http://ns.attribution.com/ads/1.0/'> <rdf:li rdf:parseTypeM <Attrib:Created>2023-02-10</Attrib:Created> <Attrib:ExtId>120944a6-2146-4dc3-b03c-a3386305f77f</Attrib:ExtId> <Attrib:FbId>525265914179580</Attrib:FbId> <Attrib:TouchType>2</Attrib:TouchType> <rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'> <rdf:li xml:lang='x-default'>"Bitcoin is a mirage The idea that it has some huge intrinsic value is just a joke inM my view." - 51</rdf:li> <rdf:Description rdf:about='' xmlns:pdf='http://ns.adobe.com/pdf/1.3/'> <pdf:Author>raska696969</pdf:Author> <rdf:Description rdf:about='' xmlns:xmp='http://ns.adobe.com/xap/1.0/'> <xmp:CreatorTool>Canva</xmp:CreatorTool> M M M M (((((((((((((((((((((((((((((((((((((((((((((((((( %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:0M E7B1161ACF911ED8AC0BDFF0529759C" xmpMM:DocumentID="xmp.did:0E7B1162ACF911ED8AC0BDFF0529759C"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:0E7B115FACF911ED8AC0BDFF0529759C" stRef:documentID="xmp.did:0E7B1160ACF911ED8AC0BDFF0529759C"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:2M F5250FFACF911ED84DAB34691D498A9" xmpMM:DocumentID="xmp.did:2F525100ACF911ED84DAB34691D498A9"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:2F5250FDACF911ED84DAB34691D498A9" stRef:documentID="xmp.did:2F5250FEACF911ED84DAB34691D498A9"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L EjC=:BNB.BNB:bnb18uk2ng3qmlyvws9gzlgtsct8r4g8u2w659k0hl:191094846:t:30 Aj?=:BNB.BNB:bnb13njdl8ktw7pen3jcjy7epfa3mzcdjxuu3w4dxh:785063:t:0 TZmRVgAFVBDK7;H<?E=?>-/5132&# uwyBEQ>BOBC9G7/8/)\8 \_emk^MQ]]`WEIRDFGQRCADCNN@:<9.,(M3#50 dgr{xjbejeebWYQ47A=?8A52>319;-00-<1,=, K2 noqTWbMLQE?BE?A@87C3+**)P8(P6&g. Bj@=:ETH.ETH:0x232DD7fD58c24a9e433487B183b1469E727be8dE:20616263::0 @j>=:ETH.ETH:0x71Cf93bE04c92b6C84B3ee20f0047BB31991F4Ac:869553::0 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown M Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisM nft.com/3866</metadata:External_URL> <metadata:Name>The Saudis #3866</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httpsM ://token.thesaudisnft.com/3764</metadata:External_URL> <metadata:Name>The Saudis #3764</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>BM rown Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httM ps://token.thesaudisnft.com/3754</metadata:External_URL> <metadata:Name>The Saudis #3754</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> a:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URLM >https://token.thesaudisnft.com/3842</metadata:External_URL> <metadata:Name>The Saudis #3842</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>Red Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnM ft.com/3768</metadata:External_URL> <metadata:Name>The Saudis #3768</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>PO* iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValM ue>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokeM n.thesaudisnft.com/3643</metadata:External_URL> <metadata:Name>The Saudis #3643</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValuM e>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Miswak</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httM ps://token.thesaudisnft.com/3771</metadata:External_URL> <metadata:Name>The Saudis #3771</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>! iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValM ue>White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>VR</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Rosewood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>M https://token.thesaudisnft.com/3657</metadata:External_URL> <metadata:Name>The Saudis #3657</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>T iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Green Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> ta:External_URL>https://token.thesaudisnft.com/3910</metadata:External_URL> <metadata:Name>The Saudis #3910</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown SM hemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnfM t.com/3912</metadata:External_URL> <metadata:Name>The Saudis #3912</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URM L>https://token.thesaudisnft.com/3868</metadata:External_URL> <metadata:Name>The Saudis #3868</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>B <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0124/4096 2,3,2,3,0 ~0.2651518452912569--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#F652A0" points="0,8 1,1 1,2 0,0 "/> <polyline fill="#F2F652" points="8,0 1,2 4,3 8,8 "/> <polyline fill="#F652A0" points="8,8 6,3 6,3 0,8 "/> <polyline fill="#F2F652" points="0,0 1,7 4,6 8,0 "/> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White M Shemagh & Crown</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaM udisnft.com/3856</metadata:External_URL> <metadata:Name>The Saudis #3856</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>t iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>WhitM e Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Rosewood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httpsM ://token.thesaudisnft.com/3600</metadata:External_URL> <metadata:Name>The Saudis #3600</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Rosewood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> xternal_URL>https://token.thesaudisnft.com/3690</metadata:External_URL> <metadata:Name>The Saudis #3690</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>pt iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> alue>Brown Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Green Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>hM ttps://token.thesaudisnft.com/3778</metadata:External_URL> <metadata:Name>The Saudis #3778</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>7Pr| iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>M White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Rimless Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternM al_URL>https://token.thesaudisnft.com/3810</metadata:External_URL> <metadata:Name>The Saudis #3810</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>~ iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Haram PoM lice Cap</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/M 3675</metadata:External_URL> <metadata:Name>The Saudis #3675</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>M Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesM audisnft.com/3777</metadata:External_URL> <metadata:Name>The Saudis #3777</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red ShM emagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://toM ken.thesaudisnft.com/3700</metadata:External_URL> <metadata:Name>The Saudis #3700</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>B iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Rimless Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>hM ttps://token.thesaudisnft.com/3592</metadata:External_URL> <metadata:Name>The Saudis #3592</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>R iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> etadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigar</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>htM tps://token.thesaudisnft.com/3666</metadata:External_URL> <metadata:Name>The Saudis #3666</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>| c/Foundry USA Pool #dropgold/ s (((((((((((((((((((((((((((((((((((((((((((((((((( FjDOUT:6B28B6A24979A6C97C1881FEEF41B290AABF50F98AD640715E90A692D7215454 FjDOUT:26A3A29A89801502A2B55CA32A7250555D5B899972B1E50713478D5C6E0B27E9 Adobe Illustrator 27.2 (Macintosh) " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlnsM :xmpGImg="http://ns.adobe.com/xap/1.0/g/img/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stMfs="http://ns.adobe.com/xap/1.0/sType/ManifestItem#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmp:CreatorTool="Adobe Illustrator 27.2 (Macintosh)" xmp:ModifyDate="2023-02-15T17:28:15Z" xmp:CreateDate="2023-02-15T11:27:53-06:00" xmp:MetadataDate="2023-02-15T11:27:53-06:00" xmpMM:OriginalDocumM entID="xmp.did:b70a477b-06f4-4e72-abb1-b6757f6a87a0" xmpMM:DocumentID="xmp.did:8fb88aaf-fd96-45b4-8bca-f17af8b20db1" xmpMM:InstanceID="xmp.iid:b70a477b-06f4-4e72-abb1-b6757f6a87a0" dc:format="image/jpeg"> <xmp:Thumbnails> <rdf:Alt> <rdf:li xmpGImg:image="/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMuMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHxM 8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAADIAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZM JjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8Ancsvnh/PPmeCDzRpg0sa
Y36G0blCbuyuzFDwublfRL+kHLN8TMKMu3hqCYCAJHvLlAEmgraRB+Yn17yxLeeYLC6sLS3nTzVH
EIybq4aNhC0JEC8QrlSaFPkcr8fEQaPu3bDgyAiwfkgr6L8zv0drcMHmnTIdRm1UzaLI/pcbfTOd
fq8oNuaycNqlWP8AlY/mMFiyOW+/X5pGmzEbRPyKeaqnnA+Z5buy1i0t/LX6KeGOzk4eoupl2KXB
YxN+7CFRTn/scAzYhHc739iPBmTsCkaW35qSweUUi80aa89jMzecmURMLyEzRlVgpb/CfSDrt6e5
69xIajCb3M 92/7Vlp8oqwR8F2rw/mabHzLDZeaNMttQubuKTy08vpUtbQMDJHMDbtVmTpUP8APANR
hBFn37/tSNNlI2ifknGoXHmF/NcFzZa7YxeW1sZY7ixdozM18SfTlDemx4KKVHP/AGOQGoxVzF+9
l+VzX9MvkUmVfzI/whoVqfNOlnzRb36ya9f1i9G4sfUlLRRL6FA/BoxURr0PxeMvzODiO4r3/tR+
VzV9MvkVXUo/zHuIvNMeleZtNjubyS2PlMt6TfVI0YG5WYeg/IutaVD/AEYY6jDtuPPf9qJabKAf
SfkjbYedYNX8tvqGv2B0+20/0/Mlv+7V7q+9Lj60NYlKp6u+zJ/q9sEs+KjuL6brHT5TyiT8Emsr
D84rfycbfUvNWmN5mOpJKuohY1g/R4RA8FPqyLzLBzX0+/2snLPhu+nv/axjgynYAk+5OLl/OMUv
m67bzBYRabd2yL5SZzGFsrgQMjvcOYqMpnKtuZNu3bIM jNjNV8UnDkBIo/JA6Nfeb/r3lEXvmzSbq
GOC4/wASQwyQl76R0K2z23GJTxSQivEp9OSOTGeKv7EHDkFWD8lK7t/zTk0/zBb2fmjTE1S41My+
XnIiIt9PEhJglX6u1ZPT2qVb/WwDUYbG/v36/NJ0+Wro/JM2HnaLzrq9zL5gsE8rT2Jj0bTW9NZ4
b0rEBNITFyKclk/3Y3UbeETnwiIFji96Rp8p3ETXuUNPtvzJt08qNqnmGwcWZuv8WsBGou+f+8vo
fuE48P2qcPpwyz4d/s3YxwZDyBPwQ+qD8xpLLzOmneadMgu7u4gfytI5iK2turgzpNWB+RZKgVD/
ADGAanBtZHnv+1mdLm/my+RTK6m81N5ytLu28waenlVNPMV3p7NEZnv6yUmVvTJ4bpt6g6fZ8QNR
h4eYv3p/K5r+mXyKTW0f5oLpvlaO482aU9/aXjSea5h6PG7tDOGWOAfVxxYQ1XYJv375I6nBZ3Hl&M #xA;v+1H5XN/Nl8ij9StfzLmh81PpvmGwiF4bVvKTssZW0VP96vXPoPy5j7Nef0YjPh2+1gcOSyKKIsT
5zOq+WGm1+wmsbWxaPzPbxmMvd3vogCWGkQKoJatQFNu3bI/mMJuiL6bsjpso3MT8kpu7L83E8l6
fajzTpkPmpL8yX+ousQglsf3n7lFNtTnun+6x0+14z/MYRLfl7/2sRgykbA37k3dPO82oebJLTXb
E2N3aJH5TiHps1ndC3KtJORCeSmejbl9u3bIjPiIG/v3TLBkHMEfBD6TB+Ysd35Ui1HzDYTm1S5X
zXCgjD3jup+rGACBCvA7tTh9OE58RJA59N18DIBZBr3J9+S83mWW01I+YNdsfMF0Ludbe601o2ji
gCxcIJPSjhHqIeRNQTuN8zsFcewr0uNO6SFNH1BvzB8w3b+V7azs7nT/AEofNazRtcXTenAPReEN
6iqvEipH7A8cwNRvhIvv2crTnhyg11M CAttWh0Zppr+UW9nErNdO/RQgO+3eu1B17Zz2AS4+EdXp9
VGMocTB/NH5oS3moyJo9i6pbs0bTSwPLJIFfhzMJe2CLyB6yF/5lXNqOz4y3kd/L8FwceplAUOSZ
eWPzaijMen+YYDDGyyEXiIy+nHGFJ9e3rKyLRx8Su232uIBOMtFQ9JtrlkJPEymJ/qOpo6sPQLAq
4PINC/RgR1+HNR9EnaGsuPz/AEph5it1aKO5X7QIQkdOJqRlmePVx9FPcxYfe+YdKtLhrVphLeKK
/VYqNIdiQKbAEgbAn9YyuGCUhdbd7nSyAGuqXP5unQjlpcwHq+k6Fl9VR15sgr8Hi1aDLRph/ODD
xj3JppPnLRYLyCW7kaz/AHhicTrshIIPNk5otOvxN+sYw08hLbdrz5BKBDJ/MJik+qzxMHSVCVdS
CpXYggjqDyyOoFFr0J2IV/MV3FHoLXUlSAEcKu7MTSiqO5NcslHii0ac8OT5sVtpM Ly4shdXsMlrN
6c62r8y6qkKtJNCoQqCXdVDKw+NVJViAvG+IAx0N0ZCfGs94W6Kl7c2l3JcBo4Y1+s3yq3pj60kf
A2tVIZo2jY9PY1NaYMFDl8Pd3stWeSr5VvVtdcFl6Dpp45DT23YpGxIhVlPxqpQHr9nieVBTIcAl
IyvfqzyyIxAHyTvUozPrZi7MyL9BUVzFyC5034JcOK/epedvMGl6YsMV9dJACDJxY1Y9gVUVY9+g
y/JjlM1EW0aQiNyLFLrzbbJLFHbW0tx6x+CUlIoqAfES0hU/D0O3XbIR0xI3NOYcw6BStPOdvJxF
5aS2ZYmnMoSFWgLMhKydT2U+PTfDLSkcjaBnHUUyLRpbfVJIjbN6sTNSSlVZeJ+IMGoVYeBFcp8M
iVFOTKBAkMi167SK1+rL9uSmw7ID/ZTLs0qFODpMZMuLuSW58waV5X0177UnpPcRySWlvvykWFQx
+KhCAllHJtqlR1IGWM aTTylyXWZgTQ6MSvvMX5j6lcJdRaKI7ecEQxvF8ahRX4FmuLaWfbfaJPu3z
LlpcB5yN/jyP3tOPUzgKACf+V/zEtJEl0vUbZtN1SDikcUiSqskjq7KreoiGNyErxY9xxZshl03B
G47hiJHJP1dSn3l5J7rXI52NeLc5G+igGYelBlkBc3XEQwmLIfyY06+sbTUo7zy3b+WJJLyeRLO2
mjnWdCsQFyzRlgGenEqd/hzrcBufO/S8jPkxeyv9KH5r+ZIBruqTX0OnK9xoc3qfoy3T07Y+rAD8
HqEEE0/mbMLPthuhXf1cjCLyADvYt+d13d2+mW8dg4hllV7qabYVS0eNQtSGoeVwsgbrVBTxzB0W
OPEZH3O3lM1w9GOeb/KcOgeTfLcNo6C51y9toLvUUtZJruISqGjNqsb8xxRCrItTLXt0zLxZOKcr
6D8X+NmkrrzTo9X8j6rrRs49I1Py/dvaSpFC9i1zDH6ckUskDOHM hmYyhviY13r2KgHhmBdgj3qCy
ryPc3mq+RrWecIZ9Od7ZjCoVDEKPGEC7BY0cLQbbZq+0MVSsOfostHhPVNNb8wG38ui2jIe8l5oR
u0iQopdpkQK3LgAAK7Amp2FMjpYCYo9F1IMMlhgOnWQmZrejwCdGnUlZQDMy8x6j85Vahnj3b+Qb
Yckq37tun7O4/NyYC0TF9UijhMUzKsTuA6rVVhQ8ZFiKGNXLupYvHRyK7ZA2bsf2/jv2ZClqxXgZ
4YvQChCkhPpGCOOElvTVRxV6VNW26/Eq7HDY57/p/H43WjyRupWs2lWFvPaanJaiNi7ROIja8JFV
6FBx+NhStWqD1PxKXyMhEwLF/f8Aj8e7C05MZEXTcHnC41OBZr3TngAWNLNJHM0XwSmFGQcQokaV
/iYfEFXYUJOM8HDjoH8f2LCX766T2wlmGjPbm79YXHNrOSY1VY7IGWSQnp8cjBeteJruBlMa4Dt+
CnL/M AHo+Cnod601u80yf3Q/TIUkfB6AEZgkWlK8CaHs4r2yWGNAgf1f2/jourNke5QtNRtYVu7y/
dLiC6KrFBcKOHC4rLbuVPZJAUPz9gMGnhZ26fgstWaADHLTzpq17ctaWcjafyd/q+o3ciyyspcKY
VM3pjmgkADO3QfTmQNNHj4jv5fpYSykYhFUuoWeZ5JpXnuIwkbSuzrclSxjBkDvclgCzjqV7AMf3
Yqyz9VDl9nf5fju5tunhUb/H4/G/JcltbBViEfqxswYfaUTwItCVWh/fL12q7DoVU0WgyPP8A/q+
z3uRQ/H45uaWW2imll/eS8ik37tWRjEgeRiilYld4GYMWYnantjQJAH4/TzW6/H46KujalJoOrDU
I5o/0eFDXQVo5JJIfUEHEKgiqwk+P9o9adWrl48fFHcb/guDqJb0GcxSrrWoJIjVt5AGR0+IemBU
EEbfF4++asgylRc3bFj2YB5mu7fU/wAxLiDUblM raw0ae0trKIvwjRx6U3rAGqVBcliyEcVFembzH
HhxDhHMF1JNmyjLKLzbLZXtw+s2X6RgLDy/6l5FdyKJGCzcZwIUPLiFT1YXKn7srkYAgcJrrtX4+
BTuxzXw7yaZJ+kV/xHMsCNeG8jvUWNZZGCEpHCkrK4Em4+A9G+zmRi6ivR3VTEvcvK08D6fpt0EE
P12OOYIevKZOfGvfjWma7FAQnXmy1M5TiT5Kn5D3WnXOn6q9hrOpa3Gt/cJJcatzMsThYawxc9/S
WoK02qTnSYQePcAel0UuSFn1DzdN5n13Trg6Y3lyOxLWCQO51P1jHFX10LFAlWelF/lzW6gDwTV3
RczSmssb5WGFecdCXzN5fSyKSTX9nIGtI4yo9RGIDo/LYqgHqFa1bjQZqtBqeCVF32swV6g85udb
a88v2eneZJL+zHl9vW069tXKzh1YMziNmT1DD/dqTwaOh7kqu5Ealca9TrqRc2oRaxaR+XNBM tp5d
NvLpLu7lmmluLm6upIgSZJGYBn9Li3pqaLx5M1OTRxrh9Uuf3fj8eZAeoeQ7Sw0byqNMlX6rDBC0
9z6sgkZTIC8/KUABhGTQH+UDNRkzeNM/Y5k8JxiMurCtQQ3PmO8u5Ktp6wvb2yXFvI3GqTIjGIlK
M0nQlaio6ZbhIxgR6/2M8t5I8SD1C8stJnt1j4LdSxwlYYY5bOSqLbqeQcMrCsbbv8OxyeXEZG+n
z7/xsjT5aFdUDYa00lw66jbC3glWEyyDlICqr64klQBVPxyKSykGm3vkJ4qHpNnf9TdHJvuEPL+b
Pk6wtS7XctzfNxknjhT4zOCFduTIsdQmy77r8LDLI9mZpnlUf0ff+1on2nhgOdny/FMU1v8AOa/1
YKp0pI9OtmpYyFmBQKQqvIE48zCG/dhSOHKm4ObSHZ4jGuL1dfx5uoPaB4jIR2SWb809cNq1usdi
1vM5la29KYKjAcFALSVK8aMAxM pt0y6OghVer7GuXaE+K/T9qKtfzd87NorwvqltHBasY47aSAPLI
txG6sFejPxQJx+0Ptb1yJ0GKJoRO/n7kfnckvUSNv2oO2/OXz/bx38Ud+np39DIDDH8DBg3KP4dq
03BqDU7ZYOzsIAFcmueuyyNkqNv+a/myN45Jmt7uWCJYbZ54q+kE6MqoUXl7sDhHZ+IXVi2Uu0Ms
qujSe6N+aWlTWNxFr1mXu2U0uY+TV5OvJUDFymw5D9j7Xw7rTGPZ5jK4HZyf5SEo1Ibso0T8xdNv
YQ/1lnubYu0LEkSBSOAiYcV+LipIYAoNtjJmtz6GcTy5/j8dfg7TT6yEhseX4/HT4pu/m/SbPmLa
UyhXCJFCssbMJPilUNJ9g+qeTftttuO2ONNKXP8AR8Ps+Dk+NEclBvMdxqCi3msRFFbxuFkV/Uj+
C3kDNHboFqo+0W34DJx0/Cdjuf1jr+LYyzWNxyZd5gVpIvTtbiSSG6tmiCcM UAIN5z4MrpzU8TuDQ
jpiZcAA/HJx8UPEkT+Oaffl+YtM0qS3uDTiqzW23/Hu8cb8difsvL7bEDtlOQV6ymZM5CAYp5zsZ
odRuPMsNq11FMUGoQleUSkcYkYhCG+JAPtfu6J8XUDMjRZvEjwnYjkx1OHwyK6sct7/yHKLSXVYt
Yg1C39WEyTXU7XOnfVF5wraAK3ISt8Aq2x+/MwxyC64a92xvvcbZEWOnzeafTs4Yb63053iu7+Zp
SLt42YH1Z5JOYJi5uytT95uir8FUEpDEDI1f2JA4jQev6VcevrllHAvG1tyFhjHRUVaVzT4ZmeUH
zc7PiGPBLvLKvyr1DzPfRX0nmJtNa6jnljtjpLvJF9XAjKeoXZyJeRbkPCmdVpwBPa+Ty07phNgb
Vfzd8yP/AIRmsZRpymTzk7zehdr6dt+4VWQQgr0+Fyf3Z96Ymf8Auefw+bdhF5BsiNX09rWQXdtV
I6/Fx24N4inQM HObywo2HqNNm4xwyUIdM8p6zZ3UjWtp9ZkNb6VFRWaUAgPKycS3+yOZWPNOuZtxM
2IQl3xQ3l9NGt9SV47e1Msam3W7RYy8aircBKAW4mvSuVePkupkuRk08DDigo63Ylb+O6ulWTTZp
DW0NGVqvwXl1DLKH5e23vgl6DY5pwy8SHCejC/MGo2XoLa6LFGkrwq91PEBGFMSJMqpw+3J6khjp
2bY+GZ8sd1I/i9nHwzMSY/jZLLy3gOnLerc+ozcvrUUyeq9CXuFnfkwMkRaikSMegPxUplwPEPd/
YwHol5PNNU8wCUz2lpM9taqFlE1ux5sIowFNFIp0elN+rE0+1m4sFUSLPn+Pd9zhajVXcYmh3hhe
oXcV3fXNyltHbROSYbaKipGtaKo6F+I79T1ObPHAxiBdupnISkTVKDRXNCrI9I0DkEH4UehDeyty
FD75KwxorGjdUVypCPXi3Y064bRSK0/TpLy6ktgSkiRTy0M 41/uImlIPSmyHftkMmThF+Y+00zx4+
I15H7BaMttD1K2l+uz6ebrTrWYpcNUrDJ6ZpJGJR4juN++VyzxkOESqRHx+TZHDIHiIuIPw+appX
kzzFqd16FtaMVDRq89KxI0yh4g0gqo5gilT33pkcusxwFk/r2Tj0mSZoD8FG3P5eazBcRWpeNbue
4mt47WXlFJxgVnaZgwoE4LyrWlCDlcdfAgnoADfv6NktDMGupJFe7ql+mWtl608hvjbvyeKz9MMJ
+QZTy4VUAMhZRV+uW5ZyobX3934+DXiiLJuu7v8Ax8U20W6vbO8gl1K8aGwufUtz9YZpXVWTmD6Z
K7CSg5Do1cx80YyiREeob7fjucrT5ZRkDI+k7bvUo4ry3ule5ZbgSXEsVrcxDaXk8okCOoCoVZ+X
EljvvUEDNXhAIsbUP0B2+eRG3P8AtTOHVLsak+tWcMJhQ/W57aP4bVwCYeCoqkJISGPI9ab1rtWc
M ;YmeE/t708Xhx25lk1rq1pctay2snCJmEMwYqCoiSWMKzAlaH0EaoJB28MxtTf0/jo2aWIHrLJ7/U
7Sw02e0W2SccCl4JqgMHBDH0+Ds6ddyoUjvlYjwRHeWAvLO/4R9yRabpdhLFb3jaC0umwKVtvqjo
OPE1rHFC6qVrX6cuwzydZfP9ZRqRAGojdMlutEmd4NCght1nb1J1t41haZyePKRAqNsykfFmLqJy
kaNuTpsQgOI8/uZVoVhFZSRcyvryGjMfEivFfuy/SwEZDvcHW5jkia5BZ+QggGnat6PlWbykv6Qu
OVjO0ztcNxh/0tTOkTcZPs7Cnw9c6fD9fO/S89Ll8UjXUrS4/MnzNpcXma5vL6LTeT+VGgdbe1Bj
t6TJORwZm5g0B/bPhmv1MT4B279/m5elkBmjv1CTabr155lkNlGTLo7p6ZcKOTt9v4zziPHhxK8W
rueY7ZqYVAVL6ne58f8AHDk1d6NfaFdxvM bvcvbsf5yR6akVWkcscnT/Wysy4T0/HwbYVlhXUKvmW
QXmljW7UAXVuqwSFWqIUZqBpiypOvEvyIKstBuO+WcAl+PwGnFM45cJYpeeZbzV7WTTLJwLC3kt7
RrgA8jFFyaORZA3phVrV35q3Gmy7nMnHjBj6vqa5ngnY5Keh6hoWk2F3ayTVuwn1i2jdolUyWpdf
ScoSSJGj23PX5YgSmaI2/WnKAKlEsM81vG1rcNLKptw0cZ4shVDdMAjL6fxKoU/Fsem2ZGmuJrr+
pr1cgYcX43Yp5st/0VdR6bplqEu9ZtoPUl6n0xxAiCVcKXeIOaHowFO2ZellxjimdoE/2/bTrtTH
gPDEbzA/s+y1Bfyi82XEE11Y2zPFGxWO3uAYbhmWX0mWhBjqp+KvqU49D2yf8q4gQJH5bjlfv+xj
/JeUgmI+ex517vtZdpf5YR2N0mreZZLO0hkkjkt7OeRpmWBUC/VWVlAZljbgaEnkFIOM x5YGXtEyH
Bj4j58t+/wCf6fhnY+zhE8eThHlz27vl+O+PXnlDSdC/R1j5s1Kab60nKzsdKhUyJE5D83+sJHIj
PIxA/dkkLxPSgy4aqeXiliiBXMyP6tuXn1cWeljj4Y5ZE3yER+vf7OjtM178sNJgvorey1C7huCY
JZJZwrvESwqEia2YAr13Nd1agNccmDU5CCTEEb8v7fxuuPNpoAgCRvbn/Z+NkBLqf1aSOz/w3YRz
wwpLcTwlbqiPxCvMzNOqp6hVm5ENvTkAd7BjscXiSq9uny5fq8mo5K24I3Xv+fP9fmif+Vh+ef0u
dKl1VbC2+sG1VxbWsaxem3prUojUEe3RzTx75H8jg4OIR4jV85fjdn+ezcfCZcIuuQQrfmT+YskN
s/10yxSEwwc7eCYGQAK4UvG5LMG3+dOmTHZ+nBO32kfpYHX6ggb/AGD9SVXGt6VqTXlxqFs1vqFz
KzRT2iqqIj+s7qyckDF5M JFUk/sDL44ZwoRNxHf8AD8e9olmjOzIVI93x/HuQ+ua1qt7MLC8vRcWt
nIY4GSMRxgIBEGVFVDTggpUVpk8GGERxRFE/2sc2WUjwk2B/Y9D/AC+1TU9U8rTabcMk0ctxJDDK
/FTDNIsTrMxALkOsZic/ynNdrhHHKx3O00BlkG/Qs30LX49KiVL1eDytzSzKwpGl4KxIGHVFiCpI
Qe7bg9ThzxVGx8/Jy+LjlR5LtLFzA9vrlrdKs8S+uZioaOMTgqpkRORKmZmWpj5EfZpRWEIAb8Q/
H9jLNLkAyTStSj1zUltpGEZtmNxdxNwUKgYc2ozKaAru0wMvegzFljkTfT8fjbZv44440Pq/H43T
XV7iCdmWYCGAUo7BXhApQKjXPI/F1qkSD3brkMk+EcMef47v1o0+HiPHJK59I0+1uVvFmi0y7RTc
x6jaSErGsRQS1UwiNy6GnEtxNPnW/EDGO/q8vwWrNkE5VHZPfJvmW+M 1bXbWwvSWu7ZTMXRVEMsak
xmaMqWrvSte52GVxgTkEh9N/L3pzRjDDIH6q+bLfyN1Oz1Cx1SW18xz+Zkjvp4nu7mF4GhZVhJtl
VwpZUrUN/lZ0uEVPlXpeZnyS3Wb7zT+kvMsF1pdmPLcWmyvZXyyK91NL6UZaOWEn7FS4322HjmFP
hELvdycIJmB5saOnMsD3FgxaZ5ZTMIYpbl3rM5VvrLHgf3fH7Xb6M0ueHFv+Pk9Bp83D6SlOt+fL
kRPpRsjqdzEoNzDPGh4qEZ1blGxo3FCfsHtl2HEJx3NNeQeHOwxW/wBRvhrcWn6ufT01ZfU+oiSW
VFCwmQSMqt6qkUA5Lsort1rfhgIDbn3/AI2RlPibqUC6ut3b3VjA0kMk0kv16QlYnkcsUb6yhheV
kEjNyHxL/LtTDk4Y7k/j3Lj9Y4US2h39vHZ6m99ssFpNIsTK7j968PLnI7qDVieVOPLY8TsRkmOY
HeuIfwlM BeYL/AEV5bS8jtY7d7Czur/Trdrj1DPKfSX6vcKy8mklNwwQE8viywxkRQO0iAduXmPdW
7j7RNnnEEjzPKvjaXfl/+R9/5wiXzFrEh02G7EjJbJAYo/hYoqlQ8cjBqciajb9ok7ZObWeH6Ibg
def7PxycKOAS9cuZ6cvx+N30bo+gWeloSjNcXL/3l1NxMh6fCOIVVXb7KgDv13zUgAbAU5k8kpG5
G0RqFnpc8Rk1CGGSKBWb1J1UhF2Zm5N9n7INfbCO5jdbvkL86fOOga95vt4dDtEi0XSkFvGnExRz
Py+NwimPghAVR0NBXvm/0WnMIEn6pOt1ObikB0i8/EcgaKS6jkFoS3pgV4kAmqozV77V3pmZY3A5
uNXInkr6UzwySXKMbZkDejdMOUasEZhGRwervxovSnXI5Re3Py/BZ49t+Xn+Avvbu8vfq9xqLNNI
iRpEAF4i3RmUluG9S/juSa98EIiNiO3P5pnIyoy/AM d+iyEkmtJHY2cSTXTMjoYpGI+AAciKMac2o
K+FRV8XoevLz/Hcjw+o6c/x+lFrcWVssTqs91osN1NLbQuIVdWZOMbSOvqcWcxAtGRQquxPUVmMp
WNhMgXz/AB15+bZxAd5hZ7vx05eSJvdMae3EYmY6fBaR3OnswoHnnWBZgv8AelvjJDKrbMD0O2Qh
lo8vUTR9wuu7+xnPHY5+kCx7zV9/9rfkLXY7HUv0feTCDS9QKpdTGlYyu6ute/bfJ6rBxgSH1RXR
6kwJj/DJ7VqelTamQWmMN3DbvdXt0pMiyyRhvjlC1Rj8MVXBpHWpqOmihkuXL03X4+33u9MOCF9S
s17TpbIpY6Rdx34FbWRFklR1DncInMqeNSvNqFl7bcsl4gkaIrqxxw4RxIeZ/qtuPrcRsrtwPR5A
RyxPCzLJIij0fS/ZTk6u/fqNpn0ihv8Aj8dzEDjlZTvR9b1nRbMXdzEbm1BYNdepFFcdR/eSSrJM 6
rUagKqvzzHjp4k3yPd0/Y2ZcxI4Qqaj5gh8x2dvLZMIlaG4b0ZNQmaQEIUbkGFK1YUHf6crMZcdE
dR/C2QEYRu+fmy3T9M9DzTowuHZbq2d5IXdQHdW9ONv3sZ4unxsArAHLdORDYdf2uJqjLJEy6B6L
+WF15muY71/MNha6fdLNKlvFZyCVHtwI+EjkE0cktUe2bvTAce3c6Kd086vZ/JEX5g+cnt9HvYfN
Mejs+pazKjPYzW4htyI4l9bizBfTqBGv2W38cXMJHDz2cnTEeLH3hKNJ1+O0tJ2vVnJjUzTq8jQe
pIirG5VYSD+ytFZN+Q23zRRJEgB9P4/HN6TNiExf8TCr+0smmu9WuDZRi7drg20srPOiSJIwWiit
Y/hXb2zYyBocN7OJjmOUl+pSLfJW/RIri6gmktLOaRlSFw8bLLL9YqK+mnCiMT8O9KnDCpDbp1/s
RIGB35FNLTWruawuNLZ4rwTolhFHM GqJS3tgQZxLzAbj2Px0oPiWtTUIgmj03+PcymK9QQ7a9OsYi
vUe5jmkiuIwslN7U+oYW2QCvJnT4KMeOz15hx4wLj+N/x/ZyTlN1MJPFo2l63rfl7TzAZb+bVFFo
ySPE9vaWLq9waqea1hTbkxIbjxJ3IyMJlATB+nh38yXG1ZjIRI+q9vKn0jHGkcaxoKIgCqPADbMB
gTa7FD51/wCchfzaN0lz5M8vyyAQOya/cKFCuF4j6vG1Sxo7Ul2HSm45ZuNBpqqcvh+PucHU5b9I
+Lwe9u/r8yS3FFk4NznWheVqk85at9t5CeTE9PHvsoR4BQ/s93wcWcuI2fx70Oyv60bXJZlbdqn4
iAdx+0R4ZMctmJ57oxfWuLkQ3rlLZWSR2kJ5JE3BQVqKkemV7fZHTbKjURcef4/S2bk0eSG1BbpJ
YmuN3aKIxtx4qYhGojpULWiih27d8sxkEGu8tcwb37gm8RmPlq8Np6not6YvF9M RQXRHdvVeOtSDI
8YUgNTiwqMxzXii+fT9Xyv5hyBfhmuXX9fzr5JdcXd9JaLp5lDWtv8axx7pz+NySTtUBm6beGXRj
EHi6lqlKRHD0CbavqelXEFlBYzSLpi24F1aenGJoSrgMFmcs7rLJ+94cqLX2zHxY5gkyHqvY9D8P
IbW35ckSAIn01uOo+Pmd0p1S2i4pcWlpNBaosdvO0itT60iUkqxLUZyOfGu1aZkYpHkSCefw6fqa
MkRzAIHL4vX/AChrFxceV7OTkxadHtt/92PFGiBGrRStY9q9ztQ/ENPqYDHI1+Pxbu9LI5Ygnoye
K101IlkupY5FukEV0XAmlWRm5fu2Lhx8THi6Fq1FGfdRixuAvr0/H4+DkTPHKhyQ9tBcyRPLrUb6
lplkrW6hxM0sYiHBZVdI6xEMtAkhQNVQdgzYYgE8Q2J3/Hf9q5JV6AuknueBjYy39lcE3MeqTJah
mMOzerJMbhqjgqBM Wcb7UyMjxmhtXTf8ARTKMRjFnqifL+uw6Dd6hbpJNGtwxa1M8UEkR40e6ST0+
J+KNY+IBp8uuTzQHCK5/imqFzO/JlHlK3upfM2n3E5jLPLWlu9IinxSOyR7IAJDEu2/w++YmLJeQ
fp+X3W5Oqx1hLPfyGbyi2n6sfK+k3mkWf1+4+tQX4YSSXPGHnKnKSb92y8QNx0O2dLh4uPc36XlZ
VWzH7/V3PnTzZZDzeJ/q+lPIvlb6oqmyPpQH6ybk/wB5Xly4n+f2zAzx/dfT8e9ytMf3sd+oeRaj
ffXZCLcRyWFmT61zev8AvCUBQhnJNQS/GiNuRWlOuuhDh5/Ue78fe9HKV8uQ70Vpd7GvrTx37GLT
Qs0axIVha8LL6Ct8MoKerGOh3/VISMSBX1fd1a54xIE3yRjaZHwu9WE/qOC0l1E7yPJcOpkiDKkU
iQpGaAfabidqgGmGRquEbfd9ltcDdxlzTiDyfZ+YbGLWbK4ntM LsIs8lpG9Y+LgOqAF5nqO5INanb
tlc89bAAkLGPCal9JSX/AAZHcxzy2d3JDcLOkVxHIsdIk4eqJuNLcKhYBN1QU23rlnj8URYs/j3/
AKVMPDlX8Kffkpbz3Ot61dXMHpjS0SztgtRGkt27XF1GoYk7Klv4eB3y3USHBGv4v0bD9LgyH7wj
+b+P1PXsw0tHp4e+Kvj/APMH8qPOGk3uu6vdafcnSoZJnj1N5oZ5br1LllWeX02BUuklWXgNuo6n
N/g1UZcIBF93dtyddkwkWa/bu8+WdYHdQSJDSN5urLGF40TkR2/spmWY20CVJlbCwke9ltbhzeLD
IyeuCzyARsJyX2VQ8daAgmvw/OiXEKBG19Ps+1ujwmyDvXX7fsWatPoc628rXEk13Kxe/aNGUqPS
i4IvMhTwYupIHbbYjJYo5BYrbp8z+xGWUDRvfr8h+1KWkurqWJas70CRA+HItTf/ACiTl9CILRZk
UVM datqd6C9zcOxiqooDVY3QRMo4hVC8UVabfryEcUY8h+ObOWWUuZ/HJQQxC29O4VVEvpyQyirOq
o7Iy7N8IbkzEEVqBTY7yN3YYiqophP5a1GW8htoIxJez2wuhbLIjFEUspUGpB+FOY32TKo6iIiSf
pBq/x8ve2y08iQBzIv8AH3+5ZM8dvFcWUkElvbyIsgjnVWuUm9NXBH92eDmnxEbKdt+pAsiV2fLl
V/j4oJoGNUPPnf4+x6J+R1nNeQ6nE0nox6dNFPI0gc+kGDcmQK0fCT918Lk7NTdTQ5gdpcIIke5z
+zpSMTAd706LylZX0v127uriGzIMawlrZJmC/F8RkRARyPI0Vt9wanNTHNKR5Ch7/wAfc7WcRjFD
6ihLi0ht9cgj+BtJdY4kWRIlc8ZI0+N3t4o2qOIFWXp1yRmcgqPMfjvTGAxby6/juQc62Vuw02GO
Mi+hhaxh4elcW91HGjpIJqMP3lWA3oVp0FK2M mfCNunP3NUYcZssbtp5Duk7wPbPyit3B9b1Y25j4
2Db7s7r0qAD2xkO/e+v4+TdHy2pn3kG+hu/NOmLL6Ul1HJyKPWCdVo5jkCsSXDq5kYU+0w3NNqcc
DGYrl8x+OnwRqpXil3vWfyU1Jr+z1OU+Zx5q9O8nj+ui2Fp6HFYj9V4D7XCvLn35e2dBgFT5V6Xl
58mM+Y7TUjq3nCSTyvZ2FhLpEyQ+cI3tvrdyxgiBhkUcZgq0Iq7cf3Y9sw5kcHO/JycA/eD3h4vG
kdpDaxpHEs7n0bh0t4piv94r/vhIR+2AQVA48T89cTxE93v93SnohtTVrb3SQWaSx3VzHqEslxdQ
xkASSAcUUEjk1C/x/Fx74ZEWaocOwUA0Oe7JbK4EdpNZSwo7TIsc8MpN284KKIHqvFY2VyjdSo5n
3ymMzE30+Vd/48k5MQkPP5sot9Du9P0uyuUHK3ihjW49cWqLVVAYgLFOFWtevTKpzqXEORM 9/62MP
WOCXMJTqusTW96bq0uYk9RZIY2gkjBjJjh5MxYRR0Cud0QNt1y6MBXEB+N2IN/u5dOqW+TPzb8m+
T/J+kR6iXOqeYZLrUrkQIGWL1p5FjaY1BA4oqLQE0XoBmfn0uScpcI2iAHT4s0RXEfqL0/yn5vsd
as7Z7WQ3UMqFo7tQxV6MV8PahJ+nNTGUongkPUHaZsMTHxIH0lk2WuGpXVra3dvJbXUKXFtMpSaC
VQ6OjCjKysCCCDQg4QaNhS+O/wA6dBk0781NQt5b2B/r8kVzBItIlhSVuCRSGrCP0lG58ADQVpnQ
aXJeEGuX4+LrMsP3lXzYlo+pWFnELm4iS4mgbilsyEiZZSefqOx+AIE+Hip3OW5sUpGgaB+ykYsk
YizuR9qHuOd+XuUipGpluLllTiqlpF5BSXqwXmgA26/Tk4+ja+4BhL1b+8lUtJru9kit4bb6yGuO
dvC7USOpbki04Ki1cMx2XYVM 2yMwI7k1syiTLYC90tMzO/NiORbluNu5px6UJPhl/DTTaKt7eC8kt
LdpoLUtyhNw5IXlyLh5dtgfUCcvbK5SMbNE/jozjESoWB+OqMsbPVfrcf1B3tdVhEcpnSYRn07j0
IoeDqR8RM1Tv0Ptlc5xr1bwPl3WT9zZCEr9O0h599AfelrvfW3plpJI2kjLRFX/3VKhjYbH9pPhI
8NjlwEZNJMg9T/IVp5rzVoyWaOaSzeQtyceqvrMrPwVpOvIAjud65qu1cdiPcL/Q7TszLw8R67fp
e6h7K5n+rwfWURt7iZIp0U07lYY4lIHiy18c0MiZHhjXD8HdQAgOOe8ki8zy2LktYO1xFbViuI4b
iX1yIw/J0jqV581Mihu8S067XwlwDhHPvrb8fraxA5DxS5dzCdRnW+tOUEn1qS3AMvqhY/RjV3c8
uK0d+exdANgv85GWwHCd9r+38ef6GyW426KGsR3Vpqc1ytEt54jMoSWWSM MN6ZWQGSil25MGfahY0
PfJYiJRA6j3ImCDbJvy/tmj88aMbNi0Xqv8AWfSmacKDHy4E8BxQclB+L7QHgDhxys7/AHU0aofu
zT3L8orfUILfUFvvLNr5Wka5mZLOyaB0nQiKl05gAXm+6mvxfDm609cfO9nm58nnepQ+SU/MPzvc
Wt7fTeazoj/pLTZgv1BLcQW9Gi5RFeRUR1qzDdtsxcvF4Xk5OnrxR7w8za2bUbaOWO+kFrZXETTX
NwzSRRjjRaq3wM6v8HwxjrU981fFwmq3I6fj483pK4hz2CBcpc19C0MsEMaW0MkcZ4MsfJmdyPSb
lxQ0BUn09j8W+Wjbmd+f45/2sOfIfj8fYjtG+uEyRyKQJEJqIpyKMJACPSUmn2j8dajkPDK8tfgj
9P6GcLZ55Dvms9JltlUiNmbnxi4uVLMa85Pgd6GhqKV9qHMPNOp78iyOHijtzHJfeaRaW2qw60YP
rFnGsr8ZCWM AnRKxpIWoZPhLMePwqVC9QDlschiNvpLSRx7S2mHgcOm21j5l8k31xFG2lSSlzdXLL
DbTRWupTVMjMrAKIlXkKGq0oM6PxLjMDnXLrvF5wwoxPQn7i9H8t+ZvKHlTzHdaro13bW1rfuVub
KHUbW6slUkkNEkosriL4vi6MOop0pqM0cswBwm49TE2fvH3F2uEYo3chUuglGh936Q+gLC/tr61j
urZw8UgBVhuNxXrmJGVrkgYmiiMLB8xf85S6fqa+b7S+hgkNjPpcUM8yoSnKO6kb4m48a1kjHWu9
O4ru+zDHho8wf0OBq7vypL/J3/OOXm7VtJm1DVUjsHuIgdNtp5KScpiv72cKrsoSMlgmzFtjx3yW
btCETUd+/wDYxx6WRFlleufl5+Wf5S+Wo9U1uwm80X9+62RSZljjqwMjtGg/u1pH1JZu1aE5RDPl
1EqieEDdslihijZ3UNT/ACy8s+eNDuvOX5Z3pttTmjQXM Gh0ijiRkRCbVUCp6L1TqSUY9+JrhGeWO
QhlFjv8A0r4YkOLGd3i2o6WdB1bU9DuIzcajbs9owUfCJEYcnBVgxI4/CB+IJU7C+MCXKPNxgBGx
zKG0SKO81NEuVaS3W3nQlEQleFvIVNGIWq8eXXt44cx4Y7c7H3hcI4pb8qP3FRu9cvbqO3aVv9Lt
pC8d4vwy04xoi1Wm0YiHDwyUMEY3XI9Pn997olmlKr5jr8vurZAuASCtKbABa7kAdjvvloai9h/I
WBLifzBp8cDS20rWs8TSLSZPQFxLE4KkEMR/Kd/GmaXtXiIhv339lu37MMImRPlX2vX9V1WCwtYL
W0kQ3c6/70VKzv8AHQmG4j4KRx6ch3HLNKCBYjy/HT8eTuBjMjxT59zEZrqSS0+qqXb1CPVMnpO3
EmNFX1mpGammzbmig/tETEaN/r8+nP8AB8m4nakngto0khImtwGVAUVni5LJEF+AS81bkW2bjQbP&#M xA;0rS+Ur6H8fj9DUB+Px+OrozBf2kFs0yNeWitHa+oyqssAj+MA1oGhFBHRvtfF4kJuJJ6Hn5H9vVR
uK6hl/5f30Unm+wtpQ8bxzEm0kqrRceS24KyB3oULP8A3nXBjgRIEfP7/wBXJq1Uv3Uh+PJ6d/zj
/B5Qh03V18rXt7fWZ1G4a7k1AUkW6KQ+oifu4v3YXjTY9986DFxce/8ANeYlVbd6W6peXzeY/NFt
deZdPvNJj0t2TyqFhN3bH0oi00/GsxjarH4hT4x7ZgZh+62BvvcvTf3sfeHi/G3mmuYry79TkI4b
eFDIiLxdgTHEsIUUUqygU+11qc11kAED8e+3otjdn8fJ0dlPHMI5bG7MEghj4m1dohQU5tyJYksq
7ChNeoxMwRsRe/VRHyPybtrHVk5PaW01q0wdmoOCxIDxCM78ZP3UigmhPGo8MZTj1IP4/SojLoKT
y2udZQVaEVX7VIzSvwh1aRmjqPgKlQlM K0Ap8GY8owP4/H4+LcDL8fj8fJMLbUb2+W1tNKiFzfSS+
nFaBka3hDAxyySRRmULCiSFndj8R4gfaXJ4IESIP0/j7XF1cgI2Pq/H2Jh+dXlGxi/KOXTNJ0s3D
acLaPT4YI+cqBJFUsvEFq8SxY96nxOZemy/vxORq7s/AusnAnEYAXtsPiP0MT/KL8jNNutCttR8x
WStHeQF2t546TF5HNKEnlGqRqtKAElmPTjS/WayUpVA0AejVpsEYj1CyR16PebGxtLC1jtLOJYbe
IBY40FAABQAD5ZrQKcmUjI7ojCxQuo6Zpup2ptNStIb21Yhmt7iNJYyVNVJRwwqDuMlGRibBpBAP
NEgAAACgGwAyKXmvnDzfo+rebJfJVuttLrWmKt41jqUcT2l+JIjWwVpD8EjrKjq4VqU6EchmXixS
EeMj0nqOY82qcwTwg+ru/QqflkPKaTy6hoOljRLjUSbXXNJUEC2vLbk4jZaKEK+pIM B8K1FO1Mx8+
SfHwyNjp+v4uTDFE4+ICj+LB9zzf/nKHySsV1aedYHhMdy0WnXNssYRjIEkdJ3lUjn8KcPi6cVFS
NhtezM9gw+LrdXjo8Twa0acbW0rJKwkWQA0XgYypFa/tKzrm0nXX8b/2OHG+irM0FtcBo7c+gRHJ
GrsknxiINQuAQV5PVl60oDQ5GIMhz33+9kaB5bIcDgoAKguvIsQaqRU8VPidt/o8cnzYcnt35Bxx
WGg6vqZDIjy+ms7AIZI1UUUEnrWopy70znu2shMowD0HY+ECJme/ZmN5FLM7yFzCkn7sQqI2iCoG
DKRIvFaEdd9uR4/aA1kSB+Px+K8nbyFpBeeWLiG5leKzfUbZ/UP7soH2JJDEojFlG23f4fHMmOoB
G54T+Px9rTLEQeVq8Uuo2EVYNDmtmDOZwUknIDEEMsi9eMdY9iD8RORIjI7yB+z8d6QSOUUu1W5u
ZLNYZ7L6ugAWV5YfRVM ZmSRiV5IrU+IftClRUZbjiAbBv49NmEya3DMPIkS3HnHTbu5hmkLossU8j
ROIpFdkaNZCzScOT9OX8KDEakACOfn3fJq1YvHInu/S9j/KK61G5t9Qe/wDMdn5mlW5mSO7sBCI4
YwIqWz+iSvqJUk13+IZvtOBx7CtnmJ8mC65Yx2nmrzpq6+WH0+RtFlB84i6Zxc8YIf3K2w+wU4U5
D/ffvmLk3x1d+Tk4NsgPmGB2sFlYW6XM0dNUlBZrt/jlkNeXIqnqMqpxVvs/sMD/AJWkkTI0Pp7v
x+Nw9SAAL6o6TzJqFqa3NmrW49R/UMoQct3AHqKh+AxuvTwyoYIy5Hf3MzlI5hDzeZrdJJ0mg35S
Dgkkcin1lVQlVbcM3JjTfbJjTmhRYnKFf9L0f1msrqKJiC00xityY/S4O1ZZI2qxVSQOlAeuR8Lp
Y+09fIJ4+tFmv5b6HatYw+aZoWXU9UgHpmQBTHbScX4qq/CPWZBMM xI5bhSaKAMuQ4Bwd34+zk6bJ
k8SXF8vx582YXj26WsjXABhA+MEVqMpmQBvyTjEjIcPNUThwXhQJQcQNhTtkgwN3u2K0364q3ih2
KtHp4+2KsXtfKtrrWjM3mjSLaDVb2cXV4LVm5pLCxS2kW4ThIJI4VQclOxrTbLeMxPpJr8dO5FXz
CtqEGmeW9P1bW5N2ESzzS/D6ks0ERRXb7KmR9h2yjhJNfJyBPYfb7vwETqmgwar5Xl0ueOKRprZk
jM6LIiTNGQr8WDD4WNemT08jCi1aipyL4k1ryze6Tr2saOssdwulNItzdIQEMaOEEg5HbkWUUG+9
N86iOYGMZfzuTpvDIJHdzQsllbMLa3swZp74QtFJIwQo1XiljPxcaNKKqzfsgdKnCJncy2Eb/QR9
imA2A5mv1H7ULaW5uZlt0UySvVYo4wS7yNsiDY/tGvy79MnOXCLYQjZp9H+VrG30Py/pWkTSJbNa
hnvQzM cRJK68ucTsOJHI0FaDv4HOQ1MzkySmN75ftex02MY8cYnpzRg1J1oILAXYUDiwurbihVgfh
T1a9EX5036kmrw+818D+pt4u4X8QhbrzRq9ooe9imtNlK/uVMTsDU/FU7v0+FsnHTxlyo/Ficshz
2ddXV7dvEHmmjFykig1dYiJJFAIAVBQJyP2j0xjER6DZSSV8TRSO3o2VtdXPJmmASEqAxQmMn1T8
XDgg+Hr9OJscyQPj+pR7gVbybocEHnTRNUt2ijSe6Mdzbxhl4kozIyrwQqruhpyFKFaZl4MxJ4S4
Wsx1jJD2P8kdNjsLLU4k8st5WEl7PIbN7k3RnLLEPrXM/Z5048e3HN5gNz536Xmp8mG3MWl3/wCY
3nHTD5xvZLqfR2juPLHp3Bt7GOSG3X6zEWb0GejBqLv8Z98xMp4cVkbd7kYATkAHO1KLyXpH7ydN
baHkxERWD0yzEN8U37399TkKlv8AjY10l4yPq+zM 7u78eT0Jy5Qa4Pkfv2Uh5C0Akv+m1MzGsqJa+
lDQ1J4x81UmpFCxbp3qay48fSX2b/M/oRx5uuP7f1B2m+R9EiZpJNZaa7eXl9c+q8JitFHprIXam
+7UO9cjKeOXKVDurZlx5Y7mH+y/Ys8yeQdMk8t6ve21093MlldcI1twHlkWIn0QSzNyYmi7F+9Tl
2njHiB4vSD7h97j6jUToxMPUR32d/gySX8wvJlhpsF7c30VlpsjLBbztQQ8iDxQFOQGyH5UyGPin
IxAPE1ZcXhx4iRXvXectRt5/IWsalp10sscFlNeQXFs6uG9BDMOLryFG4UyUIcUhE99MOMw9XkyC
1cPawuBQMikA9qjIR5BZ8yq4WLsVdiqhfXltY2c15dSLFa2yNLPKxoqRoOTux8FUVOO/RIYjr35y
flxo+mvfNrtpfcdktrGaK4mYnoAkbEj5mgy+OlyyNCJ+IprOWA5yDye18xebfzW84aPc3cR0LM yPZ
XkUixXDkQ3rrKrLCeRjS4lf06BQDwqevfMljhggR9eQ938P6ufxaozOQg/TAf7L8V8H0bmsch8l/
n15Av/LHmG71q2ufT0vXJqrFH+6+NyzvGVTipVOK/Otc32hzRnERI3i67UQMSSD9Ty+5vo5rGO1F
rDDJC5b1kUiRwUVeLsT0Ux1Ap1Y5mxgRK7JtolO41QCffldZm/8AzA0GySQwetexkzBQzIqVYkH5
Vr2yrWAeFK+6vmz0siMgIF0b+T6qP5fadHMypr83WrLHGe7BTUh6dWzmTGHKx8v2vRDVZOfB/sv2
L18h6SzIG1c0NaiSDlL0G1WcgU5b0WuREIfzvsSdVk/mfb+xbL5M0eJDbjU2iPEfALb92wA+yVDj
1Q1ehJ+dK5EiAO8vs/b9zOOfIRYh/svv2+9Lx+X+iC+lu7XVjCHCrFBHZ8njVdnVR6h4q3f4QR0B
pkxkgY0ZE/BBnlBvgA/zv2KqeSM NElkjY6vK8iSA0ltmlirUH7EkjlWPE/EprUk+FIieM7cX2fqZS
nlG/AP8ATJxa+V9Mj8yaZImpFmtJhNFD9X2NY2XjHLz+BTy3FD0ptlmn4ITq7J8nH1OXJkxE8ND3
/sTn8hJrCbTtWay8z3XmqMahcK97eLOjwOFhraqLgluCbMCPh+LOjw3x8q9LzsuXxUZNP84L5q1y
7v59P/wjLZFLGKJG/SCzcIuRlb0wClVkp8Z/ZzXZzHwiOu7l6axljXeEJCskggito4opLi4lT97F
G1AqRlVPJXIpU5o42aEQN5HmB5e96CRAsyJIjEcie+XuUllunmMMbQSSKSpVLSM7g07R5ESkTQr/
AEo/UzMYgWeID+uf+KVZo9RhtWuXEARXVChtolb4q77x+2SlxiPEa/0o/UwhLHKXCOLl/OP60xgV
PrEw9BWt7aaVRGF5VDTEcVUAU+HalSDl8fqO20SfvcSZPCN/VKI/3PN5t+bmM hLaeWNU1ONITYXE5
M2jzxH05GZlCBFADQTEsOLxndiSwJYnL9PxHKDys0K2Irv7xTHLKPhEc+EWb3BvuPvZz5a/L/wAs
eXtFutF02B1sLxWW6geeaQESKVbjzdigap+ycjLJKUuKRuXw/Q1bAUBUfj+lkigKAo2AFAMgpLeK
HYq7FVOeGKeGSCZBJDKpSRG3DKwoQfmMUg08z1b8jfyvszHe23lpZ39dDLCLi7PwsekcfrLHUtRa
OyoAanpQ5Y1uY7cX3f2tPgY7uvx9y3WvME+g6dayWSLqepW0kdtpGl2kRS2g4k20nIoI5PTb0ZKE
1UHs1FwY4Ak9B17+/wCbKcjQ7/x9iv5K8x3T+ctRFxdH9Gai4ito3uGuU+uop5rGz8ViAEMimNR9
pT7DHKBwAV6vd0/HVEQeIm9mRfmb5RufN3kfU9AtZo4Lq7WM280wJQPDMkoDcQWAbhxqAaV6HpkN
NlGOYkVzQ4okPM jXzh5I8z+UtQFnrtobd3LCCaoeOVYyFLRsOo3HvuM6TDmhkFxLqcmOUTuzr/nH7
y7JN+YX1q4AtjosM08lrMr+rIt1EbdR0AXh6wetP7MLtLIBhN78WzlaKBOQVtW76RuDcR27SRJDG
lukCSRSW8fPk6UJqyGtWUnrnMSJAsAbV0Hd7npMfCZUbPEZbiRrn5FM4bWSJ5LaeGOa5jfeWKAKg
QxElSUWM7hhl4gQTEgE+Q8vKnDnkBAlEkRI5GXnz3tAXRmSSRIVieZp44EZo0YFeFFADrRR06ZTK
wTVE2ByDk4qIBN1wk8z3+RQ93DLPaJcxIKO3pTW6AqUmUGpCLQfEor9+QnEyjxD5efubcUxGZiTy
3B7x7/LkssofTuByRjxSVgssSheSxOR15VoR3yOONH4HmPIs8s7jz6jkf6QTXSxBJc6TNIirNIsp
5RIiVZZCBULxH2cysNGUCee/L3uDqeIRyRB2FcyT0T38q7LM zdaRXyeaJbCa8e4le1bTVZYxbERhB
IGSP95yDV28N86XTmJnt3POzut2ErpFgv5l+aL+Ly1eW2oXGmenJ5leRjaXS+nbgQxxk8Qw4gVH8
hzC1JJwEX37fNytLQzRPmEfZyQ209g7uqwpdTHmK8eJSKh33zRYyImJPLiP6Hf5QZxmANzGP3yVI
b/6unpwSxKTK8plMg6sCBtxOw2wxy8IoEc+9rnh4zcgeQFV+1eFW7BhiZn04yq1xdBQryTcfsRqa
bdOo26k0yVCWw+i9z3ny/HvRfh7nbJWw6Ad5/HkGpTNKeExZYLmZ5UQKCEbkWb4qip+P8OhwSJlz
5SN/j5/sWNR3H1RjXv6fo+3mxD83ItUbyppdzplk2o/VNZivrmztSpd4oVM3FBU8j6oQEKCfAZm6
Ux5EiJlxAe81+1xMwlxciRERv3C2F6D+cv5i61ocWr2nli4uruKVYbmeytpDbTW4JLcJGduEiHr8
M LD5V2uz9nxjM+sAcPx+P4DDDrbhXBZ4uXT4fgvXfJHmk6/o9vczQS2tzKhcwTrwkADEEMKChB/rm
ADUjEmyOo6uTlx+kTAqJ6dzJMk47sVdirsVYr+Yfla61/SoUtbl4J7WZZWRObCWLpJEypLDUMOtS
dqihrl2HKIHcWwnDi6vIbe1n8v2l9EdUlvfrF5cCwsp7gwuZrKWUSSyyw02a5Xm6qw5Ly/aNGzCf
EO4rbp5+/wAmsVDlvv1/Z5qc+o+ZdKv7ZNcDahDZkXdvcay68vrFtxSU20KwfCjtOiAgvyNODb1W
YhDh9O3u/Tu1mUr33973fyxql1qmh2t5dxLDeOvG6jjPKMSr8L8DVtqjpWq/ZPxA5rskQJUOTkxN
jdR80+TPLXmuzgs9fslvbe3lE8KFnSkgUrWsbISKMaitMOLNLGbiaWeMS5sav7VdB/NLSpbK3SGw
1/S7jTHSBFQLNYh7uOnEChaJpB/sRl8ZGWM GW+8d/ns1EAZB5sj1iGSO1vjIAHkNszAAClDIv09M1
2eJEZX/R/S7TSzBlCuQ4v0IrUyh1O54xmSaGVJCgUnkpjjAGx/mHQj78tz/WdrII+4NOC/DjvQII
+2X6EHIFW+gCyNKBeW/xyGr/AGRs1e+Un6xvfqi3xPoO1eiXL3ql/LbJqE9255RSyNa36LUNHxb9
1InvSMGu+9cnllHjMjyJqXl3H7GOGMjjEBzA4o+feD811+qvMs0qhL5Ypo7hF5UH7iQqQSSCGHTH
KLNn6qN/IscJIFDeFgj/AE0VujryfRT0CpMSaA/7tIHXpueuOAb4/j97LVGhl/zfuRf5FabYafYa
rFZeX7ry5HJfXEr2l7I0rzOywg3CFiaI9AAPbOnwkmfO/S83Pkko1Wd/zB8x6f8A4sjuY4NP9RPK
v1ZUezJjgP1hrkDk4PKvH/L9s1+oH7kmq57uVpv72PXcbKljFBcyWEbrzhkupwVI47cIM tvhzRYoi
XCDy4j+h6HNKUBMjmIx++SpNYxxo0pjgK1AjiVXZmL/YSofqThOMAXQ+39bCOYk1cvft8TyVWVbM
GWNWTTBLxmgBDSRz0K84nPVaila77gjLD6dx9F8u494YA+Jsf7ytj0Me6Q7/ANhDTz2du3pNKxng
LwMqABmVGIIYsy1Dneg6ZEyjHa9xt+PeoxzlvXplR+fdseSG8xQXeqaALaxc2V5eSyQ20r1BileM
IjkgV+FjXplsZgmBr+P9TXGHD4gu/wB2f0vNLT86LHynFpeh32j6npFpHGlpam7tI4oOMaqhkDiS
rqvIMzLX8cyTo82S5xlCXXb+xq8fTwqBjOPSz/azu2vXur2G6s2jjecqY5IzWM8+jD7WzVzT2eLu
LuTCIx0fVFm3zzYOiQeoatbWJQShmMlSAgBpTxqRlc8ojzb8OnlkuuiUReapQf3sIYFifhNKLTYf
PKBqT3ObLs8dCm2l6ml/EM zABHU0Mdan59Bl+PJxOHnwHGaR2WOO8e80+XtP0bzpaQ2dqPX1mUNBe
XMhb0y1yr+hb/vfWiRJW5MsMLJRgsnwMSuwxyM4Ek/T+rn3fP4OPIcMtuqY6v5bh1oL9Y0Wzk8wg
i5/cnlauxmJkkj5m0N2oaNDIk1FBowD1FYQyGJ2J4fx76+CZRBHL1M98v2esWunomr3gvb0gNLIo
AUMRVwtFSo5VpsNqbDMXIQTsKDbEEDdM8gyYt+YN5pulaXZ+YdRYpa6LexTSyqvNlS5DWLnjvUBL
sk+3YnL8ETImI/iH7f0NeSQj6j0R2szRz6dPcROJIZ1t5YpFYMGR5JmBBFQRvtvmNqvpPw++Tm6H
6o/533RX6vdW0Wq3Szch8aEkNsQYkBHD6PtAYNRMDIb/ABsE6bHKWKNdx+89f0IRJUkubdkFE+uQ
BBTjRQtBtQZVE3If1g3mJEZA8+CSIuo44rm4uZImnt5JZIbuNW5Hg0rM kMqjdSrL4/rOWTAEjIixZ
B+ZascjKIiDwyABj76Hz5/ilscd2RNa3Tr9YsIZCD/vyEwuq0NN+Bbb2PtiBLeMucQfiKP3fpTKU
dpRHpmR8DxC/nX2LtI/vNF+19mb7H/GU/a9sODnj+P3o1XLL/m/cmP5LalNqFnqUsvmZPNLR3k8Q
vI7dbUQBViP1UqtORSvLl35Z02AVPlXpebnySaAecP8AlYOvG70WwtPK31EfUPMMaob2abhByjm4
ytIUU+psYh9ld/HBzcPhc93Iw34g26rlS4hkheD03ltLiUsksixndIwK+oVJ6HfNGAY1VXGR5mu7
vegJjIESupRHIX1l3WpmO/5BgsYKsWSl1B8JJrtvtkOGXl/pgyvH3n/SSc8d+1m9qEi4ySCRna5h
Zqiv+UPHCYy4eHbn/OH61EsYmJWdhX0y/UouiTa1MRNxge6YSOhYfA0nXkAV6ZEgHKd9uL9LYDw4
RtuIeXOvM mi50uo3iitkha3tbgzQuZ4avQ7VHJaVp4ZbIEECNVGVjcfraIGJBMjLilGj6ZbfYwz8w
tJ0sxeWHvLeKUnWrUTlilx6MfrxsSpTlx9XiEbxGZGkHBe/8MrF/qadVIzqhfqjR4aPXvTi6gsre
cxWJH1ZKemFFAB4DYdM1k6vbd22G+EcQoq+s60LgmZ2+r26oFkDPRNiTVug75KczM7NeDAMY3+bC
tU/NPyHYXBju9aieY1LeiJLjcbEFoVkAPsTmRj7OzzFiJ+O33tc+0MENjIfDf7ksP52fl4Jkj+vy
FHFWlFvNxX2b4eX3A5d/JGorl9oav5X098/sLOLG9imit760kDxSKk9vKu4ZWAZGHzG+a4gxNHmH
YbTj3ghnWmXhu7KOdgA5qHA6Ag075n458Qt0efHwTIQ/mLQbTXtIm0u7klihmaJzJAwWRWhlWZCr
MGAo8Y7ZdjmYmw0SjxCkXZ2VrZ2629rGIoE2SNegHgM PYdsiSTzSAr4FY15m/MXyn5cuY7G/uzLqs
4/0fSrVGuLqQkVAEcYPHl2L0Hvl2PBKQv+HvOwYSyAGuvcwvVx+ZfnKC90bWtNtfL/lm8XhMlvcL
eak6RkSfBNC72yB6AMGUnjXrtlksuPDRgeOf+x/Wyx4Z5Pr9EftZVaaStjo0Ol6akf1JYLZIy88X
JRDEAFozKRSpG+a3JxSvl6qJ3HP+0uzxmMSLscFgDhPL5dwR2oKtzFNeXZSO5eRAIEmR0IC8eVA3
t44c3qBlKuK+VhhgPARCFmNc+Eg8/co6bHzaIq0aiK6ikfk8a0QDcjff6MhhHLltIdQ255Vd3vAj
kU1gdbie9joGV3kCshq7RGRyWTr3Y0PSuZMTxGQ9/wArLgzHCInyHzoc0BcWsktlHGXMMsHL6osv
7vkrH94hZuIpShWtNq5TKBMaOxHK9vf+xyceURmTViX1Vv7j+tGaPGiXOmQSSL60UU1VRhJ8Rl5AM 
VQkD4d8uwAcUATuAfPr5NGqkTGcgNiY+XTzR/wCTY81i11H/ABNotlod39bm+q2+nhFjltqRcJn9
OWceozcgakHYbZ0mCuPY36Xn53W7EkXTLP8AMzzRqSaPrUd8mmcptVkqNKnRI7c+nas1U9X4QD7q
+Yk7OOrH6W7H9aAvPzM0q3kdJtCvTeHg3pq0bchJ+8jKED4w3Dj0r+zmuOOF2fx+PudvGGQihIfj
8fNCT/m15UtZpYLjTLlZXVWZVkiZlYE/u147ghvgYH4ulfaMcECCQObMwygi5DZUtfzG8r3EReHS
7ppWJAgUqXpRSXDOgAJ50py6sKfaGVyw4weW3w/H4Pc2AZiPqH2phaeY/Ll678bO6IicRPNI6pGh
CirkuqVWvUhT0rTKTHECLvfzbuHPRox+SPu9Y0DT7+yjW2luLS5DldQQxeiOKcj8XActu6nLPDxx
F0dvd+pxwcs9rAPx/WhPM9/pNxobwM ixWEXI42l4wSUW90tJIZSoWlUcq6iR1Jp2y+JxxOw2O3T4t
IhllzlvHejfR4pN5D/M6/wDMF4jea20q3J9aMS31xwZGpvEUCw0JPwpz+EbVPU5scuniADAHz4R/
a0ThqJEyEyB3cRQetfkp5vvYkmm8zfpUqHaVZmmlaJY6Gp+KUU+LxyzFr8UbqHD8g1ZdHlkalPi+
azSf+ce0vY4hN5gMU8gkbjFZGWNRHUAvIZowvNhxWo3NfA5bLtIC/T9rV+QPexD80vJuleVNYsrD
TJLmeGW19Sa4ueALTCaRGCogHAAIvwsScydHqfGiTy3cfU6c4iA9h/JbU9R1DyVG96XItpTa2vNQ
q+hDGgT0yACV7VJO4Pyzme1scYZvT13PvL0/ZOSUsO/TYe57N5ZWUWBLACMuTGe57H8cp098LVri
OPzTfL3CaZlVSzEKqipJ2AAxV5Hq/wCYepedLq70TyncNpWiRlEuvNAr68gaTgRM Yx1jotVIMxbpW
gqBmfHFHFUp7nu/X+ppuWTaOw7/1frTny9aeTtJ0+1vILJbnVrmqXepandRtqkjK4JE8zoZGFUGw
7ACmVZsomKINXsBy+TbiwzgdiLrn+1O5PM2gW92kFtaS3EMTcZrhyEiSQUPGjL6jMOK7qv09cpjj
gCBTbLxZRJJr8ftbbzDoTmeJtNLokLzepG6BSI4y3FeQjepUftgD3yIGKRoR2ZmOaABMt+5A3eq+
VYpJSsF00SCqvG1VOwPE8k+Ft6cWzGlDFewPzDm4zqKsmPyS65/MDyzbRhhpk10wosbW80DAAHjU
sOC1NB4k8gOppl8cWM9CPft+j8btEo5v5w/Hx/GyJg/NLQDwS20m5klPEpuU5EAEKG4jl9qvhxPI
mhOWjgjzH2/j8WGk6fLL+IfL8fii3D+ZOjT6bd6lb6HcMkEo+vQmSMPGWqFdo3/mJbtT4d+mWRxQ
Mqrnv5NcxkAHq5beM fRO9K8xaBc6pbJp4Msj3DQF43RGUBOTl1VUDKJPgIqTWnbIRhCMhz4vx3Iye
KcZJ+n4/ZZTH8irXT7ew1VLHS9V0mNr64aSHWgwmkcrDWWLl/ulqAL7g5vsJPHzB9PR0s+SQ6rq2
rv5n812C+Z7F7WDSpJLbQEjBvLOT0YT68rKObJViaf5YzCyD93yNuTh/vBZ2t5T+kmgubqG3ihLv
AjG6u2iaeAvJ6ii1RGCR1aUkbM3bbMMSsVP7L+13Jxb3A8kS/lu9gNwXBvElW3a5+rSMzrPeKU9J
mDdZHBBqjbsD3ysgSAMPxX6mccpiSJhI5dPihnlX6ukypyESVkkWgiMnJwJIJEJAo3IHofAVeI9d
v7fcW0AHluyXR3ASKeKWGdaIOLo87Ko4/ZHqF1KmSoolPoZaYeXuNj7P0fj5uTBkU18UuLaVkNzY
lwXJZSPRkiaJzGN6KFlZj4tx65DBk4QQfkx1GAT3HPvRdhdyR2M 7SQATWlwtOZ+CRJpXAdA1Cyr8Q
DECvwbHbMjgERtvH9DhSmZnfaQ+1bqVgUYxQ3kEkQIMQ/eI4levFjMfV3qrKC9BXYFSRhgQRR+no
f2IJo3/F1DdjqEQldLh1gR0K3FtGIESRKMvpmZPgZxvUc/h8clIdev43YAdB8EBpaLatOltJ6l1Z
tJIiqGIki5GVSyEAuDIEXivxAMPHac7NFArr1+95t+bujatq3m7QbKezubjSLlGlE9sqLNLN6QMq
K0hENVSBWBGxqzLXpmZo5xxY5kECXnyrpy36uLqIyy5IxIJj5c7+L1PSdNtNM0y10+zT07a1iWKJ
DuQqim57nxPjnOZchnIyPMvSY8YhERHIM38uTCTTVTvExU7eJ5fxzL05uLqtbGsl96a5c4bzP80t
dOsPL5F0i9MF3JGs3mGdBQ29i9ESIOfh9S4klRQBU8ORp0zM08eAeJIbdPf+xqn6zwD4+5DaZoNl
YajM fwSOtpZvBFBOkoQQRRqJg8MXp8KKSyld+VK+GUzmSBfvP2U5gAHL3BXNxfTyW8lqGuri5b6vb
O6qhCop5NIVj5OrKp3oR1qO4jVb9V6V06o+ysZLSxWeG79a2dk+s3yrLEwWRgoCcmIl6/DyQg18M
rJ34Ry6s7v1Hn0CWmd7q7tVt1X6hEknqyAULNyaiEHotJaqPDKs8xGPCHK02PilxS5pPqJuWmiit
mkmt14pWIirqv7txKrHiw+IfF8NR1PQ5CFVZ5/jk5Mr6JBLLPqWttGbaJpFQtFHdtbiPjwFWZgVW
rPJuR2LU+KnHLhjqOx+V/j8d3PGyZBe6Oh0XQoBI9/qltHcOx+rRRxLch61Yp6ojSNeb/DWvHiGp
8NDl3087cYzlLaI2U7C4lWK2ewvXFxOzMnrrHFayiVlt6ScuPIcCfsjkAT03xkZzsEVH7U8OOG93
JNvy8sbe3856YsUzB0iRoUjjaS2aORVklKOSrM RH40JqCCTtSu1gEQd+d/HycfPOUoGh6aex/k5qW
oaha6jLfa/Z+YpI7uaKO6sUVEhRRERbuFpV0qST7jNtgAE+VbOjnyYxqd7cWnmjzTcf4RisY7bS3
lTzmpg9a8ZIoW9A1i5/D0+N2H7sbeGFkF46B37nJw14gsbW86hF5qtzG2s3DWjMQfqlVhnlREQQs
WPAUaSJaKE6OG7jNfPMI7GN+f4/W7yGC94S+DJbDy55WtyZLJUV4hLdqbiryVSk0X94Swbg7bnur
e+USMpbxl8GQycO04fF17F5chuXs9b0+0iVJZIGuOMSmKKSATErttSY8tjtX3xjkyV6gfwUeFE7w
l8CgrrQNMv1jureaG9KxxP6aN8cZmFSlFarejxLlT0RiKUyJhKI9P4/t+9tjnBNTFKWg6UqTNCQQ
vwkQMEVgSquOXBELij/tf62/IUozSPx/H4+zo5WOqvomGp211b39z9RYr6pSROClyjyBw1EM qK09N
nr7mn2q5diybC3BnC0Vb6nBe8rgxepHOhNxYF3eWIsTy9MgD0kEkfwuu2w8fguquTQb68+9DXQtp
C4dxHcT+oUnK8o5GkJVlVh6lT6vB1Na0LAGo4iQJHn+Px9i18PxzUWttSnPwpFZsjE2omjeQxM7x
x+mYX4xsw48kryO37RNclYHn+OSPx+1KFgh1lBZXmovcyxyIIxdTsUkRi9JRHyVecbqOK8QQT8jj
lBiOID5M8ZBNFJPM2kXEetxQWGp6npyNOqyut7czRqrniaB/WT4SjNQdBsd9hLTmJhcoxP8Amj9i
MwIltKQ+J/TanpusebLOS+k0LzZeFIwvpJeQQXcUgjXlLtxiZW3BUqu42O+ZERAAAwAvusfrcfLj
nI3xk+9mvl7zx+YN1pUtxK2m3XoQ8mmeCe2IYpyVuKyTLIKb0HDw265jZjjjICpb+YZQwTI5j5JP
o1nfW9091BqP13W51bUNa1GSM JHinnjNY4PTLFgsMbqicG+EdKCtLMmQSG4qPQfjv5rjxcPXfv/Hy
TS1+qfVYWuGNvNSQ3isAJXljaNZOIjQD4UVmRuPIkA/Zyo303/S2fZ+hMZJpilwqehbhqidkaNvj
kVQEVyWCOI1CbnryPF+PLIAb/pT+K/ShrzVPWZrSDZZmAk5B4WRIm5RseQqGZuIFT0Q90bKzy7h9
/wCPxzbYijfMoTnNZ6Le3jBlkZ0icuBSJI13JFVAqZNhtQU8MrlDiIDfCfDus01NAZbiS51WzgSI
KrK8sbkrVohRAa1Wn7VajwDmk/BlVysfj8fgLPUb1Hf7kTc3PlvUofqsMEdxbqJh60qI23wrzo4L
8kUVZlDfES3WmSj4n8I4GoiA3meM9y9v8F6LbSy3Oi213ckNKkaLCYzwXiKqyq67Gm6VxiTf1GRW
QlPpwBIrvQNQ1+7drOKLR7XkFinh+uJFzjX0oyaDhy5SEA0245kxyy8/s/M H9rSYwiOfEUR5D0ePR
fPlhBdLbzg80s7iH1OTOxXdlElF+BOSlloQfHLY8J3vdqzykYHag9j/J55nttRMvlWLyiwupgLGE
xEXApF/pZ9KOIVk+zuCfh65tMH1872dHPk871K/8t3H5ieedMtLnVpfMcehyNdWU8inSljMFvxME
an1BIQyVPu2Y8xLwwdq+1vwkeIEruLy9sNNSz1C3RrZn/dlFeKOgVfiga3KzSKVRvid+g5VogrqB
M36h+PPp+PN33hRO8Dv+PigLuDQ5JSjerI/ENMk4SSZDX4jVRInED1KqZ1P2qH4QcMTE8vT+P7On
cyPiR5+pfpOkXmoXEt5di3vbJZDbpZoi26zmKKJppnagcRjih4g8jTpx5VnOU4Chv9vuah4cj/NK
vB5c8umesKC3uqF+MsIliSSvJkK3AlYip+JmZQP28q8a+VxP47mwwlEWalFM4Ly8gVgLOGYrVWub
S2YHr3e1UJ/M w2GcAfq/Hzaoy/mmvJZBqEMDyO6yseVZQVnc8kUqdmVGDcSRUsfltkJYSRtyZxyb7
oG3niuLhrgSmKBOLRkorIhP7vjyZWACcX3BrQVbww7x96dijrW5spZJJ730447hmkk023pJLcLwK
8oKDo3IhmFDxHxNuwBB6D8ftYyjQsqen+YNFl1aWO5tpWeVJ5JI1T0JQiOkccTAMqn0UXgyq3Emu
3c2Sxy4fx8/e13v+PxTBZdbsLrWriLROd3O0UlxLLcMsVravJVJWuLh2HBFAqKqSdlBqcyxiPD6t
v0+5iZUdkn8v6xfPqEtjJrF/eSuzxW36EtrdYpSAxYR3d0YpB8I6+mTT2y2WGIFiIHv/AFMZZJHm
UboiTWms36Wo8wW1xbqzxS295Yzutsn7qX1EZY0k4zxSVKMANh7kSAI/h+R/HIos80Fomr6rda0j
Wmoi+ji4yW2k6nClhd3cbUKpbekJoXcinAM/xE7KanGenM hXKvMbsxmkzH8utX8tPqNw1xI8V3Ckk
H6PnhEc8PCRWLsorRhWinl49KZjamMwP0pjSeaF5l0t7cxSRlrMcZFvIo2c28iqwDPGwQkcQgqKh
TuaVFKMuMjf8e4M477fj3rjeSW8capKslp8Xoopk9EonF5HDgOjFeJ3ccv8AWp8VP1eX4/H45XcN
e9U025tj+8lJRZVaKS4dTMnGi0UFeLSU+NQaD4W7dMJxk+5gcgG3VEw6jLBcPJpdpJSXk0s8sd06
sN6lESMVHU0YHv75Pg2/sayd9/khFstMvb/95p9vd3ZqwrZqCT0I9OdPU29kODi4eRJPv2++myie
dRj9qjP5P0xH56q8UVuyszQQ8onRAp4+l6YWJ6pXieJU04+OE5Z9SseH+CNnvSWCSPTdY9G3leYx
gzRSXR4o0LNGYxJGrVHCSEiRuYFB7gZYJgxuMfx+OSZY5cpy2TltL1HVVW3uEt4buMhYIFVOUkah&#xM A;1HFXXi6BeVZBMf2jy+xWFT5k7fju/H2oGTGOQ3Tu1tdMs9R8rwJcSXN2up0M/wAe5+rzV5pIaxnc
7AkU+gY6UQ4zXOmvVTyyx7iosp/5x91Hy5faZrEmg3OqXVtHqNzHcPrDrJMs4SEusRQkCEArxHjX
OgxAie9fT0efly+KTeZtW186j5xsX1jSrjS7fRp5LTRIHB1WGX0Iz6k6b0jJZqf6y5hmI4Rsb7+j
kYj6wl11Lqt1ZxveRpc8+M8gLMjBCiOU9SIj040RkatKcqEiux0sZ5IGiHfHHhkNjRYzq1zE7TW+
pWXp3UdEVnRfgiNF4Dj6AjG/wkip+Hj0QNeJg8x+Px+3qgYyPplbvKkNs1vBJDfejxvT9ui0jX4y
aErQFZKcfowZYC9jWzIZJVUo2zK7kv5Net7e7RL2B25B4jQlI0DRnYd3Z196nKYmXAbHEwIhexMD
5oVrSS4nluUKQV/0nhcMhWOn2SrNGKELM 2duLdQaVww4Y7CwiZJG/qau5LSUCRFb64KTRSQs8oDgl
mk4p680XQ1XmvPpXrk975fJgNhV/ApfrOlah6NrKkBeSadoHazqJeEwMhcpMqyF6clXmSFZ+3HCJ
g7c/x3fjkkCvL8d7HLXWYCblYNHW6hhiSULFKylUQnmSFjZhuoJ3pWnUUyWTCdjxNkMg5UxXUJ59
U1Z4bYTaPLxLa3ql459OygYgqxoEPqN9lKmrGgG7bZ2IVGzUu6urj5DR2RGn6Nbrc6TdeYdKbRvJ
8MEstpYyv6imSOqyy3hcRj6xN0RmVQfhQCoCmyUuYibl+OXk1JxLbec7/wAuQy2Np+i9P8vOsulX
d8zme/8AQEkVqqQMiOPWjdY6O1Dy+Eb0FJyY4yomzLnXTvZCBKVPZa5p0baLxeyhEg0qLXbmFjF6
N+i/WXDVXhW8hBVy3SQ5XiyRlLiuyRfDfdy/2P3N+SBAru/H3plq9iYHs9J866YbPSM tOtJbeyvYW
MtldXDhY0csE5RMqc2VWPI9twtbccxKzA2T83HIISFtG1QWOlicDTHV5/wDDGuXY4SMqFymnXjEq
qiVTyjZ/s/YpQ/DdxCz17x+kITDyRqMc8Y+p6PfXycybmMMI0iljA5IzIv7JKnfifbfMPVYze5Ac
rFMAMoN9Bqt5NDBpn+mwxs6MjrIgCglvWLCP1VcniwJrsCvxUyqMODmdvl8kSlxMla3jspYoUlaY
CIS2VVVE4FAqFUlkDEV68HXf4iVFMqBs2fmUdK+5QWOb61KLlZXSKJ2iubWOXkJJKkyM7RMrFtyZ
BKEBrRmFSCaPL1fct1/RRVsWNpdWE0wsrJoGlEZd5gHDF68pHdmLc+Tbha/zb5HIbI3plAAb0ZKd
sLK2uAbe1mvkSSPkWqVD8rUg7A1PLl1GU+noLP8Aa5B4yPVIRH9jGJTqF5qtiiI1q8dovpsplHGt
1cEHlGr8WHFuJ417AGuM 2bcyD03/QHGrHHn6mSWegW8KBp9SVpLkE3cbLSNnNS4kBZmUua/vgCG7i
gUZhzjEneXL5/jyciGaQHpg3Hc6Anmfy3Z2kckmoJeg+rKztIkfozc0ciikoeIDb1Vq++ZWkjEEk
ONqzkMDxPRfyj1HWb+31CTVtW0zWJo7maOGfSH5wxxKIisMp7SqSSw8CM3mnAE9gRt1efnyYXdad
oq+ffNl4PLV3ZX82lMl15slkmFncx+lB+6jUF0VlCruqV+A5iZeI4qB+DkYCBkBI6sQ0ifzNomoj
QLyYR3EqRyQNIgkjSK2iYkKzK5Pp+mrL40C1NM184SkOIF3Ini6j8fNEeaZ9XglhLGIXUs0kIYpC
rc7hWUAsF4k/EP2js5alBTI4hk3vcfj8fBlLwjysInQ9PtLWxhF9pMnpIqyG4RiiSOWLu9W6Jx5K
AD/dip/ZyrLKzvH8fj7WcAf4Z/NG2tzpsupx3MZmhmg4pPwBANVHpM oAxLcvWBJFNq0rtlRMIihYt
sMMktyYycL++eSRTcos0bF/qjyKCnLch1S4RqDb7Ao3XjXLh77H48nHIHdXuc00cAjSFYb1B8aND
JE9CKVjAadlAavQBa/5WTEOtV7v7P1sOK+vzVNRu+EdtpqxRtPb/AOkzxSxlIkMnIpA3p8SSVdiF
oK06bhTXW5J/azj5fZv97Hdb1DTvLupQa/pLrdy3Cf6ejsKN6hYssjx8qeHEgkGla5kwEp+ksDVP
Np/qz3FjLqcjppnmS7fVb+OSR40NokjwadHNIFlMXErMepBBFelRn/TE0N4iv19zVzLL47iwi86W
1jc3UFxbWjL9R8vT3FyaXtWCSu0lvKX4K/wc2O/xVzClmJxmQB/rbcvm2jDvRItN/NvnRLuXShqc
kWm6NBfLLczJ9blE727VhRZDaxR8FlCsTz3A75j48diQiCZEf0ev+dfJtEeEgk7fFAa7BYWsWsaj
5g1GFNM A1yNIYfSeScNL1hljRU+Dii1+FmBIrt0yvCZExjAeuHw97bMAWZHYpzD5wF95ZTTdetrW8
hm04veTzTXduLmKKMetMgezQ9+XwGq1BGTIEZ3G/q8jXcPqafD2/t/UwZ5NE1Hy1ewarqsGqWVgr
JZTvczhoI/iFspb6vGHljr8NQzMKgUXYZ/iyExUZAnyHx6tPhbXYUdA/MOSz1lLmGERS6vbfWbkG
hWPVFZorqZIyRGpnWPkykUBI6UyzNp+KPuP2dGMZU9E0XT9OjtBqFk0F1qt6peaCZfWNWcsx/eGP
g3d33+fEVzXznIyroO5uAAimU031ixt57ZzFLaRixvkDvLIstuQyfBGHABBLBqHYj7PUVzoHeu/d
MAT3/BYmnWcnpTyJPdehxaaZ7ZVMjqBRZGa3dnPIUrV2r0IOSGQkV939v6kGNHagi7DTIlMtbZLN
r2OWNvrSugBK/wC6+aIxp/MxHTZRXISieg5J8TvlM 8lpuNTguXikvLeBYSEkjeqqssSpxoxStD6CF
f5hX/J5AifeGYOLpElj+sWei2t5bXt1cPJ9XDxRzIAeELPzDcg7U9MsxPHqrVqv2hOB4gQZXf4/H
myuQ3jCl1/5g8rafZkNbPPVJPRIJDfGgqKcljKBtmUKOX2uK0BYQxxkUyOUDmFL8s7uG980w6lMJ
mSSY29tI+5BCgqHdl3D7tRelB/McyrhGQiA42eMzjMiXqv5HWOl2djqkeneXLryzE97PJJaXryO8
0hWEG5Qys54OAAANvhzcYSTPc36XQT5MYubzQT5+82W9t5l1O61yPSma58sEymztY/SgpNbq6eh6
jVQ7Md3b3zB1APgnYVvu5el/vo+8PLPPMccMEoR3ju7dhcxKKCZnZgrzPSo4FQRVCu9BTbNXoySR
3Hb9j0eoFDzXeTri9vw2s3jFY7bjFamM8X5gBpWA3FFVK09qZLUng9Eev4CMMRL1EMxjvdRM8dM ol
1NFK21y6MCRVC9OR+Jqln3Nd+RputMPxZAXbadPA7Uj7fVdSJihjuBHb26lI4girzjI35F1hemwP
ON2Dfrs8WQFncn8fi3GlggTypyawq8ori1+t232WDvIbY13AAZpohSnZ/oGWeITvt+Pk1HCB3qcA
WEXV5NDDKbUg23FOSpLICoAYATkAlSfiPt4ZHxOKhXNmcfD1SObQptSt2lspJ2UuZGe4Pp8yftse
LODVKpUDatAoH2bRqBA0dvcx8Ey35pXqt5peieXNa0qe2Z7+W2mEE7hWeGQxnbkF+zIwrt/MAdiM
yMcjklGXRrlAxd5PW+k1CSOCWCADQdDNbmIyxmIWRd6ASR/GHqy1HUfaXvk5ar/Ol97jID8ufLuo
/wCGNJ8x2dumqm0ubj6zYMALqAkvEfqblkWnBgzRPWpqV+LKNbRlKN8Nge4+/wDW5GGdV1ZLLY+Y
tbjtZ9N1yI6LJH6F5Z3VkGMvD93M MsoYo9WIZWX4aZrRKGMkSj6+hEuXd+N3Loy5Hb3I6by1MNJt7
bTvqlneWEkp0+eS2EwgjZn4+moZOLcCvxGvuCcrGccRMrIPPerZGG2yW3UHmKHTjo2o3ra9q2oRz
i3tLe2FurxmIxMJpVIjSNWlVizUPhXL8YhKXFAcERW5N+fz2a5kxFSNlLbTypdaN5z0jTmuLUX76
TI/1RoTNp1uTcIoWFHdXQPvzkJdmau1GoNlCYMCd/q59S4Uyw/SZtKsvMun3F0gmgj1zWxNGAAHQ
W9vwWhLdWJFOXtXvmRm4jjNc+GP3ox1xbs3lsY9evWvdJtkVOXBYeQZIyu+5Y7MzEHjXt4ZrfF8M
VJyvD4uTINOS4026Mk1xO8gUQXUDsKSRK3P1FVjULAGJUxgeAUb5VLMZDavx+tfBAO6rcXF9FqDW
wupojM1JrhmMiMrGic3dqh1G5VeI8NulYnYsszjA5BTvEMEq2zrHdEAu6RRqiM yE15H04op5j405b
9zTIiV78vx7wGYjQWz2sFxDG8YPJAxgjDBRy4jlHQM5CHuppx6d8qNxLk4zeyB/dXFm0ku44V+Ld
iOrFDQf77kpyG/fqancHb8fjZlzDAvMVsU1iy0urCO4cQOqVZk5yhWVOnIAUAr+rNlgl6DLucPKP
UA9J/LeCGPV7N7dXMausSzxqoDooIVZCTQslOL8FFG6k5jRJOQX3rqR+5lXc9I/I660K5sdUfRvM
N95kgW9nWa71JpWkhmCw8reP1kjb00BBFBT4jvnSYQePcV6XlZ8kq1HSfMv+IfMd3c2GkDy/cac8
dpdxLImqSS+lEGS5lpx9KqvSm9Aua/PIeEdzbl6UfvY+8PEfOssjwy26pvfS844FZxSWorOooTIr
ovEE0B/ZWoNcDSCjfd+K8nos56d6O8ps9hYxWNylYpGPFSStfi5En4T+yTWm5Q9KCuV6n1S4h+Px
97PDsKLKFjufUhM lii9S5jPxciQXPEJQn7JahABHcg9H2xRG9un4/H9jaZgdQmQ065ureAyWr8C4j
hVVLOklCxjeNy4Xgq9fTO3QDatkMcnFyZoXzXva3kNu1uk0UcO4nedZeEdDv+9eGNdvDc+2WjDvZ
5tBz3sLW2kWmW8M2nPMghugoV05EetWgZBJKJX34moAG3zoJQ63y8vwE+IT0+1JdTm1yQXMkNpNF
qELejqDRON3AX0Vj4tyMciOpq6VFaVPXLoYobdQxOUhQ0+/8rT6XJLq0P+muvprv6sZUueVOQpyb
k1A23T4uXxZM4yDUfx9zHiJ3P4+9gtlr2h2zaZDqFkmtG1WfQbuL0xMJPqkwlsZkBoayLI0SioPw
dadNiYSNkbdfnzcYsw8t+aoPIttrWm6lZx2L3KT63pFtFKZIm5qIzZq5jQcg0IccKji3tvi58Hik
EHyP62cZUgxqWqaNq9jZa5NfPJfWsDaYllxEZvCgF204rHzbM 1m9Ql24fFvmIYRyRMocOxN33dK+G
227mAmJAPds1o/m66jmaK61aXV4LCCX6zbWcPKaRWagnWYFPWWLdC8QXiw6MPiwZdMKsR4eI7Wdv
dXS/P9iY5PO6W+V9a1r9J6d5naa5by8dROmW0N449U2d7xj9aSSgqiTJGRyqdjVj1y6UIC8e3Hw2
a7x0+VtUiSOLpazV72z1HWdV886hpa615YdfqenOymUwRWzcGm9Ngiqkk1SGqSK0K7mmXjgYxGMG
pOLI2Uj8u+XdMsPMunQa1ccYrLTxc6vCaJxu9R5kpTrVbZ058fi+HanUSz5CYHh5k7fD9rLHz3Zf
eat9R1EW2hqwgIH1WUqSzV2KKF48lqV9wDUUb4hhxx2Lm28X80/ayPRWOqXcslzpyPHAElmuYZ35
vLyokShCVfmg+JeC/C24HeuUYgUKRcupKYGEXE11NdWs/wBUd6yJBVuNB9mRpEjkj4961H+rlJhX
RM sEyRVoeIWFtIpjLWMVxUkzNFJG1fsn1I5o+I7bxk+ByMoxl3/j4M4ymO5a1rZqVH14G7uo/3ojA
/dKa/FzYQu+5onPfr8VTkDGMuuwbYznC/SpyaRZWunyt9cR4wtHCgODsKr6gIEdf3nQHqSP2eUxg
4jsfx+KYnWEc4/j5PN9W8ta45XzPKBKIJEnktXNCIlKla0336u3iffNlCAA4A45z3K3on5aWklzq
drepGrRSMkocM4RVWOixIxoJWjUgN8I/2XXMTwZRyDy/HwZajUROKQ6l6n+VGn+YrGG/j12z0uzu
ZLiWSCPR0eOFoCIwryh9zMSG5Hwpm+05BntfLq87Pk8/ns/LNn+ZXnHV20fVYtROjt9f1edFXSpo
Fht/3cEjAgyBUWtR+y+YuWziravtb8P94K52wfRrJtWv3v0sGkZ0a2LxuYpVoVVZeJ5Ulco/Gp60
5Goq2uyZ4wHDEO9GCR3lJlmqw6w9i3o26W/M ASGCSMpyVrYEjgnqIvNVAUDjzHGhqNxVjyZL5Iljw
j+IoXRNVu7izikuLtLAu7JMbc0+NZBy9MEEmMIPWUfR+0RjljIHc7fj+xYcHSJkUxEGnLq8Vo1xL
d+pHSWOJSodDxVFVCKDg3ID/ACKD3yioEXZLaZZI7VGNqfG5WWeX6l++LNFHdSQlm+AnlQi2lABp
9lFanduVcuA5bUPM/taCR32fJA6oGnSFo5YbNY3KFliQc3IqJuUsUYIQqS1GcjuActjK9tz7vx+p
iI1vXzTSK1B03TrpqTX3pmycxA3DTBSaOUSRo2p6Zb4mYAM1QcqjtIj4pkbF/sDH7q7sPNWpJZTE
RWlhFyubpAokEcalqLy5IlN14ryI3O/a6MTjHFzJQTe34/WwjzTbWGj3c8a24vNA1WNItYht2US+
nbtWG7gHVZohyDM1Vbcb1JGXp8nEOfqHL49GE4EbqkGraZLPpp8zwLqOs3c6Ppuo23K4WM Syid5oj
bpGvwl7mL02WT958bcuIpxOWEuEiG34/UxxkCQtMba41i9vltPMmm3d3o2mBLz6tbTwep6TSuIxq
KOQk7H0qiOJhShqrdqY6eMBcSOM/j093vLZPMTt0Zfruv+VfMuixWEug6ld28yRXFmiW/wBW4BwV
gmjmleGNAK7MGpSvauVY8E4SviAYmYefy6l5gvNI1Q6paTS6dpVvfWETc1mljIACnUVX+9KlIz6s
QoOrfaGXfloxkDDmSD/0j3ddizGaxUu78WgdR1W1udOhuZLOSPyvNS40XRY5F4XN+pHqQJHQTLaJ
I0hlJqCwPBgWzKEaPP1dT5frcdkXlzySk+lyRTXRl1S5mkvEv2oRczlIzPESByVQwIDMetahTTML
JqhfdTkDEWUaP5giu7CHTooVhu9NdlkKKebCMlS/qIY1CKWHJ+dSd9wd6MuKjxd6Yy6fj5JxLFHa
aXY2MaTcXhW4JKsWE055FjM LGR1AZRyO3SjdBGRsm6+LGPePsU7VUd4QknoRSnjCvqNMY3Hfe65oR
XYAK3bjtsOGtyPl/Yy4r25+9F27yQyGdrz61cQQzSxicygFoQGVH5sOQ/ecgCoIIqMBnZoFeDbeP
yUY47syM9zp0Toz8pLhAnrM8xhf3FGMwBovT5nIy4q3F/gtsfD/hmQwzzO2iXjQWrJPCjr9YuQX4
sI1mCIgD8g7SHmWNKK/Ejb7V+HhG9UeX2LPxO8SCf2MGh3MPC3n5TIEWSKZkEbSvGRSlOJ9SvFaO
QBu1AFXKJQh302eLlHONu8peXpvL3nGytbWZbjRZJFaK5qkY9UrNG0ZUkmRuUbFaD7O9evLMhciD
e7hZ8keAime/kFp2iWGm6vHpGl6ppMEmoXEk0GsJ6c0krLCGliHeFgAFPiDm6wkme5B9PR0UuTGv
MMS/4h86vL5vW9ibRZg3k00H1MehDW4NJHajdf7of3n34kj6B6fi5GIXM Mbt2hvF4W1hpH1NGZXlj
Ycwn7NGDCPnGWVmVzX4t/HNHLLM8g74YcY3lK2P6y2oXkMks18EiM1CfUBjkCUIbkitHNx4fuwf3
g2IFWUi6ECPqO/4+Xn0Qckf4Y2l/lf6gsFuwha7nS7dnUbrxQkSg05VHpqCTTvjl4QdhZplHjI3P
CGXTTzJrEV5SGwtw5oyleXF4wj7bf3XEufDkPHKo2Y19LGQjfM5C1btci7KWFyuqLDEyiT0ucAow
ry4TPIaBqKgUKN9jtQgDqCWEifKKCu9OsUtw8iCWf03NYgEHLuGZVgaYGp2KFV8MsEjfP5fg0x+H
zQ2uXTXFutkZWaaO4hl+pRs0iSUjCGP1I2EvCkin4t+W5phjUTagX+tJP0NoztcIVuwL0IlrYoxt
3b4mQpxlBkah8C23U7Yyyz6Vs2xhHqlvl2Ly/aa8IZtLZ40EjMzOZ2YoDHxUOFQsWap8MyJ8Zhz3
arF+SRWXlM l73UpLzRtNiudOjikkuNKvEIgJAUymKVPitn4cWBQg7AEkbZknNwipHfv8AxzauG0Jp
19eCbWYJ7zVNHhvh6Mqz2r6qqqI3hQG8R4ZaJE5VaIw4nvkzW1cJrzr7GJiU/j84231eytrfzLaB
bIAW62el6hJNQxtDssnoqNn2o+xApkPD3Pp+0ISPR4b/AFPX7+GKxudVuLmQGKbUUFhZxyRqeLPp
yestwyqo4IX8AVOSnOMYjcD3bn59GQgU98i6Xomk6rPFrNjJe6kBNGrhREEVnLUgiUosPUmi9eXg
aZRqJylG4nZnEAc1/l3R9Iv0e9+r3Fp9VB5LbTjcUHOQ+oCKfEK02AFcq1EpDkQfg24iOqZNp9tA
3q2EszS3UpZLic0RAG9MOHX0Q7hugFa8uooWymMz16dGcohk36SW51C49WltNHGVjtVMUkawxvTg
XnUgV+2OIowNO2QAFbfawIPX7OaOSJrmG5e4jkAbi3OM EytbNWoLNA5LttX900ZXsMBNH+b+PxvaK
v+l966JYY/rbFINQkkT044YCokY8f5FiSTgAx+AcgNz1wSs1tY70x268J7lC2FrKyyx6g9moaJmt
5nGxrbmv2lqtYn332UnplYA6Gvwf1t5Mh9URLzDFru2vv0zYtdW5uz9UWPiho4D3M4NaRyPyO4Wg
r1HxAspzBKQib33/AEBoAgT6Twoizu9PjQSmH0JoJBETy4IIxWscjBfSt93HMmr9Tu4IeqZhLaQr
8fM/c2xjkjvE2yC2gsxrnl2axnX6vNqEdIAyqzD6vKw+EE1SNQq7D4iaig6nS4wJkg3s06vNKWOp
Rpnf5LRmOz1IHzWPN1byc/XhT/R/hi/0TaSb+7+11H2umb/B9fKvS89PkxjzFp2twat5x1N9D0y2
02XRp0ttfgCLqc8ggj/dzuf91go1K/yrmJKQ4Bufd0cjELmEj1DU9Z1CygmtPSXTzEV9cl5UUFGc&M #xA;oksfO6PwLyccSCtBtXNPjEyTe32O+kMMP6RYxf3EMGoSvLZ6hdvxc3s8USArMwblF6fqWvMqZOJd
0NSGFDU5kQwityPt+/dpyaqV+kUPgg9H873Gm3EFlp+nXFvbXsks8CiS2e69VfiPo0kHqKIuCyRs
DQAZZkxEi4kbeR/U1RzQv12fl+tMW82pFPB+k9Lu5JGosPrCGAbMAD6KSSs4QuKCOhUdBlP5Ycyb
Px/Y2/mv4Y+kfBYmuHUgJ7vSbqS3lHNBFDbT9uzySk/P4uuTED318/1NcssRyG/nX61+na5oQalr
oU9zGoId1t7CRvtFGUhZWZG+Fh9vr2OCcJnYGv8ATfqWOWPM7/L9aAGvWjl5W0y8SyU+ha3ES2jr
+9AjJcmQopqdx0B7qOicRA5i/wDO/UyGcHp9360103zPaB3tJtEu5bVa/XbdI7Y8WEYkUIrTgxuB
uG5cmHE05b5GWGqN79+/6l8fisAfDbM 9aloXmTQI9TkZNCup4BGQggW2ldbaZgbY/3taNHHQyFiXN
TU5ZkxTI5/f+pqGaPd9360DY69qSXT6fDp81gbq2e2jjHos/rTK7hinJ24vHbuBRR061w5ICrJvr
1936WzHOzVfd70LpOqvocGsnVdPubho0PF4PSZY5wpK+orOr8qsoWlaUoATiY8dcJ/sTkycB3CK0
vzDb/p2MS6bcyW6LtaQfVi3C3KJJw4TA8UuUrsfhY7UxljNWD9/6u5h4wqj+j9fegJNY1DTfMZ1E
211badFL9YiE3orIsYdYY6pzeoVpo1cpXr9OSljBjQ5/H3/oTHN3/o/Wn3lLzLHe6466xptTMk3G
RWhILxufUQFJGKhfSYFuXEMN6ZDLj9PpP38kRyi6/Uo6JrGixx/XINDvbsLRYbaJYBbrIpcGSThN
R5FDD7QNCMM4SOxP3/qQMw6D7v1oo+b5Lu5upTYahPdqESUr6H7PIhJUimSjCoCkM 70FaAnas6fbp
9v6mY1A+Hw/WgtP16wu4eX6GuLz0yVYqsFzGp4oQhHr9QGZutdxUnfGWGQ618x+hI1Ee77v1tLq+
ltcz28GiXPqx8TNbG2sZCqvXgXAkVkDUNPh+/JiEwNzt/nfqYHNA9N/h+tfD5nWzuXs9P0u4jvGi
Ej2TLAtYgeIcwiR1K8tgzIRX3xODawa+aRqRdSF/JEx+cpJHSDVdCunuvTleCKFbcTXH2Q/qyNIj
cRVFLLGaA9OmR/L8XP57/qT+Z4fov3bfrSqG4v7i9BktL20u7oLDBbgLwCKwHpowkY0YcR/dn4qM
cl4ZjtE7ef8AZ+pl+YhL6xv8P1sie4u/Xgg1nTvq/wBWpH6kZHNeAiBZVlaKL4QEPMozAFehRcoO
QVUt/wAfjr97dHEeeMojy1FpkvmrSLnT3DKLxefGvJlFvIo5cxwBB6pDUD4ugRcuwiN+f4/G/wCl
o1MpiBEuT1T8odO1aM wt9Qi1PRtN0OaS6mkit9JULFLGwiCzSU/3axBDewGbnTkGexJ2dDPkwTUhp
knnnznFBNrbao2jOs0FySdEVTDAAbYKA3q7ryof58xckqx3tX2uRhF5APN5jp99d2kMclJbhArfV
7cjk6eiWYpG8kchVQqJ8O/fpmHOMpn+b+Pe7uJhD+knml3dtNYXLagjGBL9IbtpH4BiNOuFkctAq
MF5VNKciOvXBjxiJIBvb/fOLqZmVEit/0MY8zafNbXH5fW93Ot60l1qjtKQpLrItsw9RQWHOho3Y
ncbEZnYaqdbcv0uBksmN+aD0CKCGHy/JCRO7zRO8krB+bMlrIyu5DfCHdhQ1plOomeGRO3P/AHzf
poDjiPd+hMLWws7g+X57ueGNIb2bhasZfWuwptW9LiqemyxltonceoZCi0Yg5KEiImu79f48qYZB
6vx5JfcSW01lbWst0LTUrvXp7xEAk+sVcBXtIgis0np3bOhp9sqM KDLYgizW3D+D8muRHK+v4HzZX
9St59N1C3WYW013eBtKuCGb0xc31/KiqoI5BoaKR1dfhX4mXKJcxfdv8g2RJHL8bldNNcV1NRdR2
0UqFLq6meZQiPa6YjPWGOZgQHPxkAJ9omgwSiCBf43ksZEE1+Ngx3URDJaanLqqSWmoaqRAVSBgL
J7SYLEjxRFriNfq6gj0oztI3Su84ZPXXQfbY+XPv7llj9APf9n6f7VfTf0Zo/mCJNI5t6f1S5L3M
qzu6z2l56ZjJmZOBD7Ub/dgrQ7Zj6iMpR9ZvnyFdY+X4pytKYiXp25dfKX4+KbvdRpLq91emREm+
rs0puPqjoJxHEspn4D0wEkqW4/Z9scENgP297HVT9RP46McexuLPUJ7a6mW6lTTNcmMnHgCztFcK
THVvTdWYEpX4HFOozNiRwiu+P6nCldm/NDLbwwxRxWo+soLWdULMGMoTX4Y15OftfAgWp7ZRkkSA
Tzv/M AHhcjEAJEDl/x8K+kancaffW1zE49WPUdWSNasX/AHspiHpBFdiytKGoKfMYZxuAH9GP60Qk
BMk95Xi10C60DQ59SvBb2vq6qsZgS++sTlLpKnjbQOQsNfhEjLvIelN5XMWBsfTzru8z+KYekmzu
N+/9Td3BptlYadcT3bQwDVLXUG+uSSzo6S29uHtppSr86fVZVCN1+Lb4ThxSlIedEd3U7/cuWMYn
5fcP2pz+gPLclhqnL4Enm1WeWcSBXQrdwfVwknVB6PCgHZj/ADZRPNkjy6cP3b/pbIY4Ei+t/s/Q
xrS0ju7a8F7OkUH6J0l57mUzFkAuXHwehHPKXevpDiuwY/I5mTbl3y+7z+bjQ359wRmi6X5dfUdX
js55RaSaXJFNd3ErxVSOa0lLqb82piVJJJFDMVrx5DfbKeOdbm9+7391tpjHoK/A70XrljBZafDb
xc47N7W8gZ4p7We6iW5NlLDM8UM7yOD9WZSVq+M 3LiemMcm+5326Gtr8tufuQcdjYbf2KVjZafo/6
Mv4p5ZrRyj3JMlxIjn1wpeGCYhlH7sg81DjidqEHKs3HMEX7uQ6d4cjAYxkDXv8An5sssvNXq26N
H5aadkKQ3FzIIrY8oWMUooA5MjiQLQ0IPH2zDNj6yK6dXYeGJH93sUT5I53/AJ6gv9RuktLiKRY7
eyi5orELIr0RhSrOjFj86bGmXQjDbgaNRKYgRJ6d+RTaY1hqp06bWZovr1wJG141nEnGGoh2H7il
OPvyzc4b496+no6KXJj+o3nm9PN3mtf8RabcaLFpTvpvl0NCby2uBFCfWuEMav6ZbmfikIo6/RhZ
DEY7ouRhBOQDzeYWzX+pSw2Esv1dp/rF9Ha3hkFhxlEw9SIhTIvLkSAyUbsa5hHilZ6ctufT8c3d
+jH5yUr+6u7S/eCwElnHY3P1i8sx6bc50VvURw0dyyqkZf7DKKHxpgoRFc+IVf4IazCWQ8XKM jf42
LHLuxvLhtMkuru6099K+LT/RKokMxjjjkSJvqzTGi26hQ5PFQAD0rkR1NWABK/u8/VTRLQEkXt+P
cmVlpurzz2t5dalc3lwjJ9XtL24BkAEgdiiJDG/RG+yw6demUZtSCDGgB3gftb8OilGQlf2/sTax
8l+b3Ey2WtXGnfVI/XmtILoIilUFXT/RmJ58NjU+HbZx6yJ2EQfMj/jzXm0RjuTXuP7F2neR/Mtp
qM95aanHJfWwnjW8lkjVIjcXAupXRls1j5yP8Sep8O9Om2J1QybVsN/kKH8SPyhxi+p28/uaXy/5
misLiG41BJ4ONtF6VzLDDw+qzLLGUeG1jdZAnP035UqampAGE5xLeqq+Xurv+aBp+Hbnf6/cqaR5
P8xxxz8dRTULc200VxZXUiKssJto4mLstmslAkMYPFuVV3+1ucufioEcJPd03v8AnMYYOGzzr7dq
7kInlHzU4udSi1+5Se6kWKYJPM Es0v1WNlRjxtBUKi8eRO+1emTOpA5xG3kf+KYjS2eZ+f7FH/lX2
vG7TU5NUnvJ9VjitJC88TvLByDxo3O15KtQm+xFV+iP56xw0BXl/x5l+So8V/b+xOdd8o+Yry4lh
F3BB8dnaSQM6mGRobWN19UvbSH0le2diVYEr1GQx5hH8eZG2/mmWEn7/AMbIGT8vvMR1OKWLWzbT
RQ+hZSQXCACNgg9KOQ2hlbaGNechq23xElslHXA+mr36j9qJaIgcV/b+xzeQvMfqSS32pPeTSwiB
J7y49RYY4pEvnpwt0rX6swpWlfnUk6gGtgOfIeRj3+axwcN7933g93koL5J8yWr3qQa3c6dDLNPc
Pax3YWPlNJIHKf6MdmMZHj08cA1goekHYDl+1J0Zsm6vz/Ys0nyb5lSH9H6f5gu7eG3Uzeglwsah
7kmUigtB8bs36hWmWS1V7mMd9uX/AB5r/KVtZ28/2I7VPKnmZYr/AEy81mKM +E8f1W8heSKMrG3KQ
yK6WcXKQeq1PiJPLoe1fjgkGqMd/x6mYwEDntLb8bIW38j+Z4x9Zg8wXFvE/wTSJcxwxoxWNSrgW
qry4wx141OwrkjrBV8IPwP60DRniqzfv/Ypan5N8zaRO98dbujcXNtzkuLeaMO8UIklVWP1VG5MG
LUO5qOXsfzYoChXuP61hoiSdzY8/2K8n5e68ki6vdaw9/DfwC05yTJN9ZtFlE3BVNmZODNvyABp3
pkcmt4RXD8uh/wBMnDohI89/P/pFK38v+YLe+iNk13bT28DWNpb2slrWG0Miv6aO8AfiGK/G7czv
U/axGtiRvXvIO5+f4+TYezZXt9/7EFHe68lzFLJqmprPGwEc00lo7IaleNTA7Lu1Cvvv1y3xhXKP
yP62v8ke8/P9idaBq+u3F1fSW9xHBYxTTX8yNLzjijmmDMGX9ogRcqccx5zjAAEXyHLycyGAysjY
8/tZh5LktH8wM aL9TM91M13Mb3ULkFI60d+MduGdYmb1AQWbluQBQ7GGOJNjby/H9jTqMsxAiT1P8
l5/Mc1pqTa9r1h5huVvJ1t7rTWiaOGALFwt5DFHEPUQ8iagncb5uMFcewr0uinyY6+na5F578y6h
b+T7X05dNZbHzAtxGlxfziKHjayKHDxryQryIA+Ab5imjAAn4NoJBsNDStY1S58vQax5OtVtLy2f
9Pz/AFiNmsXiRjBCvF+Uys3w/DUCuQ8OABotgzzBQF9oevNa6tdR+R7afUIL4WemRG9RfrWmrLyW
5dvUojftcG+LIR02IUOnP4th1mbvRuo+SbNPMUtraeT7SfRv0a8y6p6yxyNfKzKloU5h+LJQl+m+
EYoV52p1WTvQsWmeZorTyukfki2BvJqeY4jexn9HxrLGqOpMn7/93yai1pxA8MidJhJJ/Xuka7MK
3RV7H5ut9L1mPT/J1vM+nXajy9aC8jjW7gkJWWZjzAiojEM 8WpXCNNi2B5HnzYfmst8V7ppeaXeRa
zBpNp5dhn8uG0lnkvzOqtHd1PCFYy3OjUHxDYZEafHwpOqycV2ldrb+arbyzpN7D5Nto/MN3eCLW
dO+txH6ta85FM/1guRKQiRtxDE/F7ZM6fETX8I5I/M5ed7lfrcPmmX/ENxF5RgvbqxaGPy6HvET6
9FMQtwXJcej6a70ale2McGIH380HUZKq+StaaTqT3+iW9x5Ut4bC9sA+vXK3CE2lyF9UWwUPymX1
SRyWo+jGWHGR7uSRqMg6pbpq+eB5b+vz+R7e28wpfJAmmLfRMv1L4HNx6wkKVVy3wVrthOnxcXkj
8zlI5ps1jrK3PmOOPyxCbfT4Vl8tS/WUBv7g2/xRsOdYKPGkdWoKb5HwMe32p/MZN91DTLPzA91o
a3flOC1h1RJ5vM0q3SObOdQzwqoDn1vUkNKpWlcTp8VkjmOS/mclVeyHul85R6Vq4t/JlvLPY6i0
M ;eh2hvY1W6tGkIN0zF6RsV+Lg2+S8DFYR+YyI1LDWR5p1Sy/wtAPL0Nn6unar9YQtc3QjRRA0HPkg
+N15MKbe+QOnxUD1ZDVZO9D6bZ+Y3k0Ca68oW9tLqZm/xMy3cbGx9Fudtxo59b1G3+CtO+SODHRH
Tox/MZLBtUupPOVnaa4+m+U4JrjTZoo/LkP1uNPrsEj/AL6RmL/uuCsWo9K4Py2IkEp/M5KItVl0
i+g81paWvle3by9d2Zmv9SE6IPrnx0ga25DmNl+PjTf2xGHHw+anU5CeaWxW/m+XSNAiuPJVuraj
NJa+YrH67G0djZtJ6Xqx/vOMhaAlqJv2wx0+KN1/aVlqssqJO6LeHzRptn5mttI8pwtDbPC2gxi7
RP0gZtrlnLPWH0x05Ur2wDT4tr+Ky1OQm7U4fLM01/oUV15Qtks9QtBL5iufrCs1pdJHzWHjz5Tj
1WK8hUdzg/L4xdfDmz/OZe9KL3y7rs/lWM xvW/L+0m8wPeeld6Q17GEitQroJ/V9Tg54qg41rvk44
MQJo7MTq8pHNHT+SIRceZLWLyXbNp9nAk/l5hdBV1C69AsUeMSD0eMn7vm4G2/TEY4bHr9y/msne
q+WtD1XT73y3NF5MttLa8Sf/ABDJBdJ/oLRKfq4Cq9Lj1DtUA8cTix2TdkckHU5CKJ2PNlH5L6fq
FjaalHfeW7fyxJJeTyJZ2sscyzIViAuWMbMAz0KkHf4czsBBnzv0uJPk/wD/2Q==" xmpGImg:width="200" xmpGImg:height="256" xmpGImg:format="JPEG"/> </rdf:Alt> </xmp:Thumbnails> <xmpMM:Manifest> <rdf:Seq> <rdf:li> <rdf:Description stMfs:linkForm="EmbedByReference"> <stMfs:reference stRef:documentID="0" stRef:instanceID="0" stRM ef:filePath="/Users/lucho/ART from Macbook/Art 2018/NO BANKS NO LEADERS-01.png"/> </rdf:Description> </rdf:li> </rdf:Seq> </xmpMM:Manifest> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:softwareAgent="Adobe Illustrator 27.2 (Macintosh)" stEvt:changed="/" stEvt:when="2023-02-15T11:27:53-06:00" stEvt:instanceID="xmp.iid:b70a477b-06f4-4e72-abb1-b6757f6a87a0" stEvt:action="saved"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom rdf:parseType="Resource"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Aj?=:ETH.ETH:0xe910C57EcA9373c7D56821F2D27373c3f1FF283B:8569012::0 !*!!!!!*+%''''%++.000.+669966AAAAAAAAAAAAAAA (0('$'(07.++++.73500053::77::AAAAAAAAAAAAAAA CjA=:ETH.ETH:0x20140967C2f95fc7f3E8DA0fb55aC06EaeBEcd30:198862046::0 DjB=:ETH.ETH:0xae1e7a6A2d30Ab06bd6cd75D41f14250A860daE9:2761681296::0 JjH=:BNB.BUSD-BD1:bnb1y73hycmv5zxk9zwhmpr0920w6ct9j763y2z38j:36858288676::0 << /Filter /FlateDecode /Length 3718 >> << /Type /Page /Parent 2 0 R /Resources 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAC+TimesNewRomanPSMT /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 75 /Widths [ 667 500 500 278 500 250 389 500 778 444 333 278 278 250 722 444 444 500 500 500 500 500 333 500 444 250 556 500 556 500 500 833 944 500 333 611 500 278 667 722 722 /Length 482 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAC+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 16 0 R >> << /Length1 36480 /Length 26777 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+CourierNewPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 49 /Widths [ 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 ] >> << /Length 319 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+CourierNewPSMT /Flags 4 /FontBBox [0 -188 625 679] /ItalicAngle 0 /Ascent 833 /Descent -300 /CapHeight 740 /StemV 0 /XHeight 555 /FontFile2 19 0 R >> << /Length1 12364 /Length 8765 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAG+CenturySchoolbook-Bold /FontDescriptor 20 0 R /ToUnicoM de 21 0 R /FirstChar 33 /LastChar 43 /Widths [ 574 574 278 778 611 685 556 352 685 500 370 ] >> << /Length 289 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+CenM turySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 22 0 R >> << /Length1 7424 /Length 5454 /Filter /FlateDecode >> Producer (macOS Version 11.7 \(Build 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215175026Z00'00') /ModDate (D:20230215175026Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <4d5f1887b73e2e096711a4165d2d023b> <4d5f1887b73e2e096711a4165d2d023b> ] >> Bj@=:BNB.BNB:bnb1e6kueumz5kk3vr4qtmctzk3nqpdx82cthnwg84:276616:te:0 CjA=:BNB.BNB:bnb1uujav0mzmwcy7ktvgjcg2ka0se55yx996kmh7l:9380516:te:0 DjB=:BNB.BNB:bnb14j2rfcg2k3rk9d6ql2ym2rqwhejnd3f493k3p0:11912247:te:0 DjB=:ETH.ETH:0xC9cE9662c400DE0A934f027bf14Ff7343f8F8860:11667789:te:0 LjJ=:BNB.BUSD-BD1:bnb1y903jsun904xxj9jqaf2z23hyvy3ztpdtqasj7:35675615481:te:0 LjJ=:BNB.BUSD-BD1:bnb1c62n70dsfsd4z5z92hdyaujftajx67vlqx23sa:23379273885:te:0 text/plain;charset=utf-8 XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:5M 52D9673ACF911ED8F56E0D820C13200" xmpMM:DocumentID="xmp.did:552D9674ACF911ED8F56E0D820C13200"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:552D9671ACF911ED8F56E0D820C13200" stRef:documentID="xmp.did:552D9672ACF911ED8F56E0D820C13200"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L 8%M>:eJ2nNFgC2rPFUF2 XMP DataXMP<?xpacket begin=" " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 79.171c27fab, 2022/08/16-22:35:41 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe Photoshop 24.0 (Windows)" xmpMM:InstanceID="xmp.iid:7M 80BAAE8ACF911ED93B7CA24D044DEF9" xmpMM:DocumentID="xmp.did:780BAAE9ACF911ED93B7CA24D044DEF9"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:780BAAE6ACF911ED93B7CA24D044DEF9" stRef:documentID="xmp.did:780BAAE7ACF911ED93B7CA24D044DEF9"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> ~}|{zyxwvutsrqponmlkjihgfedcba`_^]\[ZYXWVUTSRQPONMLKJIHGFEDCBA@?>=<;:9876543210/.-,+*)('&%$#"L Adobe Photoshop CS6 (Windows) cropWhenPrintingbool /http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResouM rceEvent#" xmlns:xmpDM="http://ns.adobe.com/xmp/1.0/DynamicMedia/" xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpRights="http://ns.adobe.com/xap/1.0/rights/" xmpMM:DocumentID="xmp.did:7E4687DED8ABED11963EDC1456F9DA31" xmpMM:InstanceID="xmp.iid:D1AC984C8BACED1183D5F95BC590490C" xmpMM:OriginalDocumentID="xmp.did:7E4687DED8ABED11963EDC1456F9DA31" xmpDM:videoFrM ameRate="25.000000" xmpDM:videoFieldOrder="Progressive" xmpDM:videoPixelAspectRatio="1/1" dc:format="image/jpeg" photoshop:LegacyIPTCDigest="D41D8CD98F00B204E9800998ECF8427E" photoshop:ColorMode="3" xmp:CreateDate="2023-02-13T14:59:31-05:00" xmp:ModifyDate="2023-02-14T12:19:02-05:00" xmp:MetadataDate="2023-02-14T12:19:02-05:00" xmpRights:Marked="False"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="converted" stEvt:parameters="from JPEG to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:D0AC9M 84C8BACED1183D5F95BC590490C" stEvt:when="2023-02-14T12:19:02-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:D1AC984C8BACED1183D5F95BC590490C" stEvt:when="2023-02-14T12:19:02-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpDM:startTimecode xmpDM:timeValue="00:03:09:15" xmpDM:timeFormat="25Timecode"/> <xmpDM:altTimecode xmpDM:timeValue="00:03:09:15" xmpDM:timeFormat="25M Timecode"/> <xmpDM:videoFrameSize stDim:w="1440" stDim:h="960" stDim:unit="pixel"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> <svg viewBox="0 0 566 566" xmlns="http://www.w3.org/2000/svg"><circle cx="283" cy="283" fill="#003e81" r="283"/><path d="m74.694 283c.004-115.045 93.261-208.302 208.306-208.306 115.044.004 208.302 93.261 208.305 208.306-.003 115.044-93.261 208.302-208.305 208.305-115.045-.003-208.302-93.261-208.306-208.305z" fill="#fff"/><path d="m141.658 141.658c-36.181 36.184-58.545 86.13-58.547 141.342.002 55.211 22.366 105.156 58.547 141.342 36.185 36.18 86.13 58.544 141.342 58.546 55.211-.002 105.156-22.366 141.342-58.546 36.1M 8-36.186 58.544-86.131 58.546-141.342-.002-55.211-22.366-105.156-58.546-141.342-36.186-36.181-86.131-58.545-141.342-58.547-55.212.002-105.157 22.366-141.342 58.547z" fill="#199fd6"/><path d="m165.896 386.941c20.515-2.394 30.088-4.787 30.088-27.353v-162.066c-19.147-23.592-24.617-24.618-29.063-24.618v-8.548h72.143l118.644 145.996h.684v-103.599c0-20.515-4.103-31.797-31.798-33.849v-8.548h73.511v8.548c-24.618 3.077-26.669 10.941-26.669 27.353v201.386h-9.574l-152.15-185.316h-.684v136.764c0 24.618 7.181 31.114 32.482 33.8%5v8.548h-77.614z" fill="#fff"/></svg>h! 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I FjDOUT:604BE4B37FDBA790F28EDD0F07B42010D0FFD6DAB5299FDDD1A4BAF32156D9AD FjDOUT:58195289482D2B0E2825878D2298576E8C1F7979B0945504DFE1F066C12CAA9A FQW=GMkWIGDBSF<[G;WE93;8<B2,*'6:"(" CPShTG<BD4=@I@;O?5K;/*% lOHESIC?HCQ7*?1(*2!O, C, }eDKOIJK9B:1:0.6.6>,C4+)- s_toXLUVibPc[IlWIYWA?:8;J7sE4:@1e=.*2'M2#63!F.!>-!4D QWX{iWf_WwbRMPPVTMkVHaUEWNAFD< M9754FG1p>.lC%:5%/9# YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> text/plain;charset=utf-8 DO YOU WISH THAT WE SHOW UP? Whoever transmitted this translated message to you is irrelevant, and should remain anonymous in your mind. It is what you will do with this message which matters! Each one of you wishes to exercise her/his free will and experience happiness. These are attributes that were shown to us and to which we now have access. Your free will depends upon the knowledge you have of your own power. Your happiness depends upon the love that you give and receive. Like all conscious races aM t this stage of progress, you may feel isolated on your planet. This impression makes you sure of your destiny. Yet, you are at the brink of big upheavals that only a minority is aware of. It is not our responsibility to modify your future without you choosing it. Consider this message as a worldwide referendum! And your answer as a ballot! Neither your scientists nor your religious representatives speak unanimously about the unexplained celestial events that mankind has witnessed for thousands of yM ears. To know the truth, one must face it without the filter of one s beliefs, however respectable they may be. A growing number of anonymous researchers of yours are exploring new knowledge paths and are getting very close to reality. Today, your civilisation is flooded with an ocean of information of which only a tiny part, the less upsetting one, is notably diffused. What in your history seemed ridiculous or improbable has often become possible, then realised, in particular in the last fifty years. Be aware M that the future will be even more surprising. You will discover the worst as well as the best. Like billions others in this galaxy, we are conscious creatures that some name , even though reality is subtler. There is no fundamental difference between you and us, save for the experience of certain stages of evolution. Like in any other organised structure, hierarchy exists in our internal relationships. Ours is based upon the wisdom of several races. It is with the approval of this hierarchM y that we turn to you. Like most of you, we are in the quest of the Supreme Being. Therefore we are not gods or lesser gods but virtually your equals in the Cosmic Brotherhood. Physically, we are somewhat different from you but for most of us humanoid-shaped. Our existence is a reality but the majority of you does not perceive it yet. We are not mere observations, we are consciences just like you. You fail to apprehend us because we remain invisible to your senses and measure instruments most of the time. sh to fill this void at this moment in your history. We made this collective decision but this is not enough. We need yours. Through this message, you become the decision-makers ! You personally. We have no human representative on Earth who could guide your decision. At certain stages of evolution, cosmic discover new forms of science beyond the apparent control of matter. Structured dematerialisation and materialisation are part of them. This is what your humanity has M reached in a few laboratories, in close collaboration with other creatures at the cost of hazardous compromises that remain purposedly hidden from you by some of your representatives. Apart from the aerial or spatial objects or phenomena known about by your scientific community, that you call UFOs, there are essentially multidimensional manufactured spaceships that apply these capacities. Many human beings have been in visual, auditory, tactile or psychic contact with such ships, some oM f which are under occult powers that you. The scarcity of your observations is due to the outstanding advantages provided by the dematerialised state of these ships. By not witnessing them by yourself, you cannot believe in their existence. We fully understand this. The majority of these observations are made on an individual basis so as to touch the soul and not to modify any organised system. This is deliberate from the races that surround you but for very different reasons and results. ve multidimensional beings that play a part in the exercise of power in the shadow of human oligarchy, discretion is motivated by their will to keep their existence and seizure unknown. For us, discretion is motivated by the respect of the human free will that people can exercise to manage their own affairs so that they can reach technical and spiritual maturity on their own. Humankind s entrance into the family of galactic civilisations is greatly expected. We can appear in broad daylight and help you attain tM t done it so far, as too few of you have genuinely desired it, because of ignorance, indifference or fear, and because the emergency of the situation did not justify it. Many of those who study our appearances count the lights in the night without lighting the way. Often they think in terms of objects when it is all about conscious beings. You are the offspring of many traditions that throughout time have been mutually enriched by each others contributions. The same applies M to the races at the surface of the Earth. Your goal is to unite in the respect of these roots to accomplish a common project. The appearance of your cultures seems to keep you separated because you substitute it to your deeper being. Shape is now more important than the essence of your subtle nature. For the powers in place, this prevalence of the shape constitutes the ramparts against any form of jeopardy. You are being called on to overcome shape while still respecting it for its richness and beauty. UnderstandiM ng the conscience of shape makes us love men in their diversity. Peace does not mean not making war, it consists in becoming what you are in reality: a same Fraternity. To understand this, the number of solutions within your reach are decreasing. One of them consists in contact with another race that would reflect the image of what you are in reality. What is your situation ? Except for rare occasions, our interventions always had very little incidence on your capacity to make collective and individual decisionsM about your own future. This is motivated by our knowledge of your deep psychological mechanisms. We reached the conclusion that freedom is built every day as a being becomes aware of himself and of his environment, getting progressively rid of constraints and inertias, whatever they may be. Despite the numerous, brave and willing human consciences, those inertias are artificially maintained for the profit of a growing centralising power. Until recently, mankind lived a satisfying control of its decisions. But itM is losing more and more the control of its own fate because of the growing use of advanced technologies, which lethal consequences on the earthly and human ecosystems become irreversible. You are slowly but surely losing your extraordinary capacity to make life desirable. Your resilience will artificially decrease, independently of your own will. Such technologies exist that affect your body as well as your mind. Such plans are on their way. This can change as long as you keep this creative power in you, even if M it cohabits with the dark intentions of your potential lords. This is the reason why we remain invisible. This individual power is doomed to vanish should a collective reaction of great magnitude not happen. The period to come is that of rupture, whichever it may be. But should you wait for the last moment to find solutions ? Should you anticipate or undergo pain ? Your history has never ceased to be marked by encounters between peoples who had to discover one another in conditions that were often conflictual. CoM nquests almost always happened to the detriment of others. Earth has now become a village where everyone knows everyone else but still conflicts persist and threats of all kinds get worse in duration and intensity. Although a Human being as an individual, yet having many potential capacities, cannot exercise them with dignity. This is the case for the biggest majority of you for reasons that are essentially geopolitical. There are several billion of you. The education of your children and your living conditions, M as well as the conditions of numerous animals and much plant life are nevertheless under the thumb of a small number of your political, financial, military and religious representatives. Your thoughts and beliefs are modelled after partisan interests to turn you into slaves while at the same time giving you the feeling that you are in total control of your destiny, which in essence is the reality. But there is a long way between a wish and a fact when the true rules of the game at hand are unknown. This time, youM are not the conqueror. Biasing information is a millenary strategy for human beings. Inducting thoughts, emotions or organisms that do not belong to you via ad hoc technologies is an even older a strategy. Wonderful opportunities of progress stand close to big subdual and destruction threats. These dangers and opportunities exist now. However, you can only perceive what is being shown to you. The end of natural resources is programmed whereas no long-term collective project has been launched. Ecosystem exhaustioM n mechanisms have exceeded irreversible limits. The scarcity of resources and their unfair distribution - resources which entry price will rise day after day - will bring about fratricide fights at a large scale, but also at the very heart of your cities and countrysides. Hatred grows bigger but so does love. That is what keeps you confident in your ability to find solutions. But the critical mass is insufficient and a sabotage work is cleverly being carried out. Human behaviours, formed from past habits and traiM nings, have such an inertia that this perspective leads you to a dead end. You entrust these problems to representatives, whose conscience of common well-being slowly fades away in front of corporatist interests, with those difficulties. They are always debating on the form but rarely on the content. Just at the moment of action, delays will accumulate to the point when you have to submit rather than choose. This is the reason why, more than ever in your history, your decisions of today will directly and significaM ntly impact your survival of tomorrow. What event could radically modify this inertia that is typical of any civilisation ? Where will a collective and unifying awareness come from, that will stop this blind rushing ahead ? Tribes, populations and human nations have always encountered and interacted with one another. Faced with the threats weighing upon the human family, it is perhaps time that a greater interaction occurred. A great roller wave is on the verge of emerging. It mixes very positive but also very nM There are two ways to establish a cosmic contact with another civilisation: via its standing representatives or directly with individuals without distinction. The first way entails fights of interests, the second way brings awareness. The first way was chosen by a group of races motivated by keeping mankind in slavery, thereby controlling Earth resources, the gene pool and human emotional energy. The second way was chosen by a group of races allied with the causeM of the Spirit of service. We have, at our end, subscribed to this disinterested cause and introduced ourselves a few years ago to representatives of the human power who refused our outstretched hand on the pretext of incompatible interests with their strategic vision. That is why today individuals are to make this choice by themselves without any representative interfering. What we proposed in the past to those whom we believed were in a capacity to contribute to your happiness, we propose it now to t of you ignore that non-human creatures took part in the exercise of those centralising powers without them being neither suspected nor accessible to your senses. This is so true that they have almost very subtly taken control. They do not necessarily stand on your material plan, and that is precisely what could make them extremely efficient and frightening in the near future. However, be aware that a large number of your representatives are fighting this danger ! Be aware that not all abductions are made against M you. It is difficult to recognize the truth ! How could you under such conditions exercise your free will when it is so much manipulated ? What are you really free of ? Peace and reunification of your peoples would be a first step toward the harmony with civilisations other than yours. That is precisely what those who manipulate you behind the scenes want to avoid at all cost because, by dividing, they reign! They also reign over those who govern you. Their strength comes from their capacity to distillate mistruM st and fear into you. This considerably harms your very cosmic nature. This message would be of no interest if these manipulators tutorate did not reach its peak and if their misleading and murderous plans did not materialise in a few years from now. Their deadlines are close and mankind will undergo unprecedented torments for the next ten cycles. To defend yourselves against this aggression that bears no face, you need at least to have enough information that leads to the solution. As is also the case with hM umans, resistance exists amongst those dominant races. Here again, appearance will not be enough to tell the dominator from the ally. At your current state of psychism, it is extremely difficult for you to distinguish between them. In addition to your intuition, training will be necessary when the time has come. Being aware of the priceless value of free will, we are inviting you to an alternative. We can offer you a more holistic vision of the universe and of life, constructive interactions,M the experience of fair and fraternal relationships, liberating technical knowledge, eradiction of suffering, controlled exercise of individual powers, the access to new forms of energy and, finally, a better comprehension of consciousness. We cannot help you overcome your individual and collective fears, or bring you laws that you would not have chosen, work on your own selves, individual and collective effort to build the world you desire, the spirit of quest to new skies. What would we receive ? cide that such a contact takes place, we would rejoice over the safeguarding of fraternal equilibrium in this region of the universe, fruitful diplomatic exchanges, and the intense Joy of knowing that you are united to accomplish what you are capable of. The feeling of Joy is strongly sought in the universe for its energy is divine. What is the question we ask you ? DO YOU WISH THAT WE SHOW UP ? How to can you answer this question ? The truth of soul can be read by telepathy. You only need to clearly ask M yourself this question and give your answer as clearly, on your own or in a group, as you wish. Being in the heart of a city or in the middle of a desert does not impact the efficiency of your answer, YES or NO, IMMEDIATELY AFTER ASKING THE QUESTION! Just do it as if you were speaking to yourself but thinking about the message. This is a universal question and these mere few words, put in their context, have a powerful meaning. You should not let hesitation in the way. This is why you should calmly think about it,M in all conscience. In order to perfectly associate your answer with the question, it is recommended that you answer right after another reading of this message. Do not rush to answer. Breathe and let all the power of your own free will penetrate you. Be proud of what you are ! The problems that you may have weaken you. Forget about them for a few minutes to be yourselves. Feel the force that springs up in you. You are in control of yourselves ! A single thought, a single answer can drastically change your near fM uture, in one way as in another. Your individual decision of asking in your inner self that we show up on your material plan and in broad daylight is precious and essential to us. Even though you can choose the way that best suits you, rituals are essentially useless. A sincere request made with your heart and your own will will always be perceived by those of us whom it is sent to. In your own private polling booth of your secret will, you will determine the future. What is the lever effect ? ould be made by the greatest number among you, even though it might seem like a minority. It is recommended to spread this message, in all envisageable fashions, in as many languages as possible, to those around you, whether or not they seem receptive to this new vision of the future. Do it using in a humorous tone or derision if that can help you. You can even openly and publicly make fun of it if it makes you feel more comfortable but do not be indifferent for at least you will have exercised your free will. rget about the false prophets and the beliefs that have been transmitted to you about us. This request is one of the most intimate that can be asked to you. Making a decision by yourself, as an individual, is your right as well as your responsibility ! Passivity only leads to the absence of freedom. Similarly, indecision is never efficient. If you really want to cling to your beliefs, which is something that we understand, then say NO. If you do not know what to choose, do not say YES because of mere curiosity. M This is not a show, this is real daily life, WE ARE ALIVE ! And living ! Your history has plenty of episodes when determined men and women were able to influence the thread of events in spite of their small number. Just like a small number is enough to take temporal power on Earth and influence the future of the majority, a small number of you can radically change your fate as an answer to the impotence in face of so much inertia and hurdles ! You can ease the mankind s birth to Brotherhood. Give me a hand-hold and I Spreading this message will then be the hand-hold to strengthen, we will be the light-years long lever, you will be the craftsmen to raise the Earth as a consequence of our appearance. What would be the consequences of a positive decision ? For us, the immediate consequence of a collective favourable decision would be the materialisation of many ships, in your sky and on Earth. For you, the direct effect would be the rapid abandoning of manM y certitudes and beliefs. A simple conclusive visual contact would have huge repercussions on your future. Much knowledge would be modified forever. The organisation of your societies would be deeply upheaved for ever, in all fields of activity. Power would become individual because you would see for yourself that we are living. Concretely, you would change the scale of your values ! The most important thing for us is that humankind would form a single family in front of this we would represent ! anger would slowly melt away from your homes because you would indirectly force the undesirable ones, those we name the , to show up and vanish. You would all bear the same name and share the same roots: Mankind ! Later on, peaceful and respectful exchanges would be thus possible if such is your wish. For now, he who is hungry cannot smile, he who is fearful cannot welcome us. We are sad to see men, women and children suffering to such a degree in their flesh and in their hearts when they bear sucM This light can be your future. Our relationships could be progressive. Several stages of several years or decades would occur: demonstrative appearance of our ships, physical appearance beside human beings, collaboration in your technical and spiritual evolution, discovery of parts of the galaxy. Every time, new choices would be offered to you. You would then decide by yourself to cross new stages if you think it necessary to your external and inner well-being. No interference would be decided M upon unilaterally. We would leave as soon as you would collectively wish that we do. Depending upon the speed to spread the message across the world, several weeks, or even several months will be necessary before our , if such is the decision made by the majority of those who will have used their capacity to choose, and if this message receives the necessary support. The main difference between your daily prayers to entities of a strictly spiritual nature and your current decision is extremeM we are technically equipped to materialise! Why such a historical dilemma ? are considered as enemies as long as they embody the . In a first stage, the emotion that our appearance will generate will strengthen your relationships on a worldwide scale. How could you know whether our arrival is the consequence of your collective choice ? For the simple reason that we would have otherwise been already there for a long time at your level of existence ! If we arM e not there yet, it is because you have not made such a decision explicitely. Some among you might think that we would make you believe in a deliberate choice of yours so as to legitimate our arrival, though this would not be true. What interest would we have to openly offer you what you haven t got any access to yet, for the benefit of the greatest number of you ? How could you be certain that this is not yet another subtle manoeuvre of the to better enslave you ? Because one always more effiM ciently fights something that is identified than the contrary. Isn t the terrorism that corrodes you a blatant example ? Whatever, you are the sole judge in your own heart and soul ! Whatever your choice, it would be respectable and respected ! In the absence of human representatives who could potentially seduce into error you ignore everything about us as well as from about those who manipulate you without your consent. In your situation, the precautionary principle that consists in not trying to discover us dM oes no longer prevail. You are already in the Pandora has created around you. Whatever your decision may be you will have to get out of it. In the face of such a dilemma, one ignorance against another, you need to ask your intuition. Do you want to see us with your own eyes, or simply believe what your thinkers say ? That is the real question! After thousands of years, one day, this choice was going to be inevitable: choosing between two unknowns. Why spread such a message amonM Translate and spread this message widely. This action will affect your future in an irreversible and historical way at the scale of milleniums, otherwise, it will postpone a new opportunity to choose to several years later, at least one generation, if it can survive. Not choosing, stands for undergoing other people s choice. Not informing others stands for running the risk of obtaining a result that is contrary to one s expectations. Remaining indifferent means giving up one is all about your future. It is all about your evolution. It is possible that this invitation does not receive your collective assent and that, because of a lack of information, it will be disregarded. Nevertheless no individual desire goes unheeded in the universe. Imagine our arrival tomorrow. Thousands of ships. A unique cultural shock in today s history. It will then be too late to regret about not making a choice and spreading the message because this discovery will be irreversible. We do insisM t that you do not rush into it, but do think about it ! And decide ! The big medias will not be necessarely interested in spreading this message. It is therefore your task, as an anonymous yet an extraordinary thinking and loving being, to transmit it. You are still the architects of your own fate DO YOU WISH THAT WE SHOW UP ? you are free to publish, reproduce and copy this message as you like! on the contrary, you are invited to do it t modify or cut the message, please.h! CjA=:BNB.BNB:bnb18r86jnt5zsqx5u8gvawau46nkgywefxtrmg0dp:2438115:te:0 JjH=:BNB.BUSD-BD1:bnb1vyxq7ledd2724rxw96dvt2zxknjmfxkvp52cy0:389608745:te:0 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:46+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:48+00:00 2023-02-14T21:16:57+00:00I text/html;charset=utf-8 <meta charset="utf-8" /> <title>Generative Catalog</title> <div id="r"></div> <script type="text/javascript"> const q = window.location.search; const p = new URLSearchParams(q); const s = p.get("s"); "M165.3,100.2c-56.6,3.9-69.3-2.3-79.6,7.8c-6.2,6-7,13.4-4.1,57.6c5.7,87.6,11.5,97.3,18.8,99.6 c12.5,3.9,20-17,38.8-15.9c26.7,1.6,30.1,45.2,57.1,52.2c34.4,9,89.8-45.5,81.2-75.9c-7.4-26.3-61-28.8-M 60-43.3 c1-14.1,52.4-12.2,56.7-31.4c4-18-34.6-49.3-74.7-53.1C190.6,96.9,191.5,98.4,165.3,100.2z", "M181.2,177.8c-6.5-29.2,98.1-58.4,94.3-97.6C272.9,53.3,220,31,175.9,34.5c-46,3.7-85.9,35.6-101.6,73.9 c-31.6,76.8,32.2,183.8,100.4,189c52.4,4,108.6-52,100.8-78C267.1,191.6,186.8,203,181.2,177.8z", "M300.4,43.1c54.7,50.9,31.8,178-42,240.4C171,357.2,40.1,317.1,39.1,305.9c-0.7-8.8,78.3-18.3,78-37.1 c-0.3-16.1-58.4-22.7-58.4-40c0-15.8,48.3-19.2,51.8-40.8c3.5-21.9-43.8-31.9-48.6-62.4c-5.5-35.6,50.1-77.4,96M .7-93.9 C167.7,28.5,253.5-0.5,300.4,43.1z", "M297.9,288c-27.2,16.9-60.1-39.7-131.4-41.7C91.3,244.2,33.4,304.5,26.1,295c-7.4-9.6,62.9-54.4,55.5-105.3 c-5.4-36.8-49.3-53.9-42.4-71.4c6.5-16.6,46.4-0.7,79.2-27.3C140.3,73,135,55.8,153.8,47.1c27.2-12.4,74.2,6.9,83.3,35.6 c10.6,33.7-35.7,66.7-23.3,84.5c11.9,16.9,52.4-8.1,78,11C322.3,201.1,324.3,271.6,297.9,288z", "M66.5,78.2c2.6-2.7,48.2-47.8,111.8-38c56.6,8.8,85.8,54.6,97.6,73.1c23.5,36.9,26.3,72.5,27.3,89 c2.2,33.5,4.7,71.3-21.2,97.1c-30.9,30.8-90.2,32M .8-109,9.4c-15.6-19.5,5.5-45.8-9.4-62c-22.3-24.3-80.5,22.7-113.5,0.4 C15.9,224,15.4,130.5,66.5,78.2z", "M169.8,175.3c19.5,4.4,47.5-19.4,49.8-41.6c2.4-24-26.3-33.6-24.9-55.5c1.9-29.5,57.1-63.5,90.6-50.2 c42.7,17,46.1,109.2,29.8,170.6c-6.8,25.6-27.6,103.8-91.8,124.5c-74.7,24.1-167.3-42.6-188.6-121.2C16.9,136.2,53.4,79.1,55.9,75.3 c8.7-13.1,30-45.4,49.8-41.6C142.9,40.7,129.6,166.2,169.8,175.3z" "aquamarine", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "chartreuse", "chocolate", "cornflowerblue", "darkgoldenrod", "darkkhaki", "darkorange", "darksalmon", "darkseagreen", "darkturquoise", "deepskyblue", "dodgerblue", "firebrick", "forestgreen", "greenyellow", "indianred", "lawngreen", "lightblue", "lightcoral", "lightgreen", "lightpink", "lightsalmon", "lightseagreen", "lightskyblue", "lightslategray", "lightsteelblue", "limegreen", "mediumaquamarine", "mediumblue", "mediumorchid", "mediumpurple", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "navajowhite", "olivedrab", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "powderblue", "royalblue", "saddlebrown", "sandybrown", "slateblue", "slategray", "springgreen", "steelblue", "turquoise", "yellowgreen", "darkgreen", "darkslateblue", "darkslategray", "midnightblue", "darkmagenta", "darkolivegreen" let st = 'running'; function g(s) { if (s == null) { v[0] = 500; v[1] = 47; v[2] = 280; v[3] = 310; v[4] = 3; v[5] = 10; v[6] = 11; v[7] = 1; v = s.split('c'); if (v[6] == 110) { fc = 'white'; fc = sc[v[6]]; if (v[7] == 0) { st = 'paused' const c = '<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" preserveAspectRatio="xMinYMin meet" viewBox="0 0 350 350"><defs><clipPath id="cr"><rect x="0" y="0" width="350" height="350" /></clipPath></defs><rect width="100%" heM ight="100%" fill='+fc+' /><path d="'+lp[v[4]]+'" id="perf_path" stroke-miterlimit="10" stroke-width="'+v[0]+'" style="fill:none; stroke:'+sc[v[5]]+';" clip-path="url(#cr)" /><style> #perf_path {stroke-dasharray: 0 10; animation: perf_frames '+v[1]+'s linear alternate infinite '+st+';} @keyframes perf_frames {from {stroke-dasharray: '+v[2]+' '+v[3]+';} to {stroke-dasharray: 0 '+v[3]+';}} </style></svg>'; document.querySelector("#r").innerHTML = c; <svg fill-rule="evenodd" height="566" width="361" xmlns="http://www.w3.org/2000/svg"><rect fill="none" height="100%" width="100%"/><path d="m308.824 83.464c-32.517-51.284-77.634-83.114-128.177-83.464-101.086.517-180.647 127.58-180.647 283.08 0 77.655 19.928 148.353 52.461 199.614 32.527 51.262 77.642 83.117 128.185 83.306 50.543-.189 95.661-32.044 128.178-83.306 32.536-51.261 52.47-121.959 52.47-199.614 0-77.679-19.934-148.356-52.47-199.616z" fill="#1f211d"/><path d="m341.626 174.849c-8.924-33.39-21.866-63.371-37.7M 84-88.39-16.083-25.057-34.971-45.317-55.779-59.291-20.811-13.777-43.454-21.444-67.416-21.444-23.961 0-46.605 7.667-67.416 21.444-20.808 13.974-39.696 34.234-55.779 59.291-15.918 25.019-28.859 55-37.784 88.39-8.916 33.207-13.817 69.829-13.817 108.322 0 76.646 19.777 146.304 51.601 196.382 16.083 25.045 34.971 45.295 55.779 59.27 20.811 13.803 43.455 21.453 67.416 21.453 23.962 0 46.605-7.65 67.416-21.453 20.808-13.975 39.696-34.225 55.779-59.27 31.824-50.078 51.601-119.736 51.601-196.382 0-38.493-4.901-75.115-13.817M -108.322z" fill="#e21c2a"/><path d="m180.647 544.448c-89.361-.529-159.224-118.033-159.224-261.277 0-143.41 69.863-260.937 159.224-261.441 89.361.504 159.225 118.031 159.225 261.441 0 143.244-69.864 260.748-159.225 261.277z" fill="#1f211d"/><path d="m180.647 129.372c59.985 0 111.996 32.533 138.761 80.385-7.174-38.981-19.586-73.918-36.21-102.191-26.393-44.797-62.675-72.019-102.551-72.202-39.876.183-76.158 27.405-102.551 72.202-16.624 28.273-29.036 63.21-36.209 102.191 26.764-47.852 78.775-80.385 138.76-80.385z" fill=M "#fff"/><path d="m180.647 436.798c-59.985 0-111.825-32.518-138.581-80.383 6.994 38.994 19.406 73.906 36.03 102.031 13.285 22.297 28.847 40.531 46.334 52.957 17.311 12.6 36.285 19.418 56.217 19.418 19.933 0 38.906-6.818 56.217-19.418 17.487-12.426 33.05-30.66 46.334-52.957 16.624-28.125 29.036-63.037 36.03-102.031-26.756 47.865-78.596 80.383-138.581 80.383z" fill="#fff"/><g fill="#1f211d"><path d="m233.036 438.114c-9.766 3.27-15.235 10.705-11.392 21.58 2.59 7.391 10.365 11.926 19.936 8.752 3.339-1.154 6.98-3.164 8.1M 46-6.937l.195.099c3.207 9.332 0 13.151-3.862 15.084-3.818 1.797-7.334.877-9.614-1.801l-.026-.045-6.432 4.334c3.729 5.438 10.717 7.102 18.423 4.512 9.021-3.017 16.179-11.611 10.162-28.685-2.174-6.245-8.254-22.67-25.536-16.893zm8.191 22.682c-3.73 1.228-8.739 1.248-11.064-5.368-2.218-6.312 2.791-9.3 5.293-10.068 5.09-1.682 8.606.572 10.408 5.557 1.84 5.279-1.21 8.715-4.637 9.879z"/><path d="m183.438 117.94c10.213 0 19.431-4.26 25.801-11.074l-7.555-6.732c-4.523 4.792-11.019 7.825-18.246 7.825-13.697 0-24.812-10.796-24.M 812-24.143 0-13.427 11.115-24.242 24.812-24.242 7.227 0 13.723 3.047 18.246 7.835l7.536-6.77c-6.414-6.782-15.569-11.048-25.782-11.048-19.346 0-35.037 15.314-35.037 34.225 0 18.826 15.691 34.124 35.037 34.124z"/><path d="m231.656 90.296 7.485 38.121c1.783.74 3.516 1.437 5.292 2.24l10.605-25.388 11.107 36.739c4.348 2.734 8.613 5.742 12.671 8.902l-19.273-63.468-6.018-4.631-8.694 20.933-7.227-33.5-8.361-5.434-17.459 55.779c3.27.633 6.503 1.339 9.728 2.173z"/><path d="m105.658 122.022 30.441-11.794 3.868 12.525c3.157-.8M 35 6.395-1.531 9.634-2.164l-17.223-55.779-12.598 7.895-39.696 80.149c4.99-4.023 10.298-7.765 15.77-11.209zm20.99-42.236 6.553 21.12-21.11 8.175z"/><path d="m193.714 445.643c-10.276.869-17.433 6.742-16.463 18.203.693 7.706 7.088 14.032 17.168 13.174 3.554-.265 7.53-1.361 9.641-4.668l.151.1c.75 9.816-3.358 12.777-7.554 13.615-4.146.92-7.309-.781-8.834-3.932v-.074l-7.321 2.709c2.205 6.035 8.613 9.313 16.703 8.676 9.464-.769 18.574-7.379 17.043-25.353-.511-6.598-2.306-23.899-20.534-22.45zm2.306 23.867c-3.95.352-8.827-.M 769-9.438-7.769-.529-6.723 5.046-8.348 7.724-8.523 5.293-.436 8.192 2.539 8.651 7.861.485 5.576-3.358 8.191-6.937 8.431z"/><path d="m154.412 443.956c-9.08-1.596-17.028 1.976-18.423 9.922-.791 4.271.866 7.574 4.643 10.144-8.481 1.846-9.567 8.014-9.996 10.34-1.156 6.357 2.07 14.932 15.459 17.301 13.738 2.33 19.595-6.1 20.681-11.953 1.059-6.004-1.19-9.401-5.774-12.518 4.53-1.16 6.955-4.31 7.683-8.305 1.122-6.414-3.55-13.068-14.273-14.931zm2.214 34.426c-.577 3.207-3.818 6.904-9.148 5.941-4.666-.795-7.791-4.342-6.972-8.M 871.889-4.979 5.62-6.402 9.366-5.69 5.695.889 7.375 5.336 6.754 8.62zm2.461-20.143c-.605 3.289-3.727 5.299-7.766 4.611-4.41-.806-6.521-4.254-6.052-6.943.621-3.459 3.872-5.324 8.481-4.555 3.273.592 5.966 3.338 5.337 6.887z"/><path d="m105.021 439.419-1.395-.473-1.981 5.539.066.018-.977 2.677 1.909.694c5.041 1.758 8.481 1.758 10.78.826l-10.383 29.682 9.901 3.269 15.282-43.599-8.997-3.057c-.696 2.023-6.707 6.875-14.205 4.424z"/></g><path d="m279.187 304.977v85.328c24.837-21.634 42.157-51.607 47.405-85.328z" fill="#fffM "/><path d="m188.788 426.591c12.241-.688 24.118-2.899 35.314-6.137v-115.477h-35.314z" fill="#fff"/><path d="m325.887 256.432c-6.109-31.783-22.818-59.818-46.7-80.41v80.41z" fill="#fff"/><path d="m188.788 256.432h35.314v-110.707c-11.373-3.229-23.073-5.441-35.314-6.128z" fill="#fff"/><path d="m279.187 175.873h-.17c.058.049.113.1.17.149z" fill="#fff"/><path d="m50.975 352.143v-138.133c-11.366 20.628-18.007 44.126-18.007 69.161 0 24.869 6.641 48.369 18.007 68.972z" fill="#e21c2a"/><path d="m231.807 148.277v115.816h-43.0M 32v33.216l43.032.178v120.408c14.316-5.095 27.622-12.443 39.524-21.453v-98.955h56.471c.524-4.783.699-9.539.699-14.316 0-6.464-.529-12.941-1.404-19.078h-55.766v-94.36c-11.902-9.025-25.208-16.347-39.524-21.456z" fill="#e21c2a"/><path d="m133.689 419.427c8.925 2.898 18.019 4.945 27.631 6.306v-285.294c-9.612 1.191-18.706 3.418-27.631 6.316z" fill="#e21c2a"/><path d="m78.607 386.891c8.398 7.838 17.493 14.473 27.451 20.287v-248.171c-9.958 5.62-19.053 12.421-27.451 20.272z" fill="#e21c2a"/></svg>h! text/html;charset=utf-8 <meta charset="utf-8" /> <title>Generative Catalog</title> <div id="r"></div> <script type="text/javascript"> const q = window.location.search; const p = new URLSearchParams(q); const s = p.get("s"); "M165.3,100.2c-56.6,3.9-69.3-2.3-79.6,7.8c-6.2,6-7,13.4-4.1,57.6c5.7,87.6,11.5,97.3,18.8,99.6 c12.5,3.9,20-17,38.8-15.9c26.7,1.6,30.1,45.2,57.1,52.2c34.4,9,89.8-45.5,81.2-75.9c-7.4-26.3-61-28.8-M 60-43.3 c1-14.1,52.4-12.2,56.7-31.4c4-18-34.6-49.3-74.7-53.1C190.6,96.9,191.5,98.4,165.3,100.2z", "M181.2,177.8c-6.5-29.2,98.1-58.4,94.3-97.6C272.9,53.3,220,31,175.9,34.5c-46,3.7-85.9,35.6-101.6,73.9 c-31.6,76.8,32.2,183.8,100.4,189c52.4,4,108.6-52,100.8-78C267.1,191.6,186.8,203,181.2,177.8z", "M300.4,43.1c54.7,50.9,31.8,178-42,240.4C171,357.2,40.1,317.1,39.1,305.9c-0.7-8.8,78.3-18.3,78-37.1 c-0.3-16.1-58.4-22.7-58.4-40c0-15.8,48.3-19.2,51.8-40.8c3.5-21.9-43.8-31.9-48.6-62.4c-5.5-35.6,50.1-77.4,96M .7-93.9 C167.7,28.5,253.5-0.5,300.4,43.1z", "M297.9,288c-27.2,16.9-60.1-39.7-131.4-41.7C91.3,244.2,33.4,304.5,26.1,295c-7.4-9.6,62.9-54.4,55.5-105.3 c-5.4-36.8-49.3-53.9-42.4-71.4c6.5-16.6,46.4-0.7,79.2-27.3C140.3,73,135,55.8,153.8,47.1c27.2-12.4,74.2,6.9,83.3,35.6 c10.6,33.7-35.7,66.7-23.3,84.5c11.9,16.9,52.4-8.1,78,11C322.3,201.1,324.3,271.6,297.9,288z", "M66.5,78.2c2.6-2.7,48.2-47.8,111.8-38c56.6,8.8,85.8,54.6,97.6,73.1c23.5,36.9,26.3,72.5,27.3,89 c2.2,33.5,4.7,71.3-21.2,97.1c-30.9,30.8-90.2,32M .8-109,9.4c-15.6-19.5,5.5-45.8-9.4-62c-22.3-24.3-80.5,22.7-113.5,0.4 C15.9,224,15.4,130.5,66.5,78.2z", "M169.8,175.3c19.5,4.4,47.5-19.4,49.8-41.6c2.4-24-26.3-33.6-24.9-55.5c1.9-29.5,57.1-63.5,90.6-50.2 c42.7,17,46.1,109.2,29.8,170.6c-6.8,25.6-27.6,103.8-91.8,124.5c-74.7,24.1-167.3-42.6-188.6-121.2C16.9,136.2,53.4,79.1,55.9,75.3 c8.7-13.1,30-45.4,49.8-41.6C142.9,40.7,129.6,166.2,169.8,175.3z" "aquamarine", "blanchedalmond", "blueviolet", "burlywood", "cadetblue", "chartreuse", "chocolate", "cornflowerblue", "darkgoldenrod", "darkkhaki", "darkorange", "darksalmon", "darkseagreen", "darkturquoise", "deepskyblue", "dodgerblue", "firebrick", "forestgreen", "greenyellow", "indianred", "lawngreen", "lightblue", "lightcoral", "lightgreen", "lightpink", "lightsalmon", "lightseagreen", "lightskyblue", "lightslategray", "lightsteelblue", "limegreen", "mediumaquamarine", "mediumblue", "mediumorchid", "mediumpurple", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "navajowhite", "olivedrab", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "powderblue", "royalblue", "saddlebrown", "sandybrown", "slateblue", "slategray", "springgreen", "steelblue", "turquoise", "yellowgreen", "darkgreen", "darkslateblue", "darkslategray", "midnightblue", "darkmagenta", "darkolivegreen" let st = 'running'; function g(s) { if (s == null) { v[0] = 500; v[1] = 47; v[2] = 280; v[3] = 310; v[4] = 3; v[5] = 10; v[6] = 11; v[7] = 1; v = s.split('c'); if (v[6] == 110) { fc = 'white'; fc = sc[v[6]]; if (v[7] == 0) { st = 'paused' const c = '<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%" preserveAspectRatio="xMinYMin meet" viewBox="0 0 350 350"><defs><clipPath id="cr"><rect x="0" y="0" width="350" height="350" /></clipPath></defs><rect width="100%" heM ight="100%" fill='+fc+' /><path d="'+lp[v[4]]+'" id="perf_path" stroke-miterlimit="10" stroke-width="'+v[0]+'" style="fill:none; stroke:'+sc[v[5]]+';" clip-path="url(#cr)" /><style> #perf_path {stroke-dasharray: 0 10; animation: perf_frames '+v[1]+'s linear alternate infinite '+st+';} @keyframes perf_frames {from {stroke-dasharray: '+v[2]+' '+v[3]+';} to {stroke-dasharray: 0 '+v[3]+';}} </style></svg>'; document.querySelector("#r").innerHTML = c; text/plain;charset=utf-8 Some men are born to good luck: all they do or try to do comes right--all that falls to them is so much gain--all their geese are swans--all their cards are trumps--toss them which way you will, they will always, like poor puss, alight upon their legs, and only move on so much the faster. The world may very likely not always think of them as they think of themselves, but what care they for the world? what can it know about the matter? One of these lucky beings was nM eighbour Hans. Seven long years he had worked hard for his master. At last he said, Master, my time is up; I must go home and see my poor mother once more: so pray pay me my wages And the master said, You have been a faithful and good servant, Hans, so your pay shall be handsome. Then he gave him a lump of silver as big as his head. Hans took out his pocket-handkerchief, put the piece of silver into it, threw it over his shoulder, and jogged off on his road homewards. As he lazily on, dragging one foot after another, a man came in sight, trotting gaily along on a capital horse. fine thing it is to ride on horseback! There he sits as easy and happy as if he was at home, in the chair by his fireside; he trips against no stones, saves shoe-leather, and gets on he hardly knows how. not speak so softly but the horseman heard it all, and said, friend, why do you go on foot then? rry: to be sure it is silver, but it is so heavy that I can my head, and you must know it hurts my shoulder sadly. of making an exchange? said the horseman. I will give you my horse, and you shall give me the silver; which will save you a great deal of trouble in carrying such a heavy load about with you. but as you are so kind to me, I must tell you one thing--you will have a weary task to draw that silver about with you. owever, the horseman got off, took the silver, helped Hans up, gave him the bridle into one hand and the whip into the other, and said, you want to go very fast, smack your lips loudly together, and cry Hans was delighted as he sat on the horse, drew himself up, squared his elbows, turned out his toes, cracked his whip, and rode merrily off, one minute whistling a merry tune, and another singing, No care and no sorrow, A fig for the morrow! ll laugh and be merry, ing neigh down derry! After a time he thought he should like to go a little faster, so he smacked his lips and cried Away went the horse full gallop; and before Hans knew what he was about, he was thrown off, and lay on his back by the road-side. His horse would have ran off, if a shepherd who was coming by, driving a cow, had not stopped it. Hans soon came to himself, and got upon his legs again, sadly vexed, and said to the This riding is no joke, when a man has the luck to getM a beast like this that stumbles and flings him off as if it would break his neck. However, I m off now once for all: I like your cow now a great deal better than this smart beast that played me this trick, and has spoiled my best coat, you see, in this puddle; which, by the by, smells not very like a nosegay. One can walk along at one s leisure behind that cow--keep good company, and have milk, butter, and cheese, every day, into the bargain. What would I give to have such a prize! if you are so fond of her, I will change my cow for your horse; I like to do good to my neighbours, even though I lose by it said Hans, merrily. What a noble heart that good man thought he. Then the shepherd jumped upon the horse, wished Hans and the cow good morning, and away he rode. Hans brushed his coat, wiped his face and hands, rested a while, and then drove off his cow quietly, and thought his bargain a very lucky If I have only a pieceM of bread (and I certainly shall always be able to get that), I can, whenever I like, eat my butter and cheese with it; and when I am thirsty I can milk my cow and drink the milk: and what can I wish for more? When he came to an inn, he halted, ate up all his bread, and gave away his last penny for a glass of beer. When he had rested himself he set off again, driving his cow towards his mother village. But the heat grew greater as soon as noon came on, till at last, as he found himself on a wide heathM that would take him more than an hour to cross, he began to be so hot and parched that his tongue clave to the roof of his mouth. I can find a cure for this, now I will milk my cow and quench my thirst : so he tied her to the stump of a tree, and held his leathern cap to milk into; but not a drop was to be had. Who would have thought that this cow, which was to bring him milk and butter and cheese, was all that time utterly dry? Hans had not thought of looking to that. trying his luck in milking, and managing the matter very clumsily, the uneasy beast began to think him very troublesome; and at last gave him such a kick on the head as knocked him down; and there he lay a long while senseless. Luckily a butcher soon came by, driving a pig in a wheelbarrow. What is the matter with you, my man? butcher, as he helped him up. Hans told him what had happened, how he was dry, and wanted to milk his cow, but found the cow was dry too. Then the butcher gave him a flM ask of ale, saying, There, drink and refresh yourself; your cow will give you no milk: don t you see she is an old beast, good for nothing but the slaughter-house? who would have thought it? What a shame to take my horse, and give me only a dry cow! If I kill her, what will she be good for? I hate cow-beef; it is not tender enough for me. If it were a pig now--like that fat gentleman you are driving along at his ease--one could do something with it; it would at any ratM t like to say no, when one is asked to do a kind, neighbourly thing. To please you I will change, and give you my fine fat Heaven reward you for your kindness and self-denial! said Hans, as he gave the butcher the cow; and taking the pig off the wheel-barrow, drove it away, holding it by the string that was tied to So on he jogged, and all seemed now to go right with him: he had met with some misfortunes, to beM sure; but he was now well repaid for all. How could it be otherwise with such a travelling companion as he had at The next man he met was a countryman carrying a fine white goose. The countryman stopped to ask what was o clock; this led to further chat; and Hans told him all his luck, how he had so many good bargains, and how all the world went gay and smiling with him. The countryman then began to tell his tale, and said he was going to take the goose to a how heavy it is, and yet it is only eight weeks old. Whoever roasts and eats it will find plenty of fat upon it, it has lived so well! said Hans, as he weighed it in but if you talk of fat, my pig is no trifle. countryman began to look grave, and shook his head. my worthy friend, you seem a good sort of fellow, so I can you a kind turn. Your pig may get you into a scrape. In the village I just came from, the squM ire has had a pig stolen out of his sty. I was dreadfully afraid when I saw you that you had got the squire you have, and they catch you, it will be a bad job for you. The least they will do will be to throw you into the horse-pond. Can you swim? Poor Hans was sadly frightened. of this scrape. I know nothing of where the pig was either bred or born; but he may have been the squire s for aught I can tell: you know this country better than I do, tM ake my pig and give me the goose. to have something into the bargain, said the countryman; goose for a pig, indeed! Tis not everyone would do so much for you as that. However, I will not be hard upon you, as you are in trouble. he took the string in his hand, and drove off the pig by a side path; while Hans went on the way homewards free from care. that chap is pretty well taken in. I don it is, but wherever it came M from it has been a very good friend to me. I have much the best of the bargain. First there will be a capital roast; then the fat will find me in goose-grease for six months; and then there are all the beautiful white feathers. I will put them into my pillow, and then I am sure I shall sleep soundly without rocking. How happy my mother will be! Talk of a pig, indeed! Give me a fine fat goose. As he came to the next village, he saw a scissor-grinder with his wheel, working and singing, Work light and live well, All the world is my home; Then who so blythe, so merry as I? Hans stood looking on for a while, and at last said, off, master grinder! you seem so happy at your work. mine is a golden trade; a good grinder never puts his hand into his pocket without finding money in it--but where did you get that I did not buy it, I gave a pig for it. I gave a cow for it. I gave a lump of silver as big as my Oh! I worked hard for that seven long You have thriven well in the world hitherto, now if you could find money in your pocket whenever you put your hand in it, your fortune would be made. Very true: but how is that to be How? Why, you must turn grinder like myselM you only want a grindstone; the rest will come of itself. Here is one that is but little the worse for wear: I would not ask more than the value of your goose for it--will you buy? I should be the happiest man in the world, if I could have money whenever I put my hand in my pocket: what could I want more? there said the grinder, as he gave him a common rough stone that lay by his side, this is a most capital stonM e; do but work it well enough, and you can make an old nail cut with it. Hans took the stone, and went his way with a light heart: his eyes sparkled for joy, and he said to himself, Surely I must have been born in a lucky hour; everything I could want or wish for comes of itself. People are so kind; they seem really to think I do them a favour in letting them make me rich, and giving me good bargains. Meantime he began to be tired, and hungry too, for he had given away his last penny in his joyM at getting the cow. At last he could go no farther, for the stone tired him sadly: and he dragged himself to the side of a river, that he might take a drink of water, and rest a while. So he laid the stone carefully by his side on the bank: but, as he stooped down to drink, he forgot it, pushed it a little, and down it rolled, plump into the stream. For a while he watched it sinking in the deep clear water; then sprang up and danced for joy, and again fell upon his knees and thanked Heaven, in his eyes, for its kindness in taking away his only plague, the ugly heavy stone. nobody was ever so lucky as I. got with a light heart, free from all his troubles, and walked on till he reached his mother s house, and told her how very easy the road to Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8h1enktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 by Martin Luther King, Jr. I am happy to join with you today in what will go down in history as the greatest demonstration for freedom in the history of our nation. Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of their M But one hundred years later, the Negro still is not free. One hundred years later, the life of the Negro is still sadly crippled by the manacles of segregation and the chains of discrimination. One hundred years later, the Negro lives on a lonely island of poverty in the midst of a vast ocean of material prosperity. One hundred years later, the Negro is still languishing in the corners of American society and finds himself an exile in his own land. So we have come here today to In a sense we have come to our nation's capital to cash a check. When the architects of our republic wrote the magnificent words of the Constitution and the Declaration of Independence, they were signing a promissory note to which every American was to fall heir. This note was a promise that all men, yes, black men as well as white men, would be guaranteed the unalienable rights of life, liberty, and the pursuit of It is obvious today that America has defaulted on this promissM insofar as her citizens of color are concerned. Instead of honoring this sacred obligation, America has given the Negro people a bad check, a check which has come back marked "insufficient funds." But we refuse to believe that the bank of justice is bankrupt. We refuse to believe that there are insufficient funds in the great vaults of opportunity of this nation. So we have come to cash this check -- a check that will give us upon demand the riches of freedom and the security of justice. We have so come to this hallowed spot to remind America of the fierce urgency of now. This is no time to engage in the luxury of cooling off or to take the tranquilizing drug of gradualism. Now is the time to make real the promises of democracy. Now is the time to rise from the dark and desolate valley of segregation to the sunlit path of racial justice. Now is the time to lift our nation from the quick sands of racial injustice to the solid rock of brotherhood. Now is the time to make justice a reality for all of GM It would be fatal for the nation to overlook the urgency of the moment. This sweltering summer of the Negro's legitimate discontent will not pass until there is an invigorating autumn of freedom and equality. Nineteen sixty-three is not an end, but a beginning. Those who hope that the Negro needed to blow off steam and will now be content will have a rude awakening if the nation returns to business as usual. There will be neither rest nor tranquility in America until the Negro is granted hisM citizenship rights. The whirlwinds of revolt will continue to shake the foundations of our nation until the bright day of justice emerges. But there is something that I must say to my people who stand on the warm threshold which leads into the palace of justice. In the process of gaining our rightful place we must not be guilty of wrongful deeds. Let us not seek to satisfy our thirst for freedom by drinking from the cup of bitterness and hatred. We must forever conduct our struggle on the high plane ofM discipline. We must not allow our creative protest to degenerate into physical violence. Again and again we must rise to the majestic heights of meeting physical force with soul force. The marvelous new militancy which has engulfed the Negro community must not lead us to a distrust of all white people, for many of our white brothers, as evidenced by their presence here today, have come to realize that their destiny is tied up with our destiny. They have come to realize that their freedom is xtricably bound to our freedom. We cannot walk alone. As we walk, we must make the pledge that we shall always march ahead. We cannot turn back. There are those who are asking the devotees of civil rights, "When will you be satisfied?" We can never be satisfied as long as the Negro is the victim of the unspeakable horrors of police brutality. We can never be satisfied, as long as our bodies, heavy with the fatigue of travel, cannot gain lodging in the motels of the highways and the hotels of the cities. WeM cannot be satisfied as long as the Negro's basic mobility is from a smaller ghetto to a larger one. We can never be satisfied as long as our children are stripped of their selfhood and robbed of their dignity by signs stating "For Whites Only". We cannot be satisfied as long as a Negro in Mississippi cannot vote and a Negro in New York believes he has nothing for which to vote. No, no, we are not satisfied, and we will not be satisfied until justice rolls down like waters and righteousness like a mighty strM I am not unmindful that some of you have come here out of great trials and tribulations. Some of you have come fresh from narrow jail cells. Some of you have come from areas where your quest for freedom left you battered by the storms of persecution and staggered by the winds of police brutality. You have been the veterans of creative suffering. Continue to work with the faith that unearned suffering is redemptive. Go back to Mississippi, go back to Alabama, go back to South Carolina, orgia, go back to Louisiana, go back to the slums and ghettos of our northern cities, knowing that somehow this situation can and will be changed. Let us not wallow in the valley of despair. I say to you today, my friends, so even though we face the difficulties of today and tomorrow, I still have a dream. It is a dream deeply rooted in the American dream. I have a dream that one day this nation will rise up and live out the true meaning of its creed: "We hold these truths to be self-evident: en are created equal." I have a dream that one day on the red hills of Georgia the sons of former slaves and the sons of former slave owners will be able to sit down together at the table of brotherhood. I have a dream that one day even the state of Mississippi, a state weltering with the heat of injustice, sweltering with the heat of oppression, will be transformed into an oasis of freedom and justice. I have a dream that my four little children will one day live in a nation where they will not be juM dged by the color of their skin but by the content of their character. I have a dream today. I have a dream that one day, down in Alabama, with its vicious racists, with its governor having his lips dripping with the words of interposition and nullification; one day right there in Alabama, little black boys and black girls will be able to join hands with little white boys and white girls as sisters and brothers. I have a dream today. I have a dream that one day every valley shall be exalted, every M and mountain shall be made low, the rough places will be made plain, and the crooked places will be made straight, and the glory of the Lord shall be revealed, and all flesh shall see it together. This is our hope. This is the faith that I go back to the South with. With this faith we will be able to hew out of the mountain of despair a stone of hope. With this faith we will be able to transform the jangling discords of our nation into a beautiful symphony of brotherhood. With this faith we will be aM ble to work together, to pray together, to struggle together, to go to jail together, to stand up for freedom together, knowing that we will be free one day. This will be the day when all of God's children will be able to sing with a new meaning, "My country, 'tis of thee, sweet land of liberty, of thee I sing. Land where my fathers died, land of the pilgrim's pride, from every mountainside, let freedom ring." And if America is to be a great nation this must become true. So let freedom ring from the proM digious hilltops of New Hampshire. Let freedom ring from the mighty mountains of New York. Let freedom ring from the heightening Alleghenies of Pennsylvania! Let freedom ring from the snowcapped Rockies of Colorado! Let freedom ring from the curvaceous slopes of California! But not only that; let freedom ring from Stone Mountain of Georgia! Let freedom ring from Lookout Mountain of Tennessee! Let freedom ring from every hill and molehill of Mississippi. From every mountainside, let freedom ring. And when this happens, when we allow freedom to ring, when we let it ring from every village and every hamlet, from every state and every city, we will be able to speed up that day when all of God's children, black men and white men, Jews and Gentiles, Protestants and Catholics, will be able to join hands and sing in the words of the old Negro spiritual, "Free at last! free at last! thank God Almighty, we are free Dated August 28, 1963 From pbslearningmedia.org Inscribed by etching.nL Support the preservation of knowledge and culture with Monero (XMR): 8393S7XPLjoPL1qg16CtVj62uXNeVfeciPXAFEPQhjkqE1UfzRAWL2uBkBfVRps7U3APRqPbzMtpoKW5oAyjnC3H9pNaffZh! <svg style="font:160% arial;font-weight:700;fill:white" height="100%" width="100%" viewBox="0 0 100 100" xmlns="http://www.w3.org/2000/svg"> <circle cy="50%" cx="50%" r="50%" fill="#0a7b50" /> <text x="29%" y="28%">600</text> <text x="29%" y="48%">000</text> <text x="29%" y="68%">000</text> <text x="29%" y="88%">000</text> text/plain;charset=utf-8 ASHPUTTEL [CINDERELLA] The wife of a rich man fell sick; and when she felt that her end drew nigh, she called her only daughter to her bed-side, and said, a good girl, and I will look down from heaven and watch over you. afterwards she shut her eyes and died, and was buried in the garden; and the little girl went every day to her grave and wept, and was always good and kind to all about her. And the snow fell and spread a beautiful white covering over the graveM ; but by the time the spring came, and the sun had melted it away again, her father had married another wife. This new wife had two daughters of her own, that she brought home with her; they were fair in face but foul at heart, and it was now a sorry time for the poor little girl. What does the good-for-nothing want in the they who would eat bread should first earn it; away with the kitchen-maid! Then they took away her fine clothes, and gave her an old grey frock to put on, aM nd laughed at her, and turned her There she was forced to do hard work; to rise early before daylight, to bring the water, to make the fire, to cook and to wash. Besides that, the sisters plagued her in all sorts of ways, and laughed at her. In the evening when she was tired, she had no bed to lie down on, but was made to lie by the hearth among the ashes; and as this, of course, made her always dusty and dirty, they called her Ashputtel. It happened once that the father was going to tM he fair, and asked his s daughters what he should bring them. Pearls and diamonds, to his own daughter, The first twig, dear father, that brushes against your hat when you turn your face to come said she. Then he bought for the first two the fine clothes and pearls and diamonds they had asked for: and on his way home, as he rode through a green copse, a hazel twig brushed agM ainst him, and almost pushed off his hat: so he broke it off and brought it away; and when he got home he gave it to his daughter. Then she took it, and went to s grave and planted it there; and cried so much that it was watered with her tears; and there it grew and became a fine tree. Three times every day she went to it and cried; and soon a little bird came and built its nest upon the tree, and talked with her, and watched over her, and brought her whatever she wished for. that the king of that land held a feast, which was to last three days; and out of those who came to it his son was to choose a bride for himself. Ashputtel s two sisters were asked to come; so they called her up, and said, Now, comb our hair, brush our shoes, and tie our sashes for us, for we are going to dance at the king Then she did as she was told; but when all was done she could not help crying, for she thought to herself, she should so have liked to have gone with them to the ball; aM nd at last she begged her mother very hard you who have nothing to wear, no clothes at all, and who cannot even dance--you want to go to the ball? And when she kept on begging, she said at last, to get rid of I will throw this dishful of peas into the ash-heap, and if in time you have picked them all out, you shall go to the feast Then she threw the peas down among the ashes, but the little maiden ran out at the back door into M the garden, and cried out: Hither, hither, through the sky, Turtle-doves and linnets, fly! Blackbird, thrush, and chaffinch gay, Hither, hither, haste away! One and all come help me, quick! Haste ye, haste ye!--pick, pick, pick! Then first came two white doves, flying in at the kitchen window; next came two turtle-doves; and after them came all the little birds under heaven, chirping and fluttering in: and they flew down into the ashes. And the little doves stooped their heads down anM d set to work, pick, pick, pick; and then the others began to pick, pick, pick: and among them all they soon picked out all the good grain, and put it into a dish but left the ashes. Long before the end of the hour the work was quite done, and all flew out again at the windows. Then Ashputtel brought the dish to her mother, overjoyed at the thought that now she should go to the ball. But the mother said, slut, you have no clothes, and cannot dance; you shall not go. gged very hard to go, she said, If you can in one hour time pick two of those dishes of peas out of the ashes, you shall go And thus she thought she should at least get rid of her. So she shook two dishes of peas into the ashes. But the little maiden went out into the garden at the back of the house, and cried out as before: Hither, hither, through the sky, Turtle-doves and linnets, fly! Blackbird, thrush, and chaffinch gay, Hither, hither, haste away! One and all come help M Haste ye, haste ye!--pick, pick, pick! Then first came two white doves in at the kitchen window; next came two turtle-doves; and after them came all the little birds under heaven, chirping and hopping about. And they flew down into the ashes; and the little doves put their heads down and set to work, pick, pick, pick; and then the others began pick, pick, pick; and they put all the good grain into the dishes, and left all the ashes. Before half an hour was done, and out they fM lew again. And then Ashputtel took the dishes to her mother, rejoicing to think that she should now go to the ball. But her mother said, It is all of no use, you cannot go; you have no clothes, and cannot dance, and you would only put us to shame she went with her two daughters to the ball. Now when all were gone, and nobody left at home, Ashputtel went sorrowfully and sat down under the hazel-tree, and cried out: Shake, shake, hazel-tree, Gold and silver over me! end the bird flew out of the tree, and brought a gold and silver dress for her, and slippers of spangled silk; and she put them on, and followed her sisters to the feast. But they did not know her, and thought it must be some strange princess, she looked so fine and beautiful in her rich clothes; and they never once thought of Ashputtel, taking it for granted that she was safe at home in the dirt. s son soon came up to her, and took her by the hand and danced with her, and no one else: and he neM ver left her hand; but when anyone else came to ask her to dance, he said, This lady is dancing with me. Thus they danced till a late hour of the night; and then she wanted to go home: and the king I shall go and take care of you to ; for he wanted to see where the beautiful maiden lived. But she slipped away from him, unawares, and ran off towards home; and as the prince followed her, she jumped up into the pigeon-house and shut the door. Then he waited till her father cM ame home, and told him that the unknown maiden, who had been at the feast, had hid herself in the pigeon-house. But when they had broken open the door they found no one within; and as they came back into the house, Ashputtel was lying, as she always did, in her dirty frock by the ashes, and her dim little lamp was burning in the chimney. For she had run as quickly as she could through the pigeon-house and on to the hazel-tree, and had there taken off her beautiful clothes, and put them beneath the tree, thatM might carry them away, and had lain down again amid the ashes in her The next day when the feast was again held, and her father, mother, and sisters were gone, Ashputtel went to the hazel-tree, and said: Shake, shake, hazel-tree, Gold and silver over me! And the bird came and brought a still finer dress than the one she had worn the day before. And when she came in it to the ball, everyone wondered at her beauty: but the king s son, who was waiting for her, ok her by the hand, and danced with her; and when anyone asked her to dance, he said as before, This lady is dancing with me. When night came she wanted to go home; and the king as before, that he might see into what house she went: but she sprang away from him all at once into the garden behind her father In this garden stood a fine large pear-tree full of ripe fruit; and Ashputtel, not knowing where to hide herself, jumped up into it without being seen. Then the kinM s son lost sight of her, and could not find out where she was gone, but waited till her father came home, and said The unknown lady who danced with me has slipped away, and I think she must have sprung into the pear-tree. The father thought to Can it be Ashputtel? So he had an axe brought; and they cut down the tree, but found no one upon it. And when they came back into the kitchen, there lay Ashputtel among the ashes; for she had slipped down on the other side of the tree, M and carried her beautiful clothes back to the bird at the hazel-tree, and then put on her little grey The third day, when her father and mother and sisters were gone, she went again into the garden, and said: Shake, shake, hazel-tree, Gold and silver over me! Then her kind friend the bird brought a dress still finer than the former one, and slippers which were all of gold: so that when she came to the feast no one knew what to say, for wonder at her beauty: and the d with nobody but her; and when anyone else asked her to This lady is _my_ partner, sir. When night came she wanted to go home; and the king her, and said to himself, I will not lose her this time she again slipped away from him, though in such a hurry that she dropped her left golden slipper upon the stairs. The prince took the shoe, and went the next day to the king his father, I will take for my wife the lady that this goldeM Then both the sisters were overjoyed to hear it; for they had beautiful feet, and had no doubt that they could wear the golden slipper. The eldest went first into the room where the slipper was, and wanted to try it on, and the mother stood by. But her great toe could not go into it, and the shoe was altogether much too small for her. Then the mother gave her a knife, and said, Never mind, cut it off; when you are queen you will not care about toes; you will not want to walk. silly girl cut off her great toe, and thus squeezed on the shoe, and went to the king s son. Then he took her for his bride, and set her beside him on his horse, and rode away with her homewards. But on their way home they had to pass by the hazel-tree that Ashputtel had planted; and on the branch sat a little dove singing: Back again! back again! look to the shoe! The shoe is too small, and not made for you! Prince! prince! look again for thy bride, s not the true one that sits bM Then the prince got down and looked at her foot; and he saw, by the blood that streamed from it, what a trick she had played him. So he turned his horse round, and brought the false bride back to her home, This is not the right bride; let the other sister try and put Then she went into the room and got her foot into the shoe, all but the heel, which was too large. But her mother squeezed it in till the blood came, and took her to the king s son: and he set hM as his bride by his side on his horse, and rode away with her. But when they came to the hazel-tree the little dove sat there still, Back again! back again! look to the shoe! The shoe is too small, and not made for you! Prince! prince! look again for thy bride, s not the true one that sits by thy side. Then he looked down, and saw that the blood streamed so much from the shoe, that her white stockings were quite red. So he turned his horse and brought her also bacM This is not the true bride, have you no other daughters? only a little dirty Ashputtel here, the child of my first wife; I am sure she cannot be the bride. The prince told him to send her. But the No, no, she is much too dirty; she will not dare to show However, the prince would have her come; and she first washed her face and hands, and then went in and curtsied to him, and he reached pper. Then she took her clumsy shoe off her left foot, and put on the golden slipper; and it fitted her as if it had been made for her. And when he drew near and looked at her face he knew her, and This is the right bride. But the mother and both the sisters were frightened, and turned pale with anger as he took Ashputtel on his horse, and rode away with her. And when they came to the hazel-tree, the Home! home! look at the shoe! Princess! the shoe was made for you! rince! prince! take home thy bride, For she is the true one that sits by thy side! And when the dove had done its song, it came flying, and perched upon her right shoulder, and so went home with her. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 Hard by a great forest dwelt a poor wood-cutter with his wife and his two children. The boy was called Hansel and the girl Gretel. He had little to bite and to break, and once when great dearth fell on the land, he could no longer procure even daily bread. Now when he thought over this by night in his bed, and tossed about in his anxiety, he groaned and said to his wife: What is to become of us? How are we to feed our poor children, when we no longer have anythM ll tell you what, husband, answered the woman, tomorrow morning we will take the children out into the forest to where it is the thickest; there we will light a fire for them, and give each of them one more piece of bread, and then we will go to our work and leave them alone. They will not find the way home again, and we shall be I will not do that; how can I bear to leave my children alone in the forest?--the wildM soon come and tear them to pieces. must all four die of hunger, you may as well plane the planks for our and she left him no peace until he consented. sorry for the poor children, all the same, The two children had also not been able to sleep for hunger, and had heard what their stepmother had said to their father. Gretel wept bitter tears, and said to Hansel: Now all is over with us. do not distress yourself, I will soon find a way And when the old folks had fallen asleep, he got up, put on his little coat, opened the door below, and crept outside. The moon shone brightly, and the white pebbles which lay in front of the house glittered like real silver pennies. Hansel stooped and stuffed the little pocket of his coat with as many as he could get in. Then he went back and said to Gretel: Be comforted, dear little sister, and sleep in God will not forsake us, and he lay down again in his bed. When day dawned, but before the sun had risen, the woman came and awoke the two children, saying: Get up, you sluggards! we are going into the forest to fetch wood. She gave each a little piece of bread, and said: There is something for your dinner, but do not eat it up before then, for you will get nothing else. Gretel took the bread under her apron, as Hansel had the pebbles in his pocket. Then they all set out together the forest. When they had walked a short time, Hansel stood still and peeped back at the house, and did so again and again. Hansel, what are you looking at there and staying behind for? Pay attention, and do not forget how to use your legs. I am looking at my little white cat, which is sitting up on the roof, and wants to say goodbye to me. Fool, that is not your little cat, that is the morning sun which is shining on the chimneysM Hansel, however, had not been looking back at the cat, but had been constantly throwing one of the white pebble-stones out of his pocket on the road. When they had reached the middle of the forest, the father said: children, pile up some wood, and I will light a fire that you may not Hansel and Gretel gathered brushwood together, as high as a little hill. The brushwood was lighted, and when the flames were burning very high, the woman said: Now, children, lay yourselves down by M fire and rest, we will go into the forest and cut some wood. When we have done, we will come back and fetch you away. Hansel and Gretel sat by the fire, and when noon came, each ate a little piece of bread, and as they heard the strokes of the wood-axe they believed that their father was near. It was not the axe, however, but a branch which he had fastened to a withered tree which the wind was blowing backwards and forwards. And as they had been sitting such a long time, their eyes closed with fatiM gue, and they fell fast asleep. When at last they awoke, it was already dark night. Gretel began to cry and How are we to get out of the forest now? But Hansel comforted Just wait a little, until the moon has risen, and then we will soon find the way. And when the full moon had risen, Hansel took his little sister by the hand, and followed the pebbles which shone like newly-coined silver pieces, and showed them the way. They walked the whole night long, and by break of day cM s house. They knocked at the door, and when the woman opened it and saw that it was Hansel and Gretel, she said: children, why have you slept so long in the forest?--we thought you were never coming back at all! The father, however, rejoiced, for it had cut him to the heart to leave them behind alone. Not long afterwards, there was once more great dearth throughout the land, and the children heard their mother saying at night to their is eaten again, we have one half loaf left, and that is the end. The children must go, we will take them farther into the wood, so that they will not find their way out again; there is no other means of saving ourselves! s heart was heavy, and he thought: It would be better for you to share the last mouthful with your The woman, however, would listen to nothing that he had to say, but scolded and reproached him. He who says A must say B, likewise, and as he had yielded the firstM time, he had to do so a second time The children, however, were still awake and had heard the conversation. When the old folks were asleep, Hansel again got up, and wanted to go out and pick up pebbles as he had done before, but the woman had locked the door, and Hansel could not get out. Nevertheless he comforted his little sister, and said: Do not cry, Gretel, go to sleep quietly, the good God will help us. Early in the morning came the woman, and took the children out of their ir piece of bread was given to them, but it was still smaller than the time before. On the way into the forest Hansel crumbled his in his pocket, and often stood still and threw a morsel on the ground. Hansel, why do you stop and look round? am looking back at my little pigeon which is sitting on the roof, and wants to say goodbye to me, that is not your little pigeon, that is the morning sun that is shining Hansel, however little by little, threw all the crumbs The woman led the children still deeper into the forest, where they had never in their lives been before. Then a great fire was again made, and Just sit there, you children, and when you are tired you may sleep a little; we are going into the forest to cut wood, and in the evening when we are done, we will come and fetch you away. it was noon, Gretel shared her piece of bread with Hansel, who had tered his by the way. Then they fell asleep and evening passed, but no one came to the poor children. They did not awake until it was dark night, and Hansel comforted his little sister and said: Gretel, until the moon rises, and then we shall see the crumbs of bread which I have strewn about, they will show us our way home again. the moon came they set out, but they found no crumbs, for the many thousands of birds which fly about in the woods and fields had picked them all up. Hansel saM We shall soon find the way, they did not find it. They walked the whole night and all the next day too from morning till evening, but they did not get out of the forest, and were very hungry, for they had nothing to eat but two or three berries, which grew on the ground. And as they were so weary that their legs would carry them no longer, they lay down beneath a tree and fell It was now three mornings since they had left their father began to walk again, buM t they always came deeper into the forest, and if help did not come soon, they must die of hunger and weariness. When it was mid-day, they saw a beautiful snow-white bird sitting on a bough, which sang so delightfully that they stood still and listened to it. And when its song was over, it spread its wings and flew away before them, and they followed it until they reached a little house, on the roof of which it alighted; and when they approached the little house they saw that it was built of bread and covereM d with cakes, but that the windows were of clear sugar. We will set to work on that, have a good meal. I will eat a bit of the roof, and you Gretel, can eat some of the window, it will taste sweet. Hansel reached up above, and broke off a little of the roof to try how it tasted, and Gretel leant against the window and nibbled at the panes. Then a soft voice cried Nibble, nibble, gnaw, Who is nibbling at my little house? The children answered: The heaven-born wind, and went on eating without disturbing themselves. Hansel, who liked the taste of the roof, tore down a great piece of it, and Gretel pushed out the whole of one round window-pane, sat down, and enjoyed herself with it. Suddenly the door opened, and a woman as old as the hills, who supported herself on crutches, came creeping out. Hansel and Gretel were so terribly frightened that they let fall what they had in their hands. The old woman, however, nodded heM children, who has brought you here? do come in, and stay with me. No harm shall happen to you. She took them both by the hand, and led them into her little house. Then good food was set before them, milk and pancakes, with sugar, apples, and nuts. Afterwards two pretty little beds were covered with clean white linen, and Hansel and Gretel lay down in them, and thought they were in heaven. The old woman had only pretended to be so kind; she was in reality , who lay in wait for children, and had only built the little house of bread in order to entice them there. When a child fell into her power, she killed it, cooked and ate it, and that was a feast day with her. Witches have red eyes, and cannot see far, but they have a keen scent like the beasts, and are aware when human beings draw near. When Hansel and Gretel came into her neighbourhood, she laughed with malice, and said mockingly: I have them, they shall not escape me Early in the morning befM ore the children were awake, she was already up, and when she saw both of them sleeping and looking so pretty, with their plump and rosy cheeks she muttered to herself: will be a dainty mouthful! Then she seized Hansel with her shrivelled hand, carried him into a little stable, and locked him in behind a grated door. Scream as he might, it would not help him. Then she went to Gretel, shook her till she awoke, and cried: Get up, lazy thing, fetch some water, and cook something good for your brotM stable outside, and is to be made fat. When he is fat, I will eat him. Gretel began to weep bitterly, but it was all in vain, for she was forced to do what the wicked witch commanded. And now the best food was cooked for poor Hansel, but Gretel got nothing but crab-shells. Every morning the woman crept to the little stable, and Hansel, stretch out your finger that I may feel if you will soon Hansel, however, stretched out a little bone to her, and ho had dim eyes, could not see it, and thought it was s finger, and was astonished that there was no way of fattening him. When four weeks had gone by, and Hansel still remained thin, she was seized with impatience and would not wait any longer. she cried to the girl, stir yourself, and bring some water. Let Hansel be fat or lean, tomorrow I will kill him, and cook him. how the poor little sister did lament when she had to fetch the water, and how her tears did floM Dear God, do help us, If the wild beasts in the forest had but devoured us, we should at any rate have died together. Just keep your noise to yourself, said the old woman, Early in the morning, Gretel had to go out and hang up the cauldron with the water, and light the fire. said the old woman, I have already heated the oven, and kneaded the dough. Gretel out to the oven, from wM hich flames of fire were already darting. and see if it is properly heated, so that we can put the bread in. And once Gretel was inside, she intended to shut the oven and let her bake in it, and then she would eat her, too. But Gretel saw what she had in mind, and said: I do not know how I am to do it; how do I get in? said the old woman. is big enough; just look, I can get in myself! and she crept up and thrust her head into the oM ven. Then Gretel gave her a push that drove her far into it, and shut the iron door, and fastened the bolt. Oh! then she began to howl quite horribly, but Gretel ran away and the godless witch was miserably burnt to death. Gretel, however, ran like lightning to Hansel, opened his little stable, Hansel, we are saved! The old witch is dead! sprang like a bird from its cage when the door is opened. How they did rejoice and embrace each other, and dance about and kiss each other! AM as they had no longer any need to fear her, they went into the witch house, and in every corner there stood chests full of pearls and jewels. These are far better than pebbles! said Hansel, and thrust into his pockets whatever could be got in, and Gretel said: something home with me, and filled her pinafore full. that we may get out of the witch When they had walked for two hours, they came to a great stretch M I see no foot-plank, and no And there is also no ferry, duck is swimming there: if I ask her, she will help us over. Little duck, little duck, dost thou see, Hansel and Gretel are waiting for thee? s never a plank, or bridge in sight, Take us across on thy back so white. The duck came to them, and Hansel seated himself on its back, and told his sister to sit by him.M that will be too heavy for the little duck; she shall take us across, one after the other. good little duck did so, and when they were once safely across and had walked for a short time, the forest seemed to be more and more familiar to them, and at length they saw from afar their father they began to run, rushed into the parlour, and threw themselves round s neck. The man had not known one happy hour since he had left the children in the foM rest; the woman, however, was dead. Gretel emptied her pinafore until pearls and precious stones ran about the room, and Hansel threw one handful after another out of his pocket to add to them. Then all anxiety was at an end, and they lived together in perfect happiness. My tale is done, there runs a mouse; whosoever catches it, may make himself a big fur cap out of it. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 hen Morgenrot der ersten Stunde nach dem Mund, der goldig spricht, der hirnverbrannten H hle, die Gulden spuckt, im Spiegelkabinett der Fenster eines kolossalen Glaspalasts, der Geister ngt, kratze nach den Linsentalern, durch deren Brennpunkt die Sonne brennt, entflammt Gestirne, Sonnen <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! |http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 9.0-c000 137.da4a7e5, 2022/11/27-09:35:03 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http:M //ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:DocumentID="xmp.did:FD7BE76F03E0D14BAF4C222B3FBBA0C7" xmpMM:InstanceID="xmp.iid:69A76A1FD194B24DA8413437A156D0CA" photoshop:ICCProfile="sRGB IEC61966-2.1" xmp:CreatorTool="Adobe Photoshop 24.1 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="3128412609ACF86606A4E4C49CFD21DF" stRef:documentID="3128412609ACF86606A4E4C49CFD21DF"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ I I I I I I I I I I I I I I I I <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 .+''+.F26262FjBNBBNBj^r]V]r^ .+''+.F26262FjBNBBNBj^r]V]r^ http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:F993F39AAAE511EDB951D4647E6C9384" xmpMM:InstanceID="xmp.iid:F993F399AAE511EDB951D4647E6C9384" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:bfe6075a-4a48-824a-9b17-dbd17a4d3509" stRef:documentID="adobe:docid:photoshop:465ad496-f16c-d742-820d-e7e2178cc0b5"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD iCCPsRGB IEC61966-2.1 <svg height="2500" viewBox="0 0 192.756 192.756" width="2500" xmlns="http://www.w3.org/2000/svg"><g clip-rule="evenodd" fill-rule="evenodd"><path d="m0 0h192.756v192.756h-192.756z" fill="#fff"/><g fill="#cc2229"><path d="m155.512 93.999c-.176 0-.188-.16-.268-.28-.891-1.375-2.18-2.772-3.531-3.749-3.051-2.205-6.66-3.573-10.725-3.703v-.209c.266 0 .562-.336.764-.48 2.414-1.744 5.223-5.544 6.109-8.202.141-.425.379-.934.232-1.424-.43-1.434-6.104-2.495-7.627-2.642 0-.621.131-1.329.08-1.985-.162-2.08-1.08-3.931-2.369-5.443M -.514-.601-1.434-1.179-1.754-1.887-.344-.754-.422-1.711-.68-2.488-.668-2.009-2.012-3.951-3.783-5.28-1.166-.875-2.414-1.545-3.746-2.09-.656-.271-1.639-.34-2.188-.784-.525-.428-.816-1.202-1.182-1.744-.598-.885-1.273-1.773-2.018-2.563-3.498-3.722-8.131-5.603-13.295-6.011-1.076-.006-2.158-.017-3.234-.026-.314.071-.627.14-.941.209-.242.036-.486.068-.73.104-1.045 0-3.59.653-4.389 1.149-1.85 0-3.648-.417-5.539-.417-.438 0-.999-.059-1.358.104-.457 0-.976-.049-1.358.104-.277.036-.558.069-.836.105-2.302 0-5.547 1.466-7.177 2M .86a15.335 15.335 0 0 0 -1.668 1.665l-.794.872-.705.245c-.339 0-.764-.023-1.045.104-2.357 0-5.084 1.362-6.762 2.753-.493.405-1.434 1.538-1.966 1.71-.604.193-1.355-.238-1.848-.444-1.277-.538-5.522-2.497-6.841-2.037-1.391.48.287 10.697.385 12.229-.173.036-.35.068-.522.104-.396 0-.938-.056-1.254.104-1.643 0-3.255-.242-4.807-.438-1.541-.196-6.07-1.276-7.359-.415-.311.206-.343.575-.353.957-.079 2.504 1.313 4.813 2.593 6.688-1.126 0-2.181-.121-3.344-.101-.349.003-.754-.03-1.045.101-.509 0-1.261-.105-1.672.104-.33 0-.787-M .026-1.045.104-.277.036-.558.068-.836.104-.209.036-.417.068-.626.104-.901 0-3.873.705-4.075 1.59-.104.441.121.973.288 1.345.904 2.021 2.507 3.876 4.447 5.052 2.112 1.28 4.457 1.923 7.073 2.253v.104c-.333 0-.803.502-1.081.679-2.341 1.453-4.552 3.099-6.688 4.924-.659.558-1.541 1.264-1.949 2.024-.232 0 .424.402.552.458l4.14 1.342c.79.229 1.571.535 2.419.663.993.144 2.106.016 3.027-.134 2.631-.434 5.002-1.221 7.52-1.806-.542 2.374-1.087 4.744-1.629 7.119-.202.757-.516 1.845-.268 2.674.434 1.463 2.015 2.54 3.164 3.458.3M 66.29.957.513 1.202.943.179.32.14.859.14 1.271 0 4.63-.114 9.113-.327 13.685-.065 1.378-.408 4.023.16 5.209.545 1.139 6.714-1.091 7.974-.72.757.223.917 3.86 1.182 4.709.258 0 2.772.905 2.922 1.052.467.45-.287 2.743.347 3.735.643 1.013 3.014 1.287 3.291 1.854.013.026.023.05.033.075.176.52.095 1.257.095 1.852.036.977.069 1.949.104 2.926 0 .637-.098 1.424.196 1.926.235.408.784.732 1.188.951.604.323 4.412 2.305 4.862 2.161.421-.137.757-.63 1.101-.927 1.064-.941 8.101-8.072 8.601-8.007.539.065 1.796 1.715 2.201 2.146.53M 2.564 1.907 2.191 1.985 2.919.06.594-.613 1.776-.871 2.299-1.218 2.43-2.746 4.741-4.265 7.053-.644.953-1.29 1.904-1.936 2.854h-.105l.069.124c.32.581.852 1.054 1.394 1.442 0 .138-.036.105.104.105 0-.086 2.41-3.193 2.668-3.589a77.911 77.911 0 0 0 4.268-7.468c.467-.94 1.016-1.939 1.312-2.948.055-.199.107-.392.029-.591-.268-.677-.967-1.297-1.449-1.846l-2.27-2.651c-.317-.368-.878-.858-.977-1.325-.229-1.071 2.387-4.344 3-5.392-.529 0-.848-.709-1.616-.398-.591.235-1.048 1.052-1.457 1.516-.626.698-1.254 1.394-1.88 2.09-1.1M 76 1.286-9.502 9.854-10.292 9.688-.503-.107-3.021-1.119-3.22-1.485-.33-.598-.137-3.598-.137-4.513 0-.731.065-1.515-.196-2.103-.731-1.63-3.239-1.303-3.749-2.357-.486-1.003.16-2.615-.434-3.638-.64-1.094-2.609-.849-3.037-1.937-.189-.474-.102-1.133-.124-1.668-.062-1.258.016-2.969-.5-4.026-.134-.278-.398-.32-.722-.284-1.871.199-3.719.914-5.453 1.473-.643.205-1.414.382-1.979.747-.13 0-.134-.032-.209-.104 0-.691-.118-1.433-.104-2.194.065-4.307.163-8.712.695-12.753.095-.732.108-2.822.666-3.185.379-.251 1.022-.098 1.46-.062M 1.887.147 3.625.553 5.427.879.754.134 1.594.382 2.407.343.833-.042 1.482-.94 2.125-1.371 1.267-.859 2.56-1.698 3.833-2.554.729-.493 2.701-1.665 3.141-2.36.134-.219.167-.477.141-.771-.046-.448-.131-1.225-.679-1.271-.581-.053-1.179.215-1.682.386-1.287.45-2.577.897-3.866 1.348-3.327 1.022-6.805 1.767-10.103 2.812-.943.269-1.89.532-2.834.797-1.123 0-1.904-.343-2.701-.963-.575-.447-1.149-1.016-1.394-1.686-.258-.699-.101-1.544.007-2.266l1.126-5.332c.108-.696.213-1.391.32-2.087.046-.506-.134-1.303.114-1.724.45-.477.897-.M 957 1.349-1.437 1.061-1.097 2.086-2.253 3.269-3.209h.104c0 .441-.474 1.022-.676 1.391-.278.624-.559 1.247-.839 1.871-.767 1.864-1.133 4.049-1.202 6.246 1.186-.13 2.367-.265 3.553-.398 5.502-.614 10.295-2.185 14.031-6.158.509-.549 1.13-1.146 1.433-1.803h.104c.134.594.264 1.185.398 1.779.796 3.416 2.347 6.456 3.843 9.525.434 1.074.865 2.146 1.296 3.22 0 .199.375.039.522.003.974-.248 1.767-.992 2.352-1.818 1.753-2.498 2.896-5.486 3.709-8.424h.209c0 .714.405 1.443.611 2.093 1.009 3.197 3.251 5.832 3.882 9.191 1.24 0 2.M 604-2.913 3.658-3.552 0-.269.541 1.21.627 1.357 0 .226 1.055.007 1.25-.02 2.73-.392 5.326-1.714 7.486-3.271.645-.503 1.283-1.009 1.924-1.512.209-.141.414-.281.625-.421l-.363 1.375a10.1 10.1 0 0 0 -.252 2.697c.189 4.062 1.764 7.745 3.811 10.899.258.398.695 1.388 1.277 1.388.428 0 .871-.401 1.201-.646 1.215-.914 2.273-2.24 3.232-3.363.455-.535.854-1.264 1.438-1.691 0-.141-.035-.104.104-.104l.592 1.179c.826 1.613 1.861 3.252 3.314 4.532.891.787 1.875 1.362 2.857 1.966.438.268.973.712 1.492.787.6 0 1.91-4.393 2.402-5.0M 16v-.104c.297 0 1.869 1.554 2.23 1.829 2.492 1.867 5.4 3.438 8.846 3.386.623-.013 1.369-.056 1.838-.369.467-.316.105-1.463.039-1.92-.586-4.099-2.494-8.758-5.713-11.426-.402-.333-.82-.708-1.283-.904v-.104c1.254 0 2.281.572 3.553.614 3.043.094 8.76-1.587 10.553-3.854.142.001.109.034.109-.104zm-19.95-17.319 1.771-.412c.455-.078.904-.16 1.355-.241 1.578 0 3.178-.065 4.582.261.715.163 1.322.444 2.002.679v.313c-.18 0-.299.441-.379.588-.461.79-1.326 1.365-1.992 1.956-1.473 1.296-2.979 2.472-4.66 3.36-.748.392-1.639.486-2.M 373.889-.209.036-.418.068-.627.104l-2.717-.029c-1.986-.268-3.971-.539-5.957-.807v-.209c.117 0 .1.003.145-.082.66-1.293 1.852-2.518 3.029-3.422 1.736-1.341 3.673-2.402 5.821-2.948zm-21.771-10.71c.965-1.065 1.994-2.002 3.182-2.769.588-.32 1.172-.643 1.76-.967 1.238.823.947 5.456.621 6.893-1.432 6.22-8.066 10.38-14.205 10.975v-.104c.412 0 1.506-.777 1.904-1.006 3.705-2.148 8.189-5.47 9.289-9.858.088-.362.285-1.012.037-1.354-.33-.458-2.434-.823-3.08-.843v-.104h-.104c0-.291.407-.657.596-.863zm-49.811-11.573c.839.336 1.7M 08.533 2.521.908 1.728.797 3.406 1.609 5.032 2.592.797.48 1.721.977 2.315 1.767 1.306 1.741 1.78 4.134 2.175 6.325.382 2.119.415 4.513-.444 6.38-1.392 0-3.165-1.365-4.216-2.152-2.299-1.724-5.215-4.8-6.214-7.367-.996-2.555-1.365-5.454-1.169-8.453zm-22.465 20.272c-.141 0-.104.032-.104-.104.153 0 .069.032.153-.062 1.045-1.186 3.063-.797 4.444-1.296 2.41 0 5.649-.301 7.588.597 1.976.911 3.559 2.632 5.682 3.269 0 .866-3.072 1.881-3.771 2.061l-1.349.343c-.209.036-.418.069-.627.104-.937-.013-1.877-.029-2.818-.042-3.024-.4M -7.651-2.131-9.198-4.87zm14.726 13.469c-.382.215-.757.421-1.169.571-.268.092-.539.183-.81.274-.242.036-.486.069-.731.105-.313.035-.627.068-.94.104-.277.036-.558.069-.836.104-1.237 0-2.36-.088-3.445-.34l-2.72-.705v-.209c.173 0 .235-.156.359-.258 2.332-1.933 5.149-3.761 7.785-5.185 1.384-.754 2.766-1.668 4.313-2.112.816-.239 1.753-.137 2.589-.386 1.264 0 2.396.098 3.553.209 0 1.833-6.355 6.911-7.948 7.828zm6.299-11.337c-3.664-1.502-7.546-4.892-9.999-8.16-.699-.931-1.473-1.985-1.623-3.167l3.331.362c1.303.239 2.511.614M 3.781.849 1.4.255 2.827.317 4.153.725 2.961.911 5.701 2.965 7.118 5.799.973 1.95 1.753 2.821-.943 3.52l-1.244.343c-.242.036-.487.069-.731.105-1.348 0-2.739.074-3.843-.376zm11.958 11.288c-.689.415-1.47.8-2.26 1.013-.522.137-1.048.271-1.57.405-.209.036-.418.068-.627.104-.242.036-.487.068-.731.104-.242.036-.487.069-.731.104-.242.036-.486.069-.731.105-.209.036-.418.068-.627.104-.719 0-1.306.226-1.985.314.261-.898.519-1.799.777-2.701 1.466-4.091 3.994-7.833 8.026-9.897a14.651 14.651 0 0 1 3.533-1.27l1.77-.343h1.567c-.0M 02 4.938-2.333 9.486-6.411 11.958zm9.178-14.739c-1.179.304-3.396-3.086-3.856-3.882-2.945-5.087-2.874-10.707-.167-15.905 1.335.264 2.279 1.257 3.17 2.266 3.36 3.808 5.101 11.255 2.07 15.928-.237.361-.783 1.478-1.217 1.593zm4.859 22.53v.104l-.131-.042-.621-1.728-1.172-2.495c-1.28-2.557-2.86-5.387-2.541-8.688.232-2.41 1.965-4.803 3.314-6.69 1.335.542 2.348 2.063 2.834 3.337.336.878.689 1.783.895 2.73.929 4.28.72 10.69-2.578 13.472zm6.06-23.405c-.208.036-.418.068-.627.104-.659 0-1.535-.121-2.09.104-1.218-.033-2.439-.06M 8-3.657-.104v-.104c-.187 0 0-.768.033-.938.369-2.027 1.404-3.761 2.723-5.299 2.394-2.795 5.795-4.633 9.163-5.544l2.086-.522c.559-.111 1.113-.226 1.668-.34h.732c0 3.893-3.295 8.516-6.414 10.71-.74.519-1.489.97-2.286 1.362-.443.192-.886.381-1.331.571zm6.593 21.318c-.395 1.205-.783 2.655-1.785 3.549v.104h-.105c-.123-.388-.25-.78-.379-1.169-.521-1.29-1.045-2.58-1.566-3.869-1.215-2.71-2.834-6.511-2.296-9.793.251-1.544.97-2.951 1.42-4.395 1.176.673 2.053 1.701 2.868 2.786.934 1.244 1.828 2.658 2.295 4.13.854 2.715.378 6.M 117-.452 8.657zm1.244-16.721c-1.902 0-4.414-.937-5.747-2.089h.104c0-.17.791-.846.966-1.019 2.566-2.57 5.764-4.176 9.082-5.31.832-.189 1.662-.378 2.49-.568 1.359 0 2.902-.157 3.971.418.127 0 .111.013.092.121-.262 1.299-1.293 2.537-2.211 3.517-1.91 2.031-4.084 3.311-6.586 4.251-.718.228-1.439.454-2.161.679zm11.834 10.358c-1.26 2.811-3.393 5.704-6.201 7.288-.555.274-1.113.545-1.672.819-.447.15-.898.297-1.348.447-.277.036-.559.068-.836.104h-.105c0-1.191.271-2.348.494-3.455.568-2.85 1.283-6.413 4.025-7.889 1.244-.672 2.M 635-1.156 4.049-1.509.523-.137 1.045-.277 1.568-.417 1.672.269.434 3.697.026 4.612zm4.884 18.586v.104h-.209c0-.486-1.268-2.306-1.561-2.828-.49-.871-.865-1.724-1.1-2.727-.707-2.975-.004-9.031 1.709-11.17 1.039-1.3 2.512-2.113 3.562-3.442 3.883 2.293.111 17.825-2.401 20.063zm5.215-26.358-1.984.627c-.447.114-.898.225-1.35.34-.209.036-.418.068-.627.104-.242.036-.486.069-.732.105-.332 0-.773-.033-1.045.104-1.279 0-2.705.105-3.852-.167-.387-.117-.773-.238-1.162-.356v-.208c.264 0 .539-.252.75-.389 1.92-1.248 3.373-3.063 5M .021-4.709 1.949-1.952 4.033-3.451 6.561-4.291.826-.277 1.764-.339 2.609-.643 1.648 0 2.893.088 4.18.731v.209c-.141 0-.125.033-.174.124-.676 1.215-1.596 2.292-2.441 3.425-1.465 1.947-3.494 4.185-5.754 4.994zm8.541 24.365c-.23 1.57-.463 3.138-.695 4.709h-.104v.104c-.744 0-2.385-1.499-2.953-2.067-3.588-3.588-4.584-8.11-2.85-13.172.414-1.215 1.041-2.299 1.518-3.464 1.064.601 1.773 1.802 2.49 2.729 2.448 3.178 3.241 6.77 2.594 11.161zm13.448 4.693c.092.287.42 1.163.156 1.43-.346.344-1.93-.104-2.309-.229-5.334-1.779-8.1M 23-7.065-8.123-12.783a9.885 9.885 0 0 1 4.877 2.446c2.486 2.259 4.416 6.04 5.399 9.136zm4.447-14.328c-.588.15-1.178.297-1.766.447-.277.036-.559.069-.836.104-.324 0-.785-.029-1.045.104-.396 0-.938-.055-1.254.104-4.023 0-7.055-1.466-10.139-3.236-.904-.519-2.029-1.166-2.715-1.988-.141 0-.104.033-.104-.105.234 0 .631-.581.842-.721a5.44 5.44 0 0 1 1.244-.644c.879-.316 1.924-.248 2.824-.516 1.539.095 3.061.242 4.486.552 1.84.398 10.391 3.056 10.248 5.3-.594.201-1.191.399-1.785.599zm-8.453 25.421c.113.198.109.467.016.688-M .584 1.346-3.713.575-3.791 1.718-.055.774 1.238 1.325 1.744 1.721 2.104 1.636 1.936 4.216.121 5.979-.602.578-1.85 1.597-2.688 1.597v-.104h-.105v-.418c2.137-.571 3.896-3.429 2.303-5.437-.584-.734-1.787-1.13-2.133-2.012-.281-.712.156-1.672.477-2.26.281-.521.695-.846 1.34-.846.244-.035.488-.068.73-.104.244-.036.49-.068.732-.105.209-.035.418-.068.627-.104z"/><path d="m123.643 119.913c.873 0 1.691.003 2.369.375 2.105 1.162 1.859 4.617.924 6.495a9.368 9.368 0 0 1 -2.695 3.226c-.934.699-2.086 1.169-3.227 1.44-.137.029-.4.M 13-.4-.043h-.105c0-.146-.068-.208.105-.208.66-.35 1.322-.699 1.982-1.053 2.207-1.377 3.623-3.938 3.539-6.681-.029-.858-.258-1.969-.947-2.481-3.117-2.318-4.729 4.362-.604 4.362.141-.036.281-.068.418-.104v.312h-.105a2.653 2.653 0 0 1 -1.674.588c-2.891-.049-2.936-3.702-1.273-5.309.434-.425 1.049-.816 1.693-.816zm8.255 0c.555 0 1.08-.014 1.551.14 1.666.532 1.695 2.537.793 3.788-.293.405-2.449 2.642-2.449 2.863h.105v.104c1.07 0 2.441.193 3.412-.095.408-.124.859-.846 1.186-.846v.104h.104c-.141.598-.836 1.45-.836 1.985-1.M 436-.045-2.889-.127-4.389-.101-.557.032-1.113.068-1.672.101v-.418c1.535-.711 5.463-5.061 2.877-6.387-.938-.482-1.74.092-2.381.715-.146.138-.275.343-.496.343v-.104h-.104c.264-1.141 1.362-1.725 2.299-2.192zm-16.822.208h4.283v.419c-.443.039-1.002.107-1.258.486-.279.404-.332 5.388-.08 5.923.201.428.705.425 1.109.546.166.045.438.144.438.359h-.105v.104c-.871-.032-1.74-.065-2.611-.101-.592.006-1.191.134-1.77.049-.146-.022-.215.007-.215-.157h-.105c0-.14-.035-.104.105-.104.43-.3 1.115-.156 1.439-.64.395-.598.385-5.247.029-5M .888-.236-.425-1.365-.574-1.365-.892.036-.035.073-.068.106-.104z"/><path d="m184.24 94.208c-.082-5.064-.748-9.93-1.594-14.625-2.216-12.287-7.541-24.293-14.646-34.135a94.2 94.2 0 0 0 -10.74-12.444c-1.66-1.61-3.441-3.08-5.166-4.559-4.564-3.912-9.674-7.193-14.867-9.894-2.033-1.059-4.133-2.188-6.279-3.008-2.164-.829-4.287-1.691-6.488-2.479-5.547-1.991-11.787-3.314-17.955-3.996-4.652-.52-9.502-.542-14.521-.542-.451.071-.904.14-1.358.208-.46 0-1.084-.065-1.463.105-.382 0-.829-.04-1.149.104-.339 0-.761-.022-1.045.105-.313M .036-.626.068-.94.104-.278.036-.559.069-.836.104-.278.036-.559.069-.836.105-.242.035-.487.068-.731.104-.242.036-.487.068-.731.104l-.627.105c-.209.036-.418.068-.627.104l-.627.105c-.816 0-1.548.238-2.306.388l-3.761.842c-7.2 1.799-13.76 4.52-20.187 7.817-5.23 2.681-10.305 6.197-14.886 10.109-1.166.989-2.247 2.031-3.409 3.06-4.738 4.176-8.758 9.241-12.346 14.21-2.978 4.121-5.375 8.545-7.52 13.078-6.367 13.434-9.26 29.368-7.66 46.203.977 10.27 3.915 19.654 7.954 28.405 1.329 2.884 2.808 5.725 4.539 8.392 1.72 2.651 3.49M 5.205 5.404 7.755 1.721 2.293 3.677 4.398 5.662 6.576.93 1.02 1.851 2.028 2.883 2.969 2.746 2.505 5.489 4.879 8.353 7.105 3.507 2.729 7.331 5.016 11.161 7.128 7.683 4.231 16.124 7.053 25.068 8.813 6.25 1.228 12.989 1.651 19.86 1.439 2.217-.072 4.463-.078 6.568-.474 1.676-.234 3.348-.473 5.023-.712 4.658-.842 9.186-1.906 13.475-3.438 5.35-1.914 10.613-4.115 15.441-7.034 6.463-3.915 12.609-8.405 18.186-13.979 9.029-9.032 15.637-19.494 20.035-30.919 3.885-10.103 5.879-21.195 5.689-33.408zm-8.511 37.486c-6.217 14.256-M 17.16 27.216-30.287 36.336-3.924 2.723-8.031 4.861-12.207 7.007-2.07 1.062-4.26 1.861-6.439 2.7-2.227.855-4.477 1.633-6.818 2.23-2.119.532-4.242 1.062-6.363 1.594-.527 0-1.254.082-1.672.313-.209.035-.418.068-.627.104s-.418.068-.627.104-.418.068-.627.104c-.242.036-.486.068-.732.104-.242.036-.486.068-.73.104-.242.035-.486.068-.732.104-.277.036-.559.069-.836.105-.277.035-.559.068-.836.104-.33 0-.779-.029-1.045.104-.385 0-.836-.039-1.148.104-.408 0-.922-.048-1.254.105-.535 0-1.229-.099-1.672.104-.85 0-2.342-.172-3.031.M 105-9.854 0-19.5-1.152-27.882-4.02-6.736-2.306-13.335-4.97-19.259-8.813-5.564-3.611-10.916-7.559-15.788-12.431-15.226-15.227-24.773-35.546-25.479-58.119-.47-15.033 2.391-28.545 8.16-40.542 10.077-20.967 28.503-37.806 50.472-45.126 5.231-1.747 10.655-3.001 16.405-3.847 1.741-.18 3.481-.362 5.221-.545.921-.045 2.524.026 3.344-.219 4.169 0 8.216.007 12.117.441 8.994.999 17.125 3.19 24.951 6.403 9.686 3.974 18.572 10.008 26.383 17.577 7.148 6.926 13.115 14.805 17.277 23.35 2.678 5.496 5.07 11.229 6.494 17.329 1.531 6.5M 73 2.623 13.437 2.74 20.791.202 13.35-2.739 25.365-7.473 36.236z"/><path d="m173.436 60.269c-11.674-24.643-34.066-42.089-60.77-47.428-5.598-1.12-11.488-1.597-17.653-1.597-.911.268-2.27-.18-3.135.209-.532 0-1.234-.091-1.671.105-.441 0-.996-.059-1.359.104-.343 0-.764-.023-1.045.104-.343 0-.764-.022-1.045.105-.277.036-.558.068-.836.104-.277.036-.558.069-.835.104-.242.036-.487.068-.731.105-.242.036-.487.068-.731.104-.242.036-.487.069-.731.105-.209.035-.418.068-.627.104-.392 0-.842.039-1.149.209-.908 0-1.796.271-2.628.4M 7-1.074.255-2.152.506-3.229.761-7.161 1.789-13.878 4.536-20.186 8.022-21.75 12.018-37.335 33.474-42.164 57.624-.986 4.918-1.437 9.864-1.604 15.249-.179 5.662.265 11.471 1.297 16.715 1.6 8.141 4.039 15.579 7.536 22.76 2.214 4.545 5.016 8.849 8.056 13.015 2.984 4.089 6.563 7.929 10.305 11.441 13.521 12.702 30.765 20.539 49.825 22.355 5.381.509 11.301.339 16.613-.076 8.166-.64 15.785-2.86 22.904-5.597 6.256-2.409 12.191-5.659 17.674-9.613 21.264-15.359 34.553-38.5 35.82-65.459.363-7.752-.219-15.366-1.848-22.243-1.481-M 6.25-3.376-12.206-6.053-17.861zm2.974 22.132c-.209.036-.418.069-.627.104-.381 0-.85.042-1.15.209-.381 0-.848.042-1.148.209-.389 0-.838.036-1.148.209-.209.036-.418.069-.627.104-.359 0-.771.046-1.045.209-.422 0-.922.023-1.254.209-.387 0-.844.039-1.15.209-.209.036-.418.069-.627.104-.352 0-.773.049-1.045.209-.535 0-1.365.31-1.508-.33-.057-.242-.125-.607.084-.771.4-.32 1.689-.396 2.254-.497l6.072-1.097c.906-.18 1.807-.362 2.711-.545.607.27.655 1.014.208 1.465zm-5.955-18.181v-.104c.35-.137.695-.277 1.045-.418a28.145 28.1M 45 0 0 1 1.566 4.389c-.486.14-.977.277-1.463.418 0 .189-.195-.056-.287-.141-1.064-.999-2.4-1.93-3.895-2.044-3.119-.245-4.975 2.707-4.447 5.623.51 2.841 3.725 5.757 6.762 4 1.643-.954 2.475-3.04 2.6-4.931.521-.173 1.045-.35 1.566-.522.135.353.266.702.395 1.051.357 1.078.713 2.155 1.068 3.233-.33 0-.555.258-.91.173-.359-.088-.908-1.874-.971-2.263h-.104v.104c-.17 0-.209.558-.252.718-.443 1.6-1.6 3.105-3.119 3.827l-1.436.471c-.996 0-1.877-.046-2.691-.379-3.141-1.29-4.986-4.855-4.068-8.392.854-3.308 4.477-5.156 7.723-3.M 491.582.297 1.18.582 1.648 1.081h.105c-.276-.8-.558-1.603-.835-2.403zm-11.494-1.672v.104h.104c0-.486.768-1.646 1-2.116.303-.624.691-1.9 1.238-2.322.385-.3 5.1-.056 6.018-.056 0-.463-.572-1.12-.787-1.495-.676-1.172-1.355-2.348-2.035-3.521v-.104c.314-.137.627-.278.941-.418v-.104c.719.767 1.08 1.799 1.615 2.684.688 1.133 1.719 2.661 2.146 3.899.17 0 .104.062.104.209-.182.065-.369.13-.551.196-.268.02-.539.036-.811.056-.92 0-5.436-.337-5.857.059-.295.271-.395.686-.559 1.025-.535 1.097-1.336 3.575-2.463 4.098v.104c-.209 M 0-.309-.183-.4-.327-.695-1.221-1.393-2.442-2.086-3.664-.393-.63-.955-1.345-1.105-2.086-.039-.193-.021-.294.119-.418.17-.157.418-.317.658-.215.396.163 2.287 3.794 2.605 4.411zm-9.123-21.218c.107-.695.211-1.391.32-2.086.084-.689.111-1.554.43-2.139.32-.366.637-.731.953-1.097.629.353 1.184 1.028 1.695 1.541 1.248 1.228 2.492 2.456 3.738 3.683v.209c-.168 0-1.125 1.067-1.357 1.254v.104c-.312 0-2.834-2.622-3.135-3.031h-.104v-.104h-.105c0 .036-.004.068-.006.101-.047.676-.354 3.576-.67 3.941-.305.347-4.145 1.064-4.861 1.182M l3.344 3.448c-.178 0-1.219 1.163-1.463 1.358v.104h-.105c0-.163-.754-.806-.914-.973-.514-.525-4.316-4.316-4.34-4.607-.111-1.32 5.355-1.773 6.402-2.257.17.002.154-.481.178-.631zm-13.721-12.166c.826-.646 1.734-.81 2.678-1.202 1.439 0 2.596.079 3.734.578 3.775 1.646 5.391 6.25 2.789 9.721-.695.921-1.609 1.531-2.58 1.982l-.914.362-.627.105c-1.648 0-3.01-.248-4.25-.999-3.91-2.368-4.592-7.625-.83-10.547zm-12.797-.372c1.328-2.818 2.654-5.639 3.98-8.458l1.881.941h.104c0 .137.033.104-.104.104 0 .235-.174.441-.262.65-.383.868M -1.02 1.74-1.201 2.693h-.105v.104l1.166-.372c.895-.31 1.787-.624 2.678-.938.412-.16.982-.431 1.479-.395.807.052 1.662.715 2.41.973v.104l-6.373 2.194c0 .807.451 1.685.676 2.42.682 2.259 1.361 4.516 2.041 6.775h-.105c0-.15-.668-.343-.836-.421-.492-.238-1.344-.451-1.668-.915-.48-.688-.643-1.822-.865-2.628-.477-1.604-.957-3.21-1.438-4.813h-.104c-.193.392-.389.78-.584 1.172-.641 1.277-1.084 2.798-1.924 3.948v.104c-.141 0-.105.033-.105-.104-.59-.242-1.184-.486-1.775-.731-.001-.821.724-1.709 1.034-2.407zm-11.845-4.422c2.0M 37-2.495 4.07-4.989 6.109-7.484.207.072.416.14.627.209.1 0 .238 1.149.273 1.361.373 2.505.74 5.009 1.113 7.514.184 1.13.492 2.351.451 3.537-.121.117-.236.212-.377.336-.24.036-.486.068-.73.104-1.736 0-.695-1.182-1.396-2.083-.256-.327-4.508-1.492-4.898-1.312-.576.255-.955 1.104-1.438 1.515v.104h-.104c0-.346-1.33-.908-1.385-1.457.163-.737 1.26-1.717 1.755-2.344zm-5.594-9.469c.73.071 1.463.14 2.193.208v.104c-.137 0-.215 1.316-.258 1.554l-.992 7.432c-.057.477-.18 2.272-.48 2.54-.283.249-1.623-.02-2.031-.033.523-3.933 1.M 044-7.871 1.568-11.805zm-12.122-.627h6.061c0 2.89.104 5.796.104 8.777 0 .888.262 1.979.018 2.795-.027.059-.057.114-.082.169-.346.343-1.506.154-2.025.17-.031-3.271-.068-6.547-.104-9.822h-3.135c-.646 0-1.316-.052-1.881.104 0-.212-.189.438-.196.627-.059 1.234.307 8.636-.078 9.025-.199.196-.784.154-1.084.147-.33-.013-.656-.013-.787-.313-.375-.853-.154-2.309-.154-3.321 0-2.834-.104-5.437-.104-8.255 1.06.001 2.494.181 3.447-.103zm-22.158 3.579c.02-.042.036-.088.056-.13.147-.225.486-.336.744-.225.503.353 1.006.702 1.509 1M .055l4.699 3.454c1.185-2.367 2.368-4.738 3.553-7.104.343.101.777.124.96.463.447.829 3.7 10.834 3.572 11.174-.121.313-1.381.624-1.711.692 0 .203-.355-.581-.404-.738l-2.312-6.994h-.104c0 .451-2.495 5.136-2.926 5.433 0 .193-.304-.052-.412-.117-1.462-1.074-2.929-2.152-4.395-3.226v-.105c-.255 0-.17.562-.144.738.248 1.708.493 3.412.738 5.117.118.696.232 1.391.346 2.086v.104c-.313.072-.626.141-.94.209-.327 0-1.003.141-1.163-.157-.447-.836-.405-2.109-.545-3.079-.307-2.125-.617-4.251-.924-6.377-.089-.676-.399-1.594-.197-2.2M 73zm-13.786 6.243c.078 0 1.016-1.28 1.254-1.463 0-.141-.036-.105.104-.105 0 .059 4.271 3.03 4.807 3.344v.104h.104v-.104c.189 0 .111-.447.127-.627.202-1.776.401-3.553.604-5.329.699.036 1.394.068 2.09.104l-.559 5.531c-.088.657-.291 1.473-.173 2.175.193.47.382.94.575 1.411.438.966.872 1.933 1.307 2.899l-1.881.94h-.104c-.265-.598-.529-1.198-.793-1.799-.402-.803-.627-1.783-1.199-2.481-.477-.581-1.202-.931-1.789-1.339a3850.869 3850.869 0 0 1 -4.369-3.053h-.104zm-6.688 3.239c1.114.222 2.136 1.208 3.06 1.832l5.162 3.438c.8M 3.539 1.62 1.264 2.541 1.626v.313c-.127 0-.957 1.345-1.045 1.567-.451 0-1.515-.859-1.9-1.127l-5.1-3.471h-.105c.229 1.188.454 2.377.68 3.565l.564 3.122.323 1.463v.104c-.277.072-.558.141-.836.209-.287 0-1.051.212-1.25-.007-.444-.49-.607-2.769-.787-3.536l-1.499-8.268c-.029-.373.02-.553.192-.83zm-12.032 9.698c.816-.771 1.809-1.267 2.857-1.597l1.129-.265c1.016.196 2.055.163 2.936.604 4.359 2.178 4.79 7.487 1.208 10.75a6.381 6.381 0 0 1 -1.771 1.123l-1.328.48c-1.124 0-2.126.072-3.109-.281-4.72-1.694-5.494-7.46-1.922-10.8M 14zm-16.388 22.38c.17 0 .173-.179.242-.297.771-1.391 1.538-2.782 2.309-4.173.379-.692.839-1.365 1.107-2.112.268.111.559.225.761.477l2.479 4.222c.186.353.447.989.819 1.208.435.255 1.3.016 1.793-.036 1.482-.166 3.177-.574 4.493.085v.208c-.167 0-.206.206-.271.336-.708 1.284-1.417 2.563-2.125 3.847-.385.663-.771 1.323-1.156 1.982v.104c-.346-.173-.695-.349-1.044-.522 0-.14-.036-.104.104-.104 0-.346 2.259-4.293 2.612-4.702v-.105c-.278.036-.559.069-.836.105-.313.036-.627.068-.94.104-.356 0-.754-.013-1.045.104-.34 0-.761-.M 01-1.045.104-.395 0-.954.124-1.261-.059-.454-.271-2.785-4.415-3.023-5.062h-.209c-.904 1.64-1.812 3.275-2.717 4.911v.104c-.14 0-.104.033-.104-.104-.313-.137-.627-.277-.94-.417-.003-.067-.003-.139-.003-.208zm-2.926 7.106v-.104l4.091 1.485c.8.154 1.773-.202 2.505-.392 1.254-.277 2.507-.558 3.761-.836l1.45-.362c.676.134.734.621.836 1.254h-.105v.104c-.033.003-.068.003-.104.007-1.744.372-3.491.741-5.234 1.113-.474.104-1.149.114-1.502.451-.15.137.114.483.196.594l3.928 5.358c-.304 0-.764.496-1.045.627 0 .353-.885-.938-.96-M 1.032-.882-1.201-1.767-2.403-2.648-3.605-.408-.564-.855-1.466-1.469-1.858-1.25-.8-2.825-.96-4.118-1.655h-.104c.176-.382.349-.768.522-1.149zm-4.702 17.24c.522 0 2.165-.993 2.717-1.254 1.506-.718 3.007-1.44 4.513-2.158.686-.346 1.46-.594 2.07-1.081-2.645-.764-5.293-1.532-7.941-2.298h-.208l.313-1.254c1.384.173 2.638.705 3.97 1.045 2.58.731 5.156 1.462 7.732 2.194v.104c-.431 0-2.142 1.019-2.615 1.253-1.957.963-3.916 1.923-5.871 2.883-.706.34-1.574.571-2.172 1.087h-.104v.104c.908.167 1.812.33 2.72.493l4.069.774c.806.114M 1.544.35 2.406.405-.069.454-.141.905-.209 1.358-.96 0-1.92-.336-2.828-.5l-6.576-1.287c-.633-.124-1.59-.157-2.093-.532-.298-.219.016-1.091.107-1.336zm-.562 16.957c-.261-.098-.32-.414-.346-.659-.114-1.013.069-2.021.069-3.027.003-1.358.003-2.717.003-4.075 0-1.006-.144-2.155.313-2.926 1.062.281 11.334 4.947 11.523 5.326l.02.052c-.006.118-.016.231-.026.349-.006.01-.016.017-.022.026-.5.474-11.105 5.025-11.471 4.953zm1.293 11.256h-.209l-.284-2.201-.657-4.382h.104c0-.146.94-.189 1.146-.212 3.451-.52 6.899-1.042 10.348-1.5M 64.49.591.424 1.725.552 2.501.167 1.153.33 2.303.493 3.455-.173.036-.349.068-.522.104-.18 0-.418-.053-.513-.189-.398-.568-.689-3.455-.741-4.304-.209.036-.418.068-.627.104s-.418.068-.627.104c-.277.036-.559.068-.836.104-.209.035-.418.068-.627.104-.189 0-.444.078-.503.251-.121.347-.003.862.056 1.215.144.875.34 1.79.242 2.685-.141.081-.281.16-.421.238h-.627c-.173-1.392-.349-2.785-.522-4.18-.137.036-.277.068-.418.104-.242.035-.486.068-.731.104-.242.036-.486.068-.731.104-.411 0-.927.029-1.254.209-.277.036-.558.068-.836.1M 04-.346.036-.695.068-1.044.104 0 1.204 1.078 4.447.417 5.329-.209.04-.418.073-.628.109zm4.183 6.141c-.388-.101-.973-.343-1.411-.231-.029.035-.062.068-.095.102-.163.482 1.293 4.571 1.502 5.377-.304 0-.836.232-1.067.011-.425-.405-.68-1.722-.839-2.303-.477-1.604-.957-3.21-1.437-4.812.265 0 .523-.153.823-.128 1.055.089 5.658 1.63 6.253 1.326.464-.242.823-.869 1.123-1.268.882-1.179 1.701-2.441 2.981-3.17.519.346 2.208 6.103 2.403 7.104-.333 0-.748.206-1.039.033-.477-.287-1.293-4.065-1.678-4.839v-.209h-.104v.104c-.333 0-M 2.439 3.426-3.167 3.805-.3.153-.842-.062-1.124-.127zm6.58 21.548c0 .461-.702-.761-.731-.836-.261 0 .532-.607.656-.686 1.757-1.113 3.51-2.227 5.264-3.341.702-.428 1.368-1.005 2.126-1.303v-.104c-1.114-.098-2.23-.199-3.347-.297-1.296-.104-2.733-.043-3.958-.379-.183-.053-.343-.15-.418-.32-.248-.538 2.756-5.176 3.22-6.011.107-.242.216-.483.323-.726-.555 0-1.271.458-1.764.663-1.744.722-3.49 1.44-5.237 2.162-.457.195-1.211.682-1.753.591-.277-.049-.402-.396-.464-.627-.111-.412.127-.529.448-.686 2.55-1.068 5.097-2.136 7.647M -3.203.979-.405 2.122-.719 3.004-1.304.235.298.356.611.522.94-.164 0-.157.092-.213.206-.989 1.698-1.981 3.393-2.974 5.091-.408.669-.944 1.365-1.202 2.122h-.104v.104c1.776.138 3.553.271 5.329.405 1.048.049 2.37-.033 3.304.319l.562.529c0 .274-.369.444-.559.574l-5.937 3.792c-1.168.758-2.484 1.81-3.744 2.325zm6.311 1.286c.751-.885 1.652-1.619 2.685-1.991.486-.146.97-.298 1.453-.444l1.247.029c1.084.104 2.194.497 3.043 1.11 3.262 2.357 4.422 6.899 1.267 9.959-.904.875-1.933 1.512-3.161 1.73-5.577.987-10.344-5.929-6.534-1M 0.393zm21.274 11.358c-.245 0-.548.558-.731.731v.104h-.104c0-.059-3.771-3.251-4.18-3.447v-.104c-.183 0-.107.261-.107.418-.082 1.041-.167 2.083-.248 3.124l-.062 1.473c-.121 0-.751.393-.927.457-1.052.366-2.103.729-3.154 1.095l-1.666.643h-.105v.104c.314 0 3.795 3.129 4.389 3.553v.209c-.196 0-.464.478-.627.627v.104c-.281 0-5.27-4.261-5.852-4.807h-.104v-.208c.046 0 .748-.539.947-.607 1.881-.666 3.759-1.336 5.636-2.005.173 0 .147-.474.17-.634.251-1.924-.062-4.111.979-5.636l3.38 2.772 2.263 1.93c.135-.001.103-.037.103.104zM m18.014 16.678c-.571.918-1.479 1.57-2.455 1.897-.379.114-.761.226-1.14.336l-1.985-.032c-.529-.062-1.3-.444-1.816-.235-.199.078-.316.405-.378.581-.435 0-.943-.277-1.254-.522h-.104c.036-.033.069-.068.104-.104 0-.245.124-.418.042-.663-.124-.355-1.166-.885-1.473-1.155l-1.039-1.042c-1.841-2.086-1.6-5.339.679-6.981.722-.525 1.502-.588 2.312-.92.738 0 1.496-.014 2.181.068.49.082.977.159 1.467.237.18-.016.287-.117.428-.202v-.104c.417.14.836.277 1.253.417 0 .206-.114.359-.208.522v.104c.408 0 1.058.562 1.378.807 2.142 1.653 M 3.625 4.389 2.008 6.991zm6.064-2.142c-.745 2.818-1.493 5.633-2.24 8.451v.209l-1.253-.313c0-.646.245-1.201.385-1.786.226-.865.447-1.733.673-2.599.624-2.404 1.244-4.811 1.868-7.214.323.128 1.016.17 1.13.559.182.633-.4 2.067-.563 2.693zm12.019 10.887c-.127.308-.816.386-1.094.49-.225-.875-.454-1.754-.679-2.632-.347-1.346-.696-2.694-1.042-4.042-.281-1.065-.679-2.136-.787-3.253h-.104v.104c-.196 0-.307.386-.389.539-1.542 2.713-3.086 5.424-4.627 8.134v.104h-.209c0-.212-.653-.48-.836-.627h-.105c0-.379 1.176-2.214 1.438-2.62M 9.934-1.655 1.864-3.314 2.795-4.97.686-1.188 1.57-2.39 2.037-3.687.33.118.52.209.657.552.793 3.021 1.583 6.038 2.374 9.059.148.595.8 2.296.571 2.858zm12.804.385c0 .17-.064.104-.209.104 0-.33-1.051-2.472-1.312-2.596-.59-.281-1.596-.056-2.242-.033-1.166.036-2.544-.137-3.55.226 0 .421-.793 2.229-1.045 2.612v.104l-1.149-.522h-.104l4.703-12.121c.398.092.58.196.779.556l3.818 8.218c.24.526 1.264 2.41 1.197 2.906-.047.325-.629.475-.886.546zm1.671-15.36c-.277.036-.559.069-.836.104-.33 0-.779-.029-1.045.104-.385 0-.836-.039-M 1.148.105-.484 0-1.18-.092-1.568.104l-7.209-.02c-7.108-.447-13.806-1.753-19.938-4.111-6.233-2.396-11.883-5.551-17.3-9.612-1.76-1.319-3.565-2.77-5.159-4.362-3.886-3.886-7.657-7.968-10.426-12.546-2.642-4.362-4.918-8.751-6.691-13.567-4.421-11.992-5.166-27.421-1.561-40.192a72.104 72.104 0 0 1 5.489-13.809c7.873-15.147 22.57-27.187 38.537-32.225 3.813-1.205 7.843-2.191 12.032-2.655l4.389-.421c.614-.039 1.323.045 1.881-.121 11.899 0 21.502 2.021 31.049 6.544 23.152 10.964 38.336 34.707 37.914 61.688-.156 9.934-2.387 18.8M 54-6.215 26.936-6.723 14.188-18.01 25.41-32.137 32.202-3.375 1.623-6.902 2.884-10.57 3.919-1.801.438-3.607.871-5.412 1.309-.393 0-.844.053-1.15.209-.209.036-.418.068-.627.104-.242.036-.486.069-.73.104-.242.036-.486.068-.732.104-.278.037-.559.07-.837.105zm13.52 10.616c-.746 1.143-1.801 1.949-2.992 2.5-.408.157-.82.311-1.229.468-.24.036-.484.068-.73.104-1.498 0-2.791-.042-3.938-.689-3.543-1.998-4.412-6.978-1.408-9.887.85-.826 1.924-1.362 3.033-1.686.426-.091.846-.186 1.268-.276 1.584 0 2.852.254 4.066.953 2.776 1.593M 3.662 5.838 1.93 8.513zm14.588-3.929c-.244 0-.639.571-.836.731v.104h-.104v-.104l-2.324-2.275c-1.004-1.003-2.062-1.953-3.086-2.979-.6-.581-1.199-1.165-1.801-1.747v-.104h-.104c.037.453.068.904.102 1.357.039 2.267.074 4.529.111 6.792.006.562.225 1.64-.109 2.09 0 .111-.9 0-1.148 0 0-3.128-.16-6.364-.209-9.509v-3.344c0-.173.062-.104.209-.104v-.105c1.031.539 1.916 1.659 2.738 2.482 2.189 2.168 4.373 4.336 6.561 6.504zm13.32-8.493c-.072.438-2.891 2.146-3.393 2.433v.104h-.209c0-.284-.602-.931-.732-1.253-.209 0-.021-.203.0M 33-.298.588-1.098 1.217-2.58 1.031-3.993-.51-3.82-4.379-4.532-7.326-2.799-1.238.726-2.137 2.08-2.42 3.429-.674 3.145 1.613 4.715 4.301 5.081l2.037.059c.398.144.695.793.881 1.133.137 0 .105-.036.105.104-1.219.804-2.439 1.604-3.658 2.403 0 .359-.59-.644-.627-.731-.172 0-.104-.065-.104-.209.336 0 1.766-1.104 2.09-1.358h.104v-.104c-1.473 0-2.805-.144-3.934-.797-3.449-1.995-3.295-6.546-.686-9.152.867-.872 1.906-1.509 3.059-1.825.523-.114 1.041-.232 1.561-.346.451.046.902.088 1.352.134.48.052.912.173 1.336.343 2.287.914 M 3.578 3.17 3.242 5.789-.107.812-.453 1.525-.6 2.302.137 0 .104.032.104-.104.375 0 1.473-.939 1.881-1.148 0-.174.062-.105.209-.105 0 .334.422.536.363.908zm10.504-9.687v.104l-7.416-1.078c-.75-.124-1.705-.418-2.49-.283l-.168.058c0 .356 4.557 5.705 5.164 6.215v.208c-.227 0-.703.559-.836.732l-.18-.05c-.775-.528-1.363-1.531-1.949-2.22l-5.812-6.821v-.104c3.971.521 7.941 1.045 11.91 1.567v-.104h-.104c0-.15-.02-.118-.117-.199-1.434-1.183-2.707-2.576-3.984-3.854-.789-.807-1.584-1.616-2.377-2.426-.141 0-.104.033-.104-.104.234M 0 .678-.644.836-.836.93.343 2.023 1.767 2.738 2.481 1.943 1.959 3.887 3.918 5.828 5.878-.257 0-.726.665-.939.836zm14.002-20.793c-.238 0-.461.734-.523.939-.604 0-1.674-.751-2.201-1.038-2.436-1.289-4.871-2.583-7.307-3.872h-.105c-.152.306-.309.609-.463.917l-1.773 3.347c-.15.297-.443.722-.428 1.078.01.319.451.492.676.62l8.572 4.486c-.174.418-.35.836-.523 1.254-.4 0-2.363-1.201-2.826-1.456-1.768-.921-3.537-1.845-5.305-2.767-.789-.407-1.562-.937-2.422-1.211 0-.574.709-1.616.992-2.122 1.029-1.972 2.055-3.948 3.082-5.923lM 10.555 5.537zm4.231-11.723c-.379 1.148-.76 2.298-1.143 3.448l-.686 2.214c-.842-.266-1.684-.53-2.527-.794l-5.084-1.655c-1.211-.438-2.479-.993-3.777-1.208l1.881-5.748 1.045.419h.104c0 .676-1.721 3.971-1.168 4.378.947.354 1.893.702 2.84 1.055.129 0 .098.02.121-.101.416-1.322.826-2.648 1.238-3.974 2.4 0-.652 3.702.098 4.389.551.502 1.604.633 2.285.878.398.141 1.617.676 2.051.525.365-.13 1.607-4.13 1.73-4.748.365 0 .758.147 1.045.313.189.001-.01.481-.053.609zm1.306-5.309c-.141 0-.104-.036-.104.104a834.578 834.578 0 0 1 M -3.051-.682c-2.051-.425-4.102-.853-6.15-1.277-.635-.127-1.699-.173-2.195-.567-.268-.216-.033-.954.006-1.234 1.004.091 1.98.347 2.939.574 1.672.35 3.344.696 5.016 1.046 1.027.241 2.648.336 3.539.783h.209c-.068.417-.14.835-.209 1.253zm1.055-7.368c-.539.298-2.391-.107-3.043-.146-2.889-.245-5.779-.493-8.67-.741.068-.695.135-1.394.199-2.093.139-1.771.266-3.423 1.781-4.402.385-.166.77-.336 1.154-.506 2.561 0 4.068 1.721 3.951 4.281-.016.313-.229 1.561.01 1.786.396.378 4.047.509 4.922.62.001.258-.087 1.08-.304 1.201zm.826M -9.246v.104l-3.156-1.097-8.965-3.292h-.104l.02-.101c.088-.431.334-.575.691-.771l6.834-3.37c1.254-.581 2.73-1.107 3.844-1.923.49.235.607.696.836 1.149-.32.16-.643.32-.967.48-.447.215-1.367.486-1.609.957-.273.526.092 5.081.277 5.773.908.313 1.812.627 2.717.94 0 .377-.244.84-.418 1.151z"/><path d="m117.27 25.455-.297-2.198c-.107-.591-.219-1.182-.33-1.773-.801 1.013-1.604 2.021-2.402 3.03h-.105v.104c.477 0 2.504.611 2.926.836zm24.113 12.887c.816-.222 1.49-.718 2.039-1.375 1.98-2.394.57-5.623-2.133-6.573-.66-.231-1.4-.2M 38-2.182-.238-.783.356-1.551.604-2.154 1.293-2.783 3.148.428 7.964 4.43 6.893zm10.672 91.804c2.174-3.653 3.957-7.425 5.492-11.404 1.711-4.454 2.697-9.213 3.432-14.186.543-3.68.646-7.885.402-11.813-1.078-17.234-8.072-32.163-20.307-43.657-3.344-3.141-6.885-6.093-10.75-8.268-2.518-1.417-4.99-2.87-7.648-4.026-8.361-3.647-17.377-5.59-27.663-5.59-.758.222-1.891-.114-2.612.209-.464 0-1.087-.065-1.463.104-.375 0-.836-.039-1.149.104-.313.036-.627.069-.94.104-.277.036-.558.068-.836.104-.277.036-.558.068-.836.104-.209.036-.41M 8.069-.626.104-.242.036-.487.068-.732.104-.392 0-.842.039-1.149.209-1.515 0-3.014.571-4.395.917a62.907 62.907 0 0 0 -15.275 6.038c-20.194 11.16-33.83 32.636-33.83 56.89 0 3.367.343 6.654.748 9.819.689 5.434 2.397 10.419 4.248 15.265 1.561 4.088 3.804 7.794 6.185 11.487 1.887 2.93 4.15 5.691 6.658 8.281 8.784 9.067 18.472 14.795 30.244 18.204 2.612.754 5.332 1.191 8.127 1.652 4.222.688 9.186.822 13.691.473 21.089-1.647 40.292-13.285 50.984-31.228zm-28.414 24.245c-3.426 1.646-6.969 2.775-10.646 3.909-1.533.372-3.072.M 74-4.605 1.109-.389 0-.84.053-1.15.209-.209.036-.418.069-.627.104-.24.036-.486.069-.73.104-.209.037-.418.069-.627.104-.277.036-.559.069-.836.104l-.941.105c-.312.035-.627.068-.939.104-.408 0-.922-.049-1.254.105-.484 0-1.184-.092-1.568.104l-6.165-.01c-6.651-.209-13.407-1.619-19.102-3.807-8.444-3.25-16.353-7.869-23.033-14.551-12.098-12.098-19.2-27.804-19.2-45.998 0-3.85.49-7.614 1.058-11.18 1.035-6.531 3.409-12.634 6.299-18.267 4.395-8.577 11.377-16.519 19.425-22.327 3.422-2.475 7.046-4.48 10.808-6.26 2.547-1.208 5.30M 6-2.318 8.075-3.066 3.583-.973 7.207-1.782 11.073-2.289 1.322-.111 2.645-.226 3.967-.34.679-.022 1.486.069 2.09-.111 8.362 0 15.924 1.261 22.977 3.781 24.52 8.754 42.434 32.558 42.434 60.062 0 10.207-2.109 19.227-6.006 27.458-6.398 13.509-17.342 24.382-30.777 30.844zm-80.147-108.493c4.268-.415 5.459-6.419 1.335-8.157-.644-.271-1.375-.271-2.165-.271-1.163.532-2.334 1.091-3.014 2.305-1.587 2.815.405 6.453 3.844 6.123zm130.617 43.504c-1.113.722-2.406 1.26-3.602 1.828-.336.177-.676.35-1.016.523-.176.137-.229.355-.355.4M 6.223.418 4.424 1.506 5.182 1.995h.209c-.062-.872-.127-1.743-.191-2.615-.049-.735.025-1.558-.227-2.191zm-156.087 3.611c-.826-.392-1.704-.921-2.632-1.104 0 2.364-.036 4.85-.104 7.105.51 0 1.532-.581 2.005-.796 2.083-.882 4.167-1.768 6.25-2.652v-.104l-1.802-.793zm150.759 6.524v.104c-1.969 0-1.607 2.802-1.986 4.075v.104h.105c0 .144-.047.102.102.107l2.301.196c.627.075 1.254.147 1.881.219h.105l.176-1.988c.025-1.716-.996-2.764-2.684-2.817zm-129.267 40.673c-.738-.274-1.502-.34-2.39-.34-1.055.375-1.976.676-2.792 1.496-3.35M 9 3.356-.097 9.469 4.559 8.694 1.228-.205 2.436-.884 3.187-1.907 2.112-2.898.633-6.761-2.564-7.943zm27.494 21.498-1.064-.254c-.444-.053-.892-.108-1.339-.164-1.166.343-2.148.337-2.988 1.293-1.554 1.757-.75 4.184.872 5.528.313.259.774.719 1.195.738.229.007.339-.216.44-.386.441-.996.879-1.995 1.319-2.994.524-1.253 1.043-2.507 1.565-3.761zm1.254.627c-.702 1.669-1.407 3.338-2.109 5.006-.271.666-.545 1.329-.816 1.995-.255 0 .141.304.238.347 1.44.617 3.441.375 4.627-.513 2.733-2.052.666-5.999-1.94-6.835zm46.674 3.302c-.89M 6-.369-1.887-.376-2.996-.376-1.189.454-2.307.696-3.197 1.711-2.734 3.096-.633 8.386 3.715 8.18 3.707-.18 6.346-3.239 4.922-6.972-.419-1.09-1.357-2.1-2.444-2.543zm1.111 4.294c-.18.231-6.258 1.593-6.645 1.43-.27-.114-.348-.725-.389-.979.666-.156 1.332-.316 1.998-.474 1.148-.241 2.299-.486 3.447-.731l1.451-.362c.134.266.372.805.138 1.116zm-16.922.114c-.209-.425-.336-.875-.666-1.231-.658 1.777-1.322 3.553-1.985 5.329-.176 0-.104.167-.104.313 1.63 0 3.109-.104 4.703-.104l-.795-1.803c-.382-.832-.766-1.668-1.153-2.504z"/> http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:57950B7BAB2B11ED9168858AF93BA989" xmpMM:InstanceID="xmp.iid:57950B7AAB2B11ED9168858AF93BA989" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! motSXglia8:>;:2F?.93!8/ ygjv`eu[]g[[\MQYHLW=EP?CJ...21'-, 6- }wZ_obadd\\EIQGHIB>@JF9736E41C& z[cuxsr^bpadnV[jrpinkgNR^ic\UV\SPXMOS_[RMNP[UNCFMRPCGGBY;0D=+0*';! 7NvdejKRb45QSSP=AIaMC`E6 7j5ion:39.QmbABwX8Gk2pB7BLWjtzGWYtJcKBkVXoGFH95fzYYgpebkU( iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>Red Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>M https://token.thesaudisnft.com/4107</metadata:External_URL> <metadata:Name>The Saudis #4107</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White SM hemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/39M 64</metadata:External_URL> <metadata:Name>The Saudis #3964</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> adata:Value>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudiM snft.com/4182</metadata:External_URL> <metadata:Name>The Saudis #4182</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>WM hite Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnM ft.com/4009</metadata:External_URL> <metadata:Name>The Saudis #4009</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>+ iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternM al_URL>https://token.thesaudisnft.com/4122</metadata:External_URL> <metadata:Name>The Saudis #4122</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>z@%N iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Gold Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:DescriM <metadata:External_URL>https://token.thesaudisnft.com/4246</metadata:External_URL> <metadata:Name>The Saudis #4246</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>U iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> adata:Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>VR</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Pearwood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URLM >https://token.thesaudisnft.com/4212</metadata:External_URL> <metadata:Name>The Saudis #4212</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ta:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/4175</metadata:External_URL> <metadata:Name>The Saudis #4175</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigar</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/4101</metadata:External_URL> <metadata:Name>The Saudis #4101</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.theM saudisnft.com/4176</metadata:External_URL> <metadata:Name>The Saudis #4176</metadata:Name> </metadata:Metadata> Aj?=:ETH.ETH:0xaaae4b6d5c086cb72b5429194c811601670d82d9:1367158301 FjDOUT:9235F7F39B73FACF7B3FFA07C2998425105DBCE92BC18F7790C2AD783C865011 FjDOUT:B187669B8393C6D5E575363F91C0433753D9A65BD91B8D6C5FA352E99C1874ED 4j2DC-L5:wJ7ReGrNH1Wsn++G9JT8m/7fEiW27qK4sYYe/nbuR7Y= 2017-07-12T00:19:33-04:00 2017-07-12T00:05:31-04:00 VLYKT^MTYIX^FX^JP^L@ zENzENzENzENzENzENzENzENzENzENzEN%UR/ @j>=:ETH.ETH:0xc1a28C70fcc86B513FC007B02E5Ac777ed1cFe06:948238::0 Aj?=:ETH.ETH:0x17611C1c22e597fC08E821F2d0f1b28f50C53685:3049307::0 Bj@=:ETH.ETH:0x8aDfFA88fc96747232260202646d3b7dE629C103:25931724::0 Bj@=:ETH.ETH:0x22483b2990C0406Db23D5Bb689a3Ce8290709614:12139736::0 JjH=:BNB.BUSD-BD1:bnb1ph0fhtez5h0tcvq9hl63vv2c4cxashus59xpfn:21241723278::0 DjB=:ETH.ETH:0xf490938E2eDe98038A0f148aec06E7cE62b766f8:10420462:te:0 FjD=:BNB.ETH-1C9:bnb1n59xdqztufxaclnf5ck0dqhzthjtpg490wkx75:560039:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} FjDOUT:E6B9B307151F62E04A17A1D17A57AF5F64B5FDB7C422F14989986BBA1353665A 9j7=:THOR.RUNE:thor1kret5p72dq67unkvmhaln5c279alsda8xqksuf 2017-07-12T00:19:33-04:00 2017-07-12T00:05:31-04:00 %8#)##)#82<1.1<2YF>>FYgVRVg}pp} %8#)##)#82<1.1<2YF>>FYgVRVg}pp} 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:52+00:00 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:52+00:00 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 -02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:57+00:00I 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ )2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:52+00:00 2023-02-14T21:16:58+00:00 2023-02-14T20:33:51+00:00o 2023-02-14T17:01:50+00:00$ 2023-02-14T21:16:58+00:00 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> 1http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 7.2-c000 79.1b65a79b4, 2022/06/13-22:01:01 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmp:CreatorTool="Adobe PhotosM hop 23.5 (Macintosh)" xmpMM:InstanceID="xmp.iid:5D15A508A07D11ED8BCB8E95E8B078D3" xmpMM:DocumentID="xmp.did:5D15A509A07D11ED8BCB8E95E8B078D3"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5B56576BA07D11ED8BCB8E95E8B078D3" stRef:documentID="xmp.did:5B56576CA07D11ED8BCB8E95E8B078D3"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> @/@/@/@/@/@/@/@/@/@/@( <svg height="235.94225" viewBox="0 0 114.63049 235.94225" width="114.63049" xmlns="http://www.w3.org/2000/svg"><g fill="#132257"><path d="m34.17009 148.305a2.15282 2.15282 0 0 0 -2.002.801 7.38634 7.38634 0 0 0 -1.767 5.521v-.002a4.11815 4.11815 0 0 0 .273 1.384 2.28552 2.28552 0 0 0 1.52 1.476 2.22447 2.22447 0 0 0 1.958-1.016 7.77639 7.77639 0 0 0 1.335-6.733 1.94623 1.94623 0 0 0 -1.317-1.431m46.792 20.43a5.50805 5.50805 0 0 0 -.476-3.916 4.01749 4.01749 0 0 0 -2.551-1.949l-1.152-.243c-1.048-.212-2.632-.533-5.00M 4-1.125-3.175-.794-5.9.661-7.404 3.904 1.547.449 3.07.866 4.555 1.242a15.36971 15.36971 0 0 0 .291-1.971.90955.90955 0 0 1 1.816.106 17.26578 17.26578 0 0 1 -.338 2.296c.294.069.587.138.877.204.298.067.591.132.879.193.26-1.278.425-2.365.429-2.386a.9098.9098 0 0 1 1.799.273c-.014.087-.181 1.175-.449 2.479.611.118 1.187.223 1.735.315a17.16226 17.16226 0 0 0 .252-1.994.909.909 0 0 1 1.816.087 18.187 18.187 0 0 1 -.267 2.181c1.259.171 2.317.264 3.192.304m-16.843 2.223a5.22778 5.22778 0 0 0 2.866 2.738 42.01307 42.01307M 0 0 0 6.998 1.37c2.884.319 5.139-1.287 6.427-4.533-.965-.055-2-.167-3.068-.317a9.38869 9.38869 0 0 1 -.787 1.882.90918.90918 0 0 1 -1.58-.9 7.03905 7.03905 0 0 0 .548-1.268c-.563-.096-1.129-.202-1.693-.312a13.873 13.873 0 0 1 -.646 2.007.90952.90952 0 1 1 -1.667-.728 11.76993 11.76993 0 0 0 .532-1.646c-.293-.066-.587-.13-.875-.195-.307-.07-.618-.143-.93-.216a17.08557 17.08557 0 0 1 -.593 1.628.90813.90813 0 1 1 -1.673-.707c.193-.458.356-.915.495-1.354-1.532-.388-3.106-.82-4.702-1.285a5.84262 5.84262 0 0 0 .348 3.8M 36m20.231-23.159c-1.375-3.608-5.976-6.164-12.039-7.536-11.203-2.534-25.924 1.651-35.29 9.53a9.03127 9.03127 0 0 1 -.231 4.716 152.78226 152.78226 0 0 0 25.825 10.374c2.178-5.004 6.352-5.958 9.605-5.145 2.331.582 3.83.886 4.925 1.107l1.204.255a5.84451 5.84451 0 0 1 3.718 2.82 7.18041 7.18041 0 0 1 .743 4.817 3.30415 3.30415 0 0 0 1.818-.41 30.0416 30.0416 0 0 0 -.278-20.528m-10.567 29.074a43.30589 43.30589 0 0 1 -7.392-1.46 7.02557 7.02557 0 0 1 -3.922-3.689 7.4278 7.4278 0 0 1 -.684-2.836 8.1923 8.1923 0 0 1 .24-2.M 287 155.76 155.76 0 0 1 -25.937-10.409 7.44428 7.44428 0 0 1 -.824 1.215 4.64329 4.64329 0 0 1 -1.689 1.303 37.568 37.568 0 0 0 5.768 16.124c4.173 6.445 9.857 10.862 15.998 12.251 2.177.492 5.023 1.104 7.567.54a29.93355 29.93355 0 0 0 20.897-17.208 10.87809 10.87809 0 0 1 -1.467.142c-2.154 6.301-6.683 6.521-8.555 6.314m-43.838-26.597a7.73968 7.73968 0 0 1 1.154-1.893 5.012 5.012 0 0 1 1.182-1.04 27.061 27.061 0 0 1 6.83-13.287 30.01075 30.01075 0 0 0 -10.994 14.703 9.38015 9.38015 0 0 0 1.828 1.517m-.578 1.765a17.2M 5472 17.25472 0 0 1 -1.813-1.442 29.86149 29.86149 0 0 0 -1.015 9.061c.026.631.071 1.26.135 1.881a19.15232 19.15232 0 0 1 2.616-5.765 8.94357 8.94357 0 0 1 .077-3.735m2.395 6.837a2.91684 2.91684 0 0 1 -1.668-1.186c-2.229 3.435-3.167 6.507-2.349 9.266a29.92392 29.92392 0 0 0 25.858 21.249c-11.684-3.548-20.329-15.721-21.841-29.329m14.38701-141.596a19.44647 19.44647 0 0 0 -.504-4.528s2.688-.141 2.688-3.414c0-2.696-1.799-4.536-2.282-4.536-.39 0-.485.412-1.328.412-2.055 0-2.206-2.624-2.206-2.624q.456-.01648.938-.016c5.8M 81 0 11.323 1.782 11.323 14.706a116.757 116.757 0 0 1 -.852 12.784 77.31438 77.31438 0 0 0 -.654 10.517s-10.241-1.206-10.241-8.91c0-5.002 3.118-6.219 3.118-14.391m16.287 85.37c0 10.114-4.314 18.338-6.807 20.831-7.722 7.723-14.095 2.099-14.164 9.849-3.504 3.174-6.025 8-7.262 13.512a2.167 2.167 0 0 1 .228.032 2.88252 2.88252 0 0 1 1.825 1.2c9.809-7.995 24.913-12.197 36.457-9.587a20.44016 20.44016 0 0 1 9.141 4.258 30.00641 30.00641 0 0 0 -15.369-12.456c-1.522-.545-4.224-1.17-4.224-6.103 0-9.208 10.074-2.049 16.71-12.M 079.326-.493-.143-.927-.532-.538-2.008 2.007-6.938 3.387-9.547 3.387a7.61036 7.61036 0 0 1 -3.593-.594 71.81711 71.81711 0 0 1 5.534-9.079c-6.16-6.162 4.209-40.038 31.65-40.038a85.94117 85.94117 0 0 0 -1.839-18.546c-.653.158-5.823 1.378-6.059.29-.208-.962 3.808-3.05 5.19-3.736a30.82416 30.82416 0 0 0 -2.691-6.9c-23.52 7.411-18.793 26.884-24.523 26.884-3.729 0-6.658-2.904-7.704-3.95-14.048-14.046-7.502-23.341-7.502-42.007 0-12.574-4.883-17.282-13.9-17.282-9.019 0-12.239 3.903-12.239 3.903s12.356.4 12.356 13.379c0 13M .586-15.301 17.336-15.301 34.572 0 28.692 34.165 28.154 34.165 50.798"/><path d="m10.657 184.59717c2.293 1.513 4.722 2.871 4.722 2.871l-.851 2.204c-.317-1.334-1.64-2.059-3.35-3.116l-5.593 8.089a15.22632 15.22632 0 0 0 -2.121 3.942s-.917-.584-1.756-1.208c-.877-.652-1.708-1.256-1.708-1.256.834-.205 2.274-2.328 3.141-3.504l5.443-7.766c-2.039-1.574-2.835-1.883-4.275-1.957l1.937-1.453s1.862 1.472 4.411 3.154"/><path d="m20.6846 191.23639c-2.484-1.184-4.439 1.621-5.912 4.706s-2.436 6.39.048 7.576c2.485 1.184 4.449-1.642 M 5.921-4.726 1.474-3.084 2.427-6.368-.057-7.556m-6.408 13.423c-3.886-1.856-4.4-6.135-2.488-10.142 1.922-4.025 5.584-6.288 9.45-4.44 3.867 1.844 4.411 6.114 2.488 10.141-1.912 4.005-5.565 6.296-9.45 4.441"/><path d="m31.6626 194.21327c2.627.742 4.766 1.239 4.766 1.239l-.229 2.351c-.704-1.016-1.026-1.265-3.269-1.837l-2.717 9.144c-.22.836-1.305 4.001-.957 4.597 0 0-.756-.16-1.975-.498-1.369-.38-2.013-.637-2.013-.637.701-.463 1.587-3.17 1.875-4.27l2.733-9.203c-2.323-.774-2.863-.829-3.974-.312l1.347-2.006s1.517.613 4.413M 1.432"/><path d="m42.5019 196.64227c2.59.391 5.029.613 5.029.613l.095 2.359c-.965-.86-1.329-1.139-3.887-1.461l-1.48 9.389c-.104.858-.655 4.123-.228 4.666 0 0-.896-.098-2.135-.273s-2-.348-2-.348c.605-.474 1.107-3.567 1.212-4.426l1.517-9.507c-2.215-.442-2.671-.271-3.734.345l.963-2.232s2.07.486 4.648.875"/><path d="m52.1036 205.56787-.196 6.309c3.307.043 5.573-.165 6.582-1.6l-.506 2.865s-1.832.039-4.514 0c-2.952-.042-5.265-.233-5.265-.233.49-.487.613-3.56.619-4.427l.269-6.191c.011-1.649.162-4.313-.391-4.874 2.396.166M 2.091.163 4.292.249 2.881.114 4.515.028 4.515.028l.361 2.366c-1.126-.938-2.811-1.046-5.564-1.063l-.152 5.294 4.228.025c.382.004.407.217.404.64-.004.418-.01.642-.412.637z"/><path d="m70.5769 207.46777c.244 2.296.485 3.945 1.008 4.246a1.4755 1.4755 0 0 1 -1.097.607 1.83638 1.83638 0 0 1 -1.624-.788l-7.498-8.601.281 5.471c.092.861.19 4.123.727 4.556l-2.5.115c.435-.537.319-3.645.227-4.506l-.353-6.177c-.093-.861-.253-4.275-.792-4.708l2.292-.083 7.688 9.128-.641-5.253c-.091-.862-.559-3.993-1.076-4.429 0 0 .275-.025 1.20M 8-.151.932-.127 1.272-.195 1.272-.195-.434.539.069 3.748.16 4.611z"/><path d="m84.66731 204.21327c.265 1.067.793 3.811 1.579 4.348 0 0-1.188.342-1.91.565-.646.2-2.069.567-2.069.567.336-.592-.413-3.883-.619-4.706l-.713-2.865-4.766 1.169.542 2.914c.156.942.653 4.111 1.295 4.497 0 0-.665.139-2.055.423-1.165.238-1.972.366-1.972.366.355-.592-.123-3.531-.272-4.468l-1.154-6.159c-.21-1.148-.74-4.053-1.376-4.392 0 0 .615-.118 1.977-.382 1.362-.265 2.028-.445 2.028-.445-.334.689.257 3.475.418 4.452l.367 1.954 4.689-1.142-.50M 7-1.998c-.275-1.056-.858-3.596-1.51-4.067 0 0 .645-.187 1.95-.556s1.868-.579 1.868-.579c-.26.703.466 3.176.766 4.451z"/><path d="m92.52989 199.55927-4.133-5.724.292 7.19zm.844 1.002-4.651 1.821.162 2.553a10.39525 10.39525 0 0 0 .297 2.123.90548.90548 0 0 0 .407.454s-.483.176-1.282.435c-.798.259-1.238.385-1.238.385a3.74311 3.74311 0 0 0 .321-1.967l-.408-12.106a4.1204 4.1204 0 0 0 -.239-1.199 1.59313 1.59313 0 0 0 -.498-.609 12.30981 12.30981 0 0 1 1.865-1.004c1.069-.45 1.517-.431 2.296.478l6.824 8.461c1.241 1.615 2.M 335 2.702 3.049 2.918 0 0-.697.323-2.006.906-1.313.583-2.18.913-2.18.913a1.46485 1.46485 0 0 0 -.084-1.001 13.13 13.13 0 0 0 -1.287-1.873z"/><path d="m112.8565 196.17247c-.935.631-1.635 1.114-1.635 1.114-.07-.921-1.846-3.197-2.369-3.886l-4.007-5.229 3.222 10.307a2.57827 2.57827 0 0 1 -.565.651 1.36413 1.36413 0 0 1 -1.821-.056l-7.63-6.327 2.67 4.92c.654 1.246 1.913 3.838 2.759 4.093 0 0-.524.282-1.191.606-.663.319-1.067.507-1.067.507.146-.723-1.092-2.875-1.815-4.251l-2.973-5.59c-.901-1.682-1.894-3.395-2.75-3.737.66M 2-.321.861-.42 1.806-.884.788-.389 1.482-.77 1.482-.77l8.593 7.31-3.38-10.349s.454-.307 1.311-.88c.857-.574 1.632-1.144 1.632-1.144.064.927 1.851 3.285 2.503 4.129l3.701 4.762c.786.978 2.252 3.158 3.298 3.409 0 0-.839.664-1.774 1.295"/><path d="m24.9291 214.99007c.796.291 1.824.648 1.824.648-.865.627-1.662 3.123-2.176 4.478l-1.995 5.536c-.535 1.502-1.445 3.679-1.14 4.456 0 0-1.098-.379-1.987-.695-.759-.27-1.19-.416-1.996-.759.979-.258 1.902-3.512 2.2-4.33l.914-2.583-4.782-1.995-1.383 2.955c-.45 1.027-1.527 3.35-1.2M 72 4.08 0 0-.843-.346-2.081-.914-1.456-.67-1.774-.85-1.774-.85 1.027-.504 1.633-2.159 2.415-3.833l2.502-5.539c.845-1.894 1.608-3.538 1.551-4.62 0 0 .446.267 1.676.82.98.441 1.48.66 2.03.88-.779.311-1.861 3.106-2.434 4.359l-.732 1.567 4.672 1.922.717-1.775c.334-.905 1.492-3.612 1.243-4.541 0 0 .959.349 2.008.733"/><path d="m34.0335 218.881c-2.661-.701-4.037 2.352-4.889 5.587-.852 3.234-1.16 6.59 1.503 7.291 2.661.701 4.043-2.374 4.894-5.607.852-3.236 1.156-6.571-1.508-7.271m-3.702 14.076c-4.165-1.096-5.491-5.128-4.3M 85-9.331 1.111-4.223 4.265-7.053 8.41-5.964 4.141 1.091 5.494 5.108 4.384 9.331-1.105 4.202-4.244 7.06-8.409 5.964"/><path d="m41.6124 234.44337a2.41083 2.41083 0 0 0 .445-.871 35.67548 35.67548 0 0 0 .614-3.626l1.167-9.017c-2.486-.31-3.116-.132-4.206.514l1.021-2.308c.776.171 2.489.357 4.575.619 1.393.176 5.55.55 5.55.55l.142 2.309c-.917-1.062-1.868-1.155-3.937-1.319l-1.163 9.047c-.104.841-.567 3.764-.108 4.629-.499-.057-1.328-.149-2.021-.219-.718-.073-1.665-.238-2.079-.308"/><path d="m61.4087 231.31027c.027 2.716-M 2.18 4.682-5.574 4.631a6.83585 6.83585 0 0 1 -4.552-1.568l.551-2.576a4.5582 4.5582 0 0 0 3.708 2.858 2.579 2.579 0 0 0 2.881-2.501c.017-1.151-.617-1.846-3.284-3.234-2.554-1.32-3.505-2.636-3.505-4.6 0-2.67 2.325-4.028 5.055-4.031a8.81218 8.81218 0 0 1 4.291 1.087l-.569 2.358c-1.218-1.625-2.319-2.23-3.65-2.249a1.96226 1.96226 0 0 0 -2.231 2.043c.011 1.465 1.624 2.26 3.802 3.478 2.503 1.4 3.061 2.804 3.077 4.304"/><path d="m73.77441 222.99707a5.48152 5.48152 0 0 1 .185 1.008 5.94556 5.94556 0 0 1 .007 1.004 4.50907 4.M 50907 0 0 1 -1.181 2.62 5.9153 5.9153 0 0 1 -4.25 1.734c-.703.043-.872-.173-.92-.678l-.004-.111s-.015-.196.139-.206l.176-.017a2.85666 2.85666 0 0 0 1.977-1.016 4.215 4.215 0 0 0 .718-3.014 3.499 3.499 0 0 0 -1.271-2.665 3.31893 3.31893 0 0 0 -2.353-.641s-.338.028-.712.085a.21553.21553 0 0 0 -.2.236l.901 9.351c.08.823.303 3.722.98 4.321 0 0-.768.081-2.218.2-1.103.088-1.964.112-1.964.112a7.71567 7.71567 0 0 0 .169-3.014l-.698-7.374c-.08-.844-.224-3.738-.913-4.453 0 0 1.851-.274 5.278-.597a6.60517 6.60517 0 0 1 4.525.M 916 4.036 4.036 0 0 1 1.629 2.199"/><path d="m87.78581 226.012a5.38969 5.38969 0 0 1 -4.159 6.844c-2.37.592-5.784-.277-6.737-4.436l-1.158-4.908c-.307-1.373-.806-3.807-1.603-4.44 0 0 .889-.127 2.285-.388 1.395-.259 2.043-.413 2.043-.413-.366.576.018 2.849.382 4.52l1.48 6.241a3.80871 3.80871 0 0 0 1.281 2.387 2.29426 2.29426 0 0 0 1.77.317 2.19224 2.19224 0 0 0 1.556-1.062 3.93571 3.93571 0 0 0 .077-2.706l-1.662-6.24c-.455-1.717-.978-3.867-1.54-4.227 0 0 .677-.184 1.96-.55.971-.278 1.549-.447 1.969-.594-.382.939.532 M 3.818.724 4.644z"/><path d="m102.92961 224.73347a1.35075 1.35075 0 0 0 .973.086 2.0882 2.0882 0 0 1 -.544.935 2.86 2.86 0 0 1 -3.077.988 23.42449 23.42449 0 0 1 -6.445-4.763.10512.10512 0 0 1 .06-.142l.144-.063a3.28112 3.28112 0 0 0 1.504-4.494 3.404 3.404 0 0 0 -1.905-1.983 3.00037 3.00037 0 0 0 -2.062.114 3.1632 3.1632 0 0 0 -.731.39s-.112.092.019.477l2.971 8.482c.45 1.25 1.234 3.683 1.944 4.095 0 0-.802.316-2.018.756-1.219.439-1.96.643-1.96.643.248-.946-.688-3.522-.923-4.245l-1.923-5.732c-.48-1.379-1.355-3.857-2M .069-4.251a44.664 44.664 0 0 0 4.553-1.718 7.179 7.179 0 0 1 4.768-.575 3.423 3.423 0 0 1 1.982 1.419 4.69243 4.69243 0 0 1 .444.827 4.04154 4.04154 0 0 1 .235.839 3.87444 3.87444 0 0 1 -.475 2.655 4.951 4.951 0 0 1 -1.415 1.562 24.93037 24.93037 0 0 0 5.95 3.698"/></g></svg>h! text/plain;charset=utf-8 LITTLE RED-CAP [LITTLE RED RIDING HOOD] Once upon a time there was a dear little girl who was loved by everyone who looked at her, but most of all by her grandmother, and there was nothing that she would not have given to the child. Once she gave her a little cap of red velvet, which suited her so well that she would never wear anything else; so she was always called One day her mother said to her: Come, Little Red-Cap, here is a piece of cake and a bottlM e of wine; take them to your grandmother, she is ill and weak, and they will do her good. Set out before it gets hot, and when you are going, walk nicely and quietly and do not run off the path, or you may fall and break the bottle, and then your grandmother will get nothing; and when you go into her room, don t peep into every corner before you do it. I will take great care, said Little Red-Cap to her mother, and gave ther lived out in the wood, half a league from the village, and just as Little Red-Cap entered the wood, a wolf met her. Red-Cap did not know what a wicked creature he was, and was not at all afraid of Good day, Little Red-Cap, Thank you kindly, wolf. Whither away so early, Little Red-Cap? What have you got in your apron? Cake and wine; yesterday was baking-day, so poor sick grandmother is to have something good, to make herM Where does your grandmother live, Little Red-Cap? A good quarter of a league farther on in the wood; her house stands under the three large oak-trees, the nut-trees are just below; you surely must know it, replied Little Red-Cap. The wolf thought to himself: What a tender young creature! what a nice plump mouthful--she will be better to eat than the old woman. I must act craftily, so as to catch both. So he walked for a short time by the side of Little Red-Cap, and thenM See, Little Red-Cap, how pretty the flowers are about here--why do you not look round? I believe, too, that you do not hear how sweetly the little birds are singing; you walk gravely along as if you were going to school, while everything else out here in the wood is merry. Little Red-Cap raised her eyes, and when she saw the sunbeams dancing here and there through the trees, and pretty flowers growing everywhere, Suppose I take grandmother a fresh nosegay; that would her too. It is so early in the day that I shall still get there ; and so she ran from the path into the wood to look for flowers. And whenever she had picked one, she fancied that she saw a still prettier one farther on, and ran after it, and so got deeper and deeper into the wood. Meanwhile the wolf ran straight to the grandmother She is bringing cake and wine; open called out the grandmother, I am too weak, and cannot The wolf lifted the latch, the door sprang open, and without saying a word he went straight to the grandmother s bed, and devoured her. Then he put on her clothes, dressed himself in her cap laid himself in bed and drew the curtains. Little Red-Cap, however, had been running about picking flowers, and when she had gathered so many that she could carry no more, she remembered her grandmother, and set out on the way to M She was surprised to find the cottage-door standing open, and when she went into the room, she had such a strange feeling that she said to Oh dear! how uneasy I feel today, and at other times I like being with grandmother so much. received no answer; so she went to the bed and drew back the curtains. There lay her grandmother with her cap pulled far over her face, and looking very strange. what big ears you hM The better to hear you with, my child, But, grandmother, what big eyes you have! The better to see you with, my dear. But, grandmother, what large hands you have! The better to hug you with. Oh! but, grandmother, what a terrible big mouth you have! The better to eat you with! And scarcely had the wolf said this, than with one bound he was out of bed and swallowed up Red-Cap. When the wolf had appeased his appetiteM , he lay down again in the bed, fell asleep and began to snore very loud. The huntsman was just passing the house, and thought to himself: How the old woman is snoring! I must just see if she wants anything. So he went into the room, and when he came to the bed, he saw that the wolf was lying in it. here, you old sinner! I have long sought you! he was going to fire at him, it occurred to him that the wolf might have devoured the grandmother, and that she M might still be saved, so he did not fire, but took a pair of scissors, and began to cut open the stomach of the sleeping wolf. When he had made two snips, he saw the little Red-Cap shining, and then he made two snips more, and the little girl sprang out, crying: Ah, how frightened I have been! How dark it was ; and after that the aged grandmother came out alive also, but scarcely able to breathe. Red-Cap, however, quickly fetched great stones with which they filled the wolf he wanted to run away, but the stones were so heavy that he collapsed at once, and fell dead. Then all three were delighted. The huntsman drew off the wolf went home with it; the grandmother ate the cake and drank the wine which Red-Cap had brought, and revived, but Red-Cap thought to herself: long as I live, I will never by myself leave the path, to run into the wood, when my mother has forbidden me to do so. It also related that once when Red-Cap was again takiM grandmother, another wolf spoke to her, and tried to entice her from the path. Red-Cap, however, was on her guard, and went straight forward on her way, and told her grandmother that she had met the wolf, and that he to her, but with such a wicked look in his eyes, that if they had not been on the public road she was certain he would said the grandmother, we will shut the door, that he may not come in. Soon afterwards the woM lf knocked, and cried: Open the door, grandmother, I am Little Red-Cap, and am bringing you But they did not speak, or open the door, so the grey-beard stole twice or thrice round the house, and at last jumped on the roof, intending to wait until Red-Cap went home in the evening, and then to steal after her and devour her in the darkness. But the grandmother saw what was in his thoughts. In front of the house was a great stone trough, so she said to the child: Take the pail, Red-Cap; I mM sausages yesterday, so carry the water in which I boiled them to the Red-Cap carried until the great trough was quite full. Then the smell of the sausages reached the wolf, and he sniffed and peeped down, and at last stretched out his neck so far that he could no longer keep his footing and began to slip, and slipped down from the roof straight into the great trough, and was drowned. But Red-Cap went joyously home, and no one ever did anything to harm her again. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 It was in the middle of winter, when the broad flakes of snow were falling around, that a certain queen sat working at her window, the frame of which was made of fine black ebony; and, as she was looking out upon the snow, she pricked her finger, and three drops of blood fell upon it. Then she gazed thoughtfully down on the red drops which sprinkled the white snow and said, "Would that my little daughter may be as white as that snow, as red as the blood, and as blM ack as the ebony window-frame!" And so the little girl grew up; her skin was a white as snow, her cheeks as rosy as blood, and her hair as black as ebony; and she was called Snow-White. But this queen died; and the king soon married another wife, who was very beautiful, but so proud that she could not bear to think that any one could surpass her. She had a magical looking-glass, to which she used to go and gaze upon herself in it, and say "Tell me, glass, tell me true! Of all the ladies in the landM Who is fairest? tell me who?" And the glass answered, "Thou, Queen, art fairest in the land" But Snow-White grew more and more beautiful; and when she was seven years old, she was as bright as the day, and fairer than the queen herself. Then the glass one day answered queen, when she went to consult it as usual "Thou, Queen, may'st fair and beauteous be, But Snow-White is lovelier far than thee?" When the queen heard this she turned pale with rage and envy; and calling to one of her servanM ts said, "Take Snow-White away into the wide wood, that I may never see her more." Then the servant led the little girl away; but his heart melted when she begged him to spare her life, and he said, "I will not hurt thee, thou pretty child." So he left her there alone; and though he thought it most likely that the wild beasts would tear her to pieces, he felt as if a great weight were taken off his heart when he had made up his mind not to kill her, but leave her to her fate. Then poor Snow-White wandered M along through the wood in great fear; and the wild beasts roared around, but none did her any harm. In the evening she came to a little cottage, and went in there to rest, for her weary feet would carry her no further. Everything was spruce and neat in the cottage: on the table was spread a white cloth, and there were seven little plates with seven little loaves and seven little glasses with wine in them; and knives and forks laid in order, and by the wall stood seven little beds. Then, as she was exceedinglM y hungry, she picked a little piece off each loaf, and drank a very little wine out of each glass; and after that she thought she would lie down and rest. So she tried all the little beds; and one was too long, and another was too short, till, at last, the seventh suited her; and there she laid herself down and went to sleep. Presently in came the masters of the cottage, who were seven little dwarfs that lived among the mountains, and dug and searched about for gold. They lighted up their seven lamps, and saM w directly that all was not right. The first said, "Who has been sitting on my stool?" The second, "Who has been eating off my plate?" The third, "Who has been picking at my bread?" The fourth, "Who has been meddling with my spoon?" The fifth, "Who has been handling my fork?" The sixth, "Who has been cutting with my knife?" The seventh, "Who has been drinking my wine?" Then the first looked around and said, "Who has been lying on my bed?" And the rest came running to him, and every one cried out that somebodM bed. But the seventh saw Snow-White, and called upon his brethren to come and look at her; and they cried out with wonder and astonishment, and brought their lamps and gazing upon her, they said, "Good heavens! what a lovely child she is!" And they were delighted to see her, and took care not to waken her; and the seventh dwarf slept an hour with each of the other dwarfs in turn, till the night was gone. In the morning Snow-White told them all her story, and they pitied her, f she would keep all things in order, and cook and wash, and knit and spin for them, she might stay where she was, and they would take good care of her. Then they went out all day long to their work, seeking for gold and silver in the mountains; and Snow-White remained at home; and they warned her, saying, "The queen will soon find out where you are, so take care and let no one in." But the queen, now that she thought Snow- White was dead, believed that she was certainly the handsomest lady in the he went to her glass and said "Tell me, glass, tell me true! Of all the ladies in the land, Who is fairest? tell me who?" And the glass answered "Thou, Queen, thou are fairest in all this land; But over the Hills, in the greenwood shade, Where the seven dwarfs their dwelling have made, There Snow-White is hiding; and she Is lovelier far, O Queen, than thee." Then the queen was very much alarmed; for she knew that the glass always spoke the truth, and she was sure that the servanM t had betrayed her. And as she could not bear to think that any one lived who was more beautiful than she was, she disguised herself as an old pedlar woman and went her way over the hills to the place where the dwarfs dwelt. Then she knocked at the door and cried, "Fine wares to sell!" Snow-White looked out of the window, and said, "Good day, good woman; what have you to sell?" "Good wares, fine wares," replied she; "laces and bobbins of all colors." "I will let the old lady in; she seems to be a very good sM thought Snow-White; so she ran down, and unbolted the door. "Bless me!" said the woman, "how badly your stays are laced. Let me lace them up with one of my nice new laces." Snow-White did not dream of any mischief; so she stood up before the old woman who set to work so nimbly, and pulled the lace so tightly that Snow-White lost her breath, and fell down as if she were dead. "There's an end of all thy beauty," said the spiteful queen, and went away home. In the evening the seven dwarfs retM urned; and I need not say how grieved they were to see their faithful Snow-White stretched upon the ground motionless, as if she were quite dead. However, they lifted her up, and when they found what was the matter, they cut the lace; and in a little time she began to breathe, and soon came to herself again. Then they said, "The old woman was the queen; take care another time, and let no one in When the queen got home, she went to her glass, and spoke to it, but to her surprise it repliM ed in the same words as before. Then the blood ran cold in her heart with spite and malice to hear that Snow-White still lived; and she dressed herself up again in a disguise, but very different from the one she wore before, and took with her a poisoned comb. When she reached the dwarfs' cottage, she knocked at the door, and cried, "Fine wares to sell!" but Snow-White said, "I dare not let any one in." Then the queen said, "Only look at my beautiful combs;" and gave her the poisoned one. And it looked so pM retty that the little girl took it up and put it into her hair to try it; but the moment it touched her head the poison was so powerful that she fell down senseless. "There you may lie," said the queen, and went her way. But by good luck the dwarfs returned very early that evening; and when they saw Snow-White lying on the ground, they thought what had happened, and soon found the poisoned comb. And when they took it away, she recovered, and told them all that had passed; and they warned her once more not toM Meantime the queen went home to her glass, and trembled with rage when she received exactly the same answer as before; and she said, "Snow-White shall die, if it costs me my life." So she went secretly into a chamber, and prepared a poisoned apple: the outside looked very rosy and tempting, but whosoever tasted it was sure to die. Then she dressed herself up as a peasant's wife, and travelled over the hills to the dwarfs' cottage, and knocked at the door; but Snow-White put her M head out of the window, and said, "I dare not let any one in, for the dwarfs have told me not to." "Do as you please," said the old woman, "but at any rate take this pretty apple; I will make you a present of it." "No," said Snow-White, "I dare not take it." "You silly girl!" answered the other, "what are you afraid of? do you think it is poisoned? Come! do you eat one part, and I will eat the other." Now the apple was so prepared that one side was good, though the other side was poisoned. Then Snow-White waM s very much tempted to taste, for the apple looked exceedingly nice; and when she saw the old woman eat, she could refrain no longer. But she had scarcely put the piece into her mouth when she fell down dead upon the ground. "This time nothing will save thee," said the queen; and she went home to her glass, and at "Thou, Queen, art the fairest of all the fair." And then her envious heart was glad, and as happy as such a heart could be. When evening came, and the dwarfs returned home, they foM lying on the ground; no breath passed her lips, and they were afraid that she was quite dead. They lifted her up, and combed her hair, and washed her face with wine and water; but all was in vain. So they laid her down upon a bier, and all seven watched and bewailed her three whole days; and then they proposed to bury her; but her cheeks were still rosy, and her face looked just as it did while she was alive; so they said, "We will never bury her in the cold ground." And they made a coffin of M that they might still look at her, and wrote her name upon it in golden letters, and that she was a king's daughter. Then the coffin was placed upon the hill, and one of the dwarfs always sat by it and watched. And the birds of the air came, too, and bemoaned Snow-White. First of all came an owl, and then a raven, but at last came a dove. And thus Snow-White lay for a long, long time, and still only looked as though she were asleep; for she was even now as white as snow, and as red as black as ebony. At last a prince came and called at the dwarfs' house; and he saw Snow-White and read what was written in golden letters. Then he offered the dwarfs money, and earnestly prayed them to let him take her away; but they said, "We will not part with her for all the gold in the world." At last, however, they had pity on him, and gave him the coffin; but the moment he lifted it up to carry it home with him, the piece of apple fell from between her lips, and Snow-White awoke, and e am I!" And the prince answered, "Thou art safe with me." Then he told her all that had happened, and said, "I love you better than all the world; come with me to my father's palace, and you shall be my wife." Snow-White consented, and went home with the prince; and everything was prepared with great pomp and splendor for their wedding. To the feast was invited, among the rest, Snow-White's old enemy, the queen; and as she was dressing herself in fine, rich clothes, she looked in the glass and said, "TellM me, glass, tell me true! Of all the ladies in the land, Who is fairest? tell me who?" And the glass answered, "Thou, lady, art the loveliest here, I ween; But lovelier far is the new-made When she heard this, the queen started with rage; but her envy and curiosity were so great, that she could not help setting out to see the bride. And when she arrived, and saw that it was no other than Snow-White, whom she thought had been dead a long while, she choked with passion, and fell ill and died; but SnMC ow-White and the prince lived and reigned happily over that land, many, many years. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5h! text/plain;charset=utf-8 BRIAR ROSE [SLEEPING BEAUTY] A king and queen once upon a time reigned in a country a great way off, where there were in those days fairies. Now this king and queen had plenty of money, and plenty of fine clothes to wear, and plenty of good things to eat and drink, and a coach to ride out in every day: but though they had been married many years they had no children, and this grieved them very much indeed. But one day as the queen was walking by the side of the river, at the bottomM of the garden, she saw a poor little fish, that had thrown itself out of the water, and lay gasping and nearly dead on the bank. Then the queen took pity on the little fish, and threw it back again into the river; and before it swam away it lifted its head out of the water and said, I know what your wish is, and it shall be fulfilled, in return for your kindness to me--you will soon have a daughter. What the little fish had foretold soon came to pass; and the queen had a little girl, so very beautifulM could not cease looking on it for joy, and said he would hold a great feast and make merry, and show the child to all the land. So he asked his kinsmen, and nobles, and friends, and neighbours. But the queen I will have the fairies also, that they might be kind and good to our little daughter. Now there were thirteen fairies in the kingdom; but as the king and queen had only twelve golden dishes for them to eat out of, they were forced to leave one of the fairies without asking herM So twelve fairies came, each with a high red cap on her head, and red shoes with high heels on her feet, and a long white wand in her hand: and after the feast was over they gathered round in a ring and gave all their best gifts to the little princess. One gave her goodness, another beauty, another riches, and so on till she had all that was good in the Just as eleven of them had done blessing her, a great noise was heard in the courtyard, and word was brought that the thirteenth fairy was with a black cap on her head, and black shoes on her feet, and a broomstick in her hand: and presently up she came into the dining-hall. Now, as she had not been asked to the feast she was very angry, and scolded the king and queen very much, and set to work to take her revenge. So she cried out, s daughter shall, in her fifteenth year, be wounded by a spindle, and fall down dead. Then the twelfth of the friendly fairies, who had not yet given her gift, came forward, and said that the evil M wish must be fulfilled, but that she could soften its mischief; so her gift was, that the king s daughter, when the spindle wounded her, should not really die, but should only fall asleep for a However, the king hoped still to save his dear child altogether from the threatened evil; so he ordered that all the spindles in the kingdom should be bought up and burnt. But all the gifts of the first eleven fairies were in the meantime fulfilled; for the princess was so beautiful, and well behavM ed, and good, and wise, that everyone who knew It happened that, on the very day she was fifteen years old, the king and queen were not at home, and she was left alone in the palace. So she roved about by herself, and looked at all the rooms and chambers, till at last she came to an old tower, to which there was a narrow staircase ending with a little door. In the door there was a golden key, and when she turned it the door sprang open, and there sat an old lady spinning Why, how now, good mother, said the princess; are you doing there? said the old lady, and nodded her head, humming a tune, while buzz! went the wheel. little thing turns round! said the princess, and took the spindle and began to try and spin. But scarcely had she touched it, before the s prophecy was fulfilled; the spindle wounded her, and she fell down lifeless on the ground. However, she was not dead, but had only fallen into a deep sleep; M the king and the queen, who had just come home, and all their court, fell asleep too; and the horses slept in the stables, and the dogs in the court, the pigeons on the house-top, and the very flies slept upon the walls. Even the fire on the hearth left off blazing, and went to sleep; the jack stopped, and the spit that was turning about with a goose upon it for the king s dinner stood still; and the cook, who was at that moment pulling the kitchen-boy by the hair to give him a box on the ear for someM thing he had done amiss, let him go, and both fell asleep; the butler, who was slyly tasting the ale, fell asleep with the jug at his lips: and thus everything stood still, and slept soundly. A large hedge of thorns soon grew round the palace, and every year it became higher and thicker; till at last the old palace was surrounded and hidden, so that not even the roof or the chimneys could be seen. But there went a report through all the land of the beautiful sleeping Briar Rose (for so the king r was called): so that, from time to sons came, and tried to break through the thicket into the palace. This, however, none of them could ever do; for the thorns and bushes laid hold of them, as it were with hands; and there they stuck fast, and died wretchedly. After many, many years there came a king s son into that land: and an old man told him the story of the thicket of thorns; and how a beautiful palace stood behind it, and how a wonderful princess, called Briar Rose, it asleep, with all her court. He told, too, how he had heard from his grandfather that many, many princes had come, and had tried to break through the thicket, but that they had all stuck fast in it, and died. Then the young prince said, All this shall not frighten me; I will go and see this Briar Rose. The old man tried to hinder him, but he was bent upon going. Now that very day the hundred years were ended; and as the prince came to the thicket he saw nothing but beautiful flowering shrubs, throM which he went with ease, and they shut in after him as thick as ever. Then he came at last to the palace, and there in the court lay the dogs asleep; and the horses were standing in the stables; and on the roof sat the pigeons fast asleep, with their heads under their wings. And when he came into the palace, the flies were sleeping on the walls; the spit was standing still; the butler had the jug of ale at his lips, going to drink a draught; the maid sat with a fowl in her lap ready to be he cook in the kitchen was still holding up her hand, as if she was going to beat the boy. Then he went on still farther, and all was so still that he could hear every breath he drew; till at last he came to the old tower, and opened the door of the little room in which Briar Rose was; and there she lay, fast asleep on a couch by the window. She looked so beautiful that he could not take his eyes off her, so he stooped down and gave her a kiss. But the moment he kissed her she opened her eyes and awoke, anM upon him; and they went out together; and soon the king and queen also awoke, and all the court, and gazed on each other with great wonder. And the horses shook themselves, and the dogs jumped up and barked; the pigeons took their heads from under their wings, and looked about and flew into the fields; the flies on the walls buzzed again; the fire in the kitchen blazed up; round went the jack, and round went the spit, with the goose for the king s dinner upon it; the butler finished his f ale; the maid went on plucking the fowl; and the cook gave the boy the box on his ear. And then the prince and Briar Rose were married, and the wedding feast was given; and they lived happily together all their lives long. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 A miller had three sons, his mill, a donkey and a tom cat; the sons had to grind, the donkey had to get grain and carry flour away and the cat had to catch the mice away. When the miller died, the three brothers divided their inheritance, the oldest received the mill, the second the donkey and the third the tom cat, further was nothing left for him. Thereon he was sad ans spoke to himself: "But I have gotten all the worst, my oldest brother can mill, my second can ridM e on his donkey, what can I start with the tom cat? Let me make a pair of fur gloves out of his pelt, so it's over." "Listen," said the tom cat, who had understood everything, what he said, "you do not need to kill me, to get a pair of bad gloves from my pelt, let only a pair of boots be made for me, that I can go out, and be seen among the people, then you will soon be helped." The miller's son was in wonderment, that the tom cat so spoke, but because the shoemaker just alked by, he called him in, and leM t a pair of boots be measured for him. When they were ready, the tom cat put them on, took a sack, made the bottom of the same full of corn, but on the top a string, with which one could pull it closed, then he threw it over his back and went on two legs, like a human, out the door. In those days reigned a king in the land, he liked to eat partridges so much: there was a need, that none were to be gotten. The whole forest was full, but they were so shy, that no hunter could reach them. The tom cat at and considered to do his matter better; when he came into the forest, he made the sack open, spread the corn apart, but the cord he laid into the grass and led it behind a hedge. There he hid himself, snuck around and lurked. The partridges soon came running, and one after the other hopped into the sack. When a good quantity was in it, the tom cat pulled the cord closed, ran to and twisted their heads around; then he threw the sack over his shoulder and went straight away to the king's palace. The watch cM ried: "Halt! Whereto?" - "To the king," answered the tom cat quickly. - "Are you crazed, a tom cat to the king?" - "Just let him go, said another, the king has often boredom, maybe the tom cat makes him amused with his humming and spinning. When the tom cat came in front of the king, he made a Reverence and said: "My Herr, the Graf, with that he named his long and distinguished name, lets himself be recommended to the Herr King and sends him these partridges, that he just caught in slings. The king astonisheM d over the beautiful fat partridges, knew not out of pleasure how to contain himself, and commanded that the tom cat be given as much gold out of the treasure chamber into his sack, as he could carry: "That bring to your Herren and thank him again many times for his But the poor miller's son sat at home at the window, supported his head an his hand and thought, that he had spent his last for the tom cat's boots, and what large things will he be able to bring back. Thereon the tom cat stepped in, thM rew the sack from his hack, untied it open and shook the gold in front of the miller: "There you have something for the hoots, the king also greets you and says many thanks to you." The miller was glad over the wealth, without understanding rightly, how it came to be. But the tom cat, as he took off his boots, told him everything, then he said: "You do have money enough now, but it should not stay with that, tomorrow I will put my boots on again, you will become richer still, I also told the king, that you aM re a Graf." On the next day the torn cat went, as he had said, well booted to hunting again, and brought the king a rich catch. So it went all days, and the tom cat brought gold home all days, and was so popular as one by the king, that he was allowed to come in and go out and prowl around in the palace, where he wanted. One time the tom cat stood in the king's kitchen by the stove and warmed himself, thereon came the coach man and cursed: "I wish king and the princess were at the executioner! I wanted to goM to Wirtshaus and drink once and play cards, there I should drive them spazieren at the lake." As the tom cat heard that, he snuck home and told his Herrn: "If a Graf you want to be and become rich, so come outside with me to the lake and bathe yourself therein." The miller did not know, what he should say to that, but ollowed the tom cat, went with him, undressed splinter naked and sprang into the water. But the tom cat took his clothes, carried them away and hid them. No sooner was he finished with that, tM hereon came the king driving by; the tom cat immediately began, pathetically to lament: "Ach! All merciful king! Mein Herr, bathed himself here in the lake, thereon a thief came and stole his clothes, that lay on the shore, now the Herr Graf is in the water and can not come out, and if he stays in longer he will calch cold and die." When the king heard that, he called halt and one of his people had to chase back and of the king's clothes bring hack. The Herr Graf put on the magnificent clothes, and because tM for the partridges, that he thought to have received from him, held his worth, so he had to sit with them in the carriage. The princess was also not upset over it, because the Graf was young and handsome, and she liked But the tom cat went ahead and came to a large grass field, where over a hundred people were making hay. "Who does this grass field belong to, you people?" said the tom cat. - "The great magician." - "Listen, the king will soon drive by, when he asks, who the M grass field belongs to, so answer: the Grafen; and if you do not do that, you will all be struck dead." Thereon the tom cat went further and came to a grain field, so large, that no one could oversee it, there stood more than two hundred people and cut the grain. "Who's grain is this you people?" - "The magician." - "Listen, the king will drive by now, when he asks, who the grain belongs to, so answer: the Grafen; and if you do not do that, vou will all be struck dead." - Finally the tom cat came to a magnifM forest, there stood more than three hundred people, felled the big oaks and made wood. - "Who's forest is this, you people?" - "The magician." - "Listen, the king will drive by now, when he asks, who the forest belongs to so answer: the Grafen; and if you do not do that, you will all be killed." The tom cat went still furlher, the people all looked after him, and because he looked so wonderly, and as a human walked in the boots, they were afraid of him. He soon came to the magicians palace, stepped ldly in and in front of him. The magician looked at him contemptuously, and asked him, what he wanted. The tom cat made a Reverenz and said: "I have beard, that vou could transform yourself into every animal you chose by your own will; what a hound, fox, or even wolf concerns, that I will well believe, but of an elephant, that seems to me quite impossible, and therefore I have come to convince myself." The magician said proudly: "That is a trifle to me," and in that wink-of-an-eye was transformed into phant. "That is much, but also in a lion?" - "That is also nothing," said the magician and stood as a lion in front of the tom cat. The tom cat made as if startled, and cried: "That is unbelievable and unheard of, the same I would never had dreamt of coming into my thoughts; but more still, all else, it would be, if you could transform yourself into such a small animal, as a mouse is, you can certainly do more, than any other magician in the world, but that will be certainly too high for you. The magician waM s very friendly from the sweet words and said: "O'ja, dear cat-let, that I can also," and sprang as a mouse around the room. The tom cat was after him, caught the mouse with one jump and ate him up. But the king was still driving spazieren with the Grafen and the princess, and came to the large field. "Who does the hay belong to?" asked the king - "The Herr Grafen" - cried all, as the tom cat had commanded them. - "Thou have a pretty piece of land, Herr Graf," said he. Thereafter they came to the large graM in field: "Who does the grain belong to, you people?" - "The Herrn Grafen." - "Ei! Herr Graf! large, big estates!" - "Thereon to the forest: "who does the wood belong to, you people?" - "The Herrn Grafen." - The king was astonished even more and said: "Thou must be a rich man, Herr Graf, I do not believe, that I have such a magnificent forest." Finally they came to the palace, the tom cat stood on top of the stairs, and as the wagon stopped below, he sprang own, opened the door and said: "Herr King, thou comM est to the palace of my Herr, the Graf, that this honors him and makes him happv his life day long." The king stepped out and marveled at the magnificent building, that was almost larger and more beautiful, than his own palace; but the Graf led the princess up the stairs into the hall, that was shimmering with gold and precious stones. Thereon the princess was promised to the Graf, and when the king died, he was king, but the booted tom cat became first minister. Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5h! <svg enable-background="new 0 0 268.102 422.838" height="422.838" viewBox="0 0 268.102 422.838" width="268.102" xmlns="http://www.w3.org/2000/svg"><path d="m247.339 112.01c-11.026-24.047-26.398-45.97-45.689-65.159-32.838-32.668-65.195-45.893-66.557-46.439l-1.026-.412-.016.006-.016-.006-1.025.412c-1.362.547-33.719 13.771-66.558 46.439-19.29 19.19-34.662 41.112-45.688 65.159-13.778 30.046-20.764 63.49-20.764 99.402 0 35.916 6.986 69.359 20.764 99.406 11.026 24.047 26.398 45.972 45.688 65.162 32.839 32.667 65.196 45.8M 92 66.558 46.439l1.042.419 1.042-.419c1.362-.547 33.719-13.771 66.557-46.439 19.291-19.19 34.663-41.114 45.689-65.162 13.778-30.047 20.763-63.491 20.763-99.406-.001-35.912-6.986-69.356-20.764-99.402z" fill="#fff"/><path d="m134.051 3.014c-.204.083-131.251 52.857-131.251 208.402 0 155.551 131.046 208.326 131.251 208.408.205-.082 131.251-52.857 131.251-208.408 0-155.545-131.046-208.319-131.251-208.402z"/><path d="m134.051 26.047c-.204.072-127.144 44.866-127.144 185.37 0 140.507 126.94 185.3 127.145 185.373.205-.072 1M 27.144-44.865 127.144-185.373-.001-140.504-126.94-185.298-127.145-185.37z" fill="#fff"/><path d="m124.482 207.521c-24.8-13.391-42.014-40.045-45.196-70.332-3.153-29.986 6.516-56.502 29.522-80.891-72.928 41.123-53.614 95.11-44.185 112.219 12.865 23.35 35.591 38.068 59.859 39.004z" fill="#eb6a0a"/><path d="m134.051 289.406c-38.504 0-74.251-5.583-103.858-15.129 28.217 78.876 103.829 99.376 103.858 99.385.029-.008 75.64-20.508 103.857-99.385-29.605 9.547-65.353 15.129-103.857 15.129z"/><path d="m226.955 125.725c-1.075 5M 0.39-42.256 90.91-92.903 90.911-50.647-.001-91.829-40.521-92.903-90.911-11.399 22.051-21.411 49.816-21.411 84.588 0 2.025.028 4.025.08 6.003 31.449 11.729 71.12 18.726 114.234 18.726s82.785-6.996 114.234-18.726c.052-1.979.08-3.979.08-6.003 0-34.772-10.013-62.537-21.411-84.588z" fill="#eb6a0a"/><path d="m147.254 113.838c-3.327-8.115-7.772-15.507-13.203-21.998-5.43 6.49-9.876 13.883-13.203 21.998-6.238 15.229-8.25 32.032-5.808 48.593 2.403 16.313 8.953 31.221 18.943 43.166.023-.027.044-.056.067-.083.023.027.044.056.0M 67.083 9.99-11.945 16.54-26.854 18.942-43.166 2.444-16.561.433-33.364-5.805-48.593z" fill="#eb6a0a"/><path d="m143.62 207.521c24.801-13.391 42.014-40.045 45.197-70.332 3.153-29.986-6.517-56.502-29.522-80.891 72.928 41.123 53.614 95.109 44.186 112.218-12.866 23.351-35.592 38.069-59.861 39.005z" fill="#eb6a0a"/><path d="m134.051 50.892c-33.751 18.099-47.866 52.561-47.868 78.372 0 29.552 13.663 56.642 35.914 71.358-16.363-26.296-19.103-60.47-7.052-89.873 3.634-8.873 8.496-16.953 14.445-24.043l4.562-5.023 4.561 5.023c5M .95 7.09 10.811 15.17 14.445 24.043 12.051 29.403 9.311 63.577-7.052 89.873 22.251-14.716 35.914-41.806 35.914-71.358-.003-25.811-14.118-60.273-47.869-78.372z"/><path d="m113.694 279.299c-.014-.027-1.452-2.734-2.08-4.304-.001.062-14.063-33.717-14.063-33.78-.416-1.01-2.634-1.22-3.306-1.265-1.512-.098-2.36.146-2.517.739.01.034-11.797 35.188-11.797 35.118-.141.458-.089.902.147 1.259.122.184.409.505.937.579 1.414.2 2.828.391 4.241.575.745.096 1.177-.17 1.398-.868.007-.021 2.459-9.431 2.459-9.434.03-.083.086-.113.225-.0M 98 3.795.444 7.589.833 11.38 1.167.097.009.197.072.22.104.001.008.004.016.005.024.007.014.012.029.018.043.721 1.855 1.44 3.708 2.156 5.559-.005-.008 1.605 4.417 1.605 4.417.286.754.858 1.195 1.617 1.252 2.152.163 4.303.307 6.452.431.474.029.802-.108.975-.404.118-.201.201-.552-.072-1.114zm-23.526-15.124c1.283-4.307 2.582-8.62 3.895-12.942 1.004 2.505 5.067 12.711 5.54 13.905-3.143-.282-6.289-.604-9.435-.963z"/><path d="m211.772 272.246c-.009-.024-1.166-2.383-1.627-3.808.001.06-10.445-30.512-10.448-30.572-.309-.917-2M .538-.579-3.214-.458-1.523.275-2.412.735-2.639 1.374.015.037-15.97 38.669-15.972 38.597-.194.5-.194.94.005 1.241.103.156.354.407.883.347 1.41-.161 2.822-.331 4.233-.507.748-.093 1.215-.477 1.521-1.24.009-.024 3.572-10.192 3.571-10.197.041-.089.103-.137.238-.156 3.807-.517 7.614-1.089 11.427-1.716.098-.017.19.022.212.05.001.007.001.014.002.022.004.014.008.027.014.04.521 1.691 1.039 3.381 1.556 5.069-.003-.006 1.129 4.053 1.129 4.052.205.689.738.987 1.504.849 2.169-.39 4.341-.796 6.515-1.223.479-.094.83-.317 1.039-.6M 6.14-.232.267-.61.051-1.104zm-22.189-9.284c1.795-4.688 3.604-9.384 5.431-14.091.735 2.285 3.697 11.584 4.042 12.672-3.161.51-6.318.984-9.473 1.419z"/><path d="m135.777 261.206c4.025-5.715 8.106-11.49 12.238-17.326.312-.439.39-.897.208-1.251-.16-.32-.502-.496-.941-.484-1.468.043-2.938.081-4.406.108-.685.014-1.066.126-1.521.764-.007.031-7.387 11.216-8.696 13.187-2.687-4.305-5.399-8.638-8.136-12.996.009.017.019.033.028.049-.349-.695-.973-1.089-1.761-1.112-2.225-.067-4.449-.15-6.675-.253-.488-.022-.819.115-.98.417-.167M .304-.108.689.175 1.144.008.056 11.431 17.66 12.412 19.134-3.858 5.614-7.665 11.17-11.422 16.667-.283.415-.339.866-.154 1.235.167.332.499.537.917.556 1.367.064 2.731.122 4.099.172.666.024 1.083-.076 1.496-.686.01.006 6.985-10.917 8.251-12.907 2.736 4.301 5.446 8.574 8.128 12.818-.011-.019-.021-.038-.031-.057.323.684.913 1.054 1.665 1.044 2.008-.029 4.016-.075 6.022-.137.466-.014.788-.182.955-.495.171-.318.127-.7-.136-1.143-3.856-6.089-7.766-12.238-11.735-18.448z"/><path d="m183.373 240.745c.055-.312-.013-.579-.194-M .775-.245-.268-.68-.369-1.293-.299-9.388 1.063-18.769 1.807-28.137 2.232-.608.027-1.055.198-1.322.509-.197.226-.283.506-.25.811-.002-.031.131 2.751.131 2.752.042.411.174.681.405.855.318.241.722.208.997.16.06 0 6.414-1.07 9.483-1.299.1-.008.328.206.317.569 0 .001-.404 14.65-.404 14.65 0-.005-.642 18.265-.64 18.266-.026.822.447 1.278 1.263 1.216 1.77-.133 3.54-.279 5.311-.436.819-.073 1.327-.607 1.36-1.429.001-.001.686-18.266.686-18.266 0 .004.661-14.656.661-14.656.015-.366.261-.615.361-.625 3.073-.26 9.388-.2 9.451-M .209.27.002.674-.027 1.012-.32.245-.21.395-.503.463-.893.004-.031.343-2.846.339-2.813z"/><path d="m233.516 230.674c-4.607 1.082-9.209 2.086-13.804 3.016-.864.176-1.426.768-1.501 1.59-.001.002-1.614 18.29-1.614 18.29 0-.002-1.739 18.31-1.739 18.31-.077.824.373 1.212 1.2 1.04 1.792-.375 3.585-.763 5.379-1.162.83-.186 1.375-.789 1.458-1.611 0-.003 1.389-14.419 1.389-14.419.024-.235.41-.607.7-.673 1.121-.251 2.243-.507 3.367-.768 9.785-2.279 16.432-8.533 17.324-15.809 1.007-8.24-5.628-9.318-12.159-7.804zm-7.49 20.71c-.M 229.052-.459.104-.688.155-.278.063-.614-.193-.588-.449.479-4.769.958-9.536 1.438-14.304.048-.486.58-1.018 1.132-1.142.318-.07.638-.141.957-.212 6.81-1.537 9.35-.137 8.762 5.084-.662 5.856-4.06 9.293-11.013 10.868z"/><path d="m73.269 239.007c-.056-.821-.603-1.388-1.461-1.518-1.861-.285-3.723-.579-5.583-.889-.863-.142-1.338.261-1.275 1.084 0 0 2.529 32.575 2.529 32.576.041.52-.362.898-.861.81-1.428-.251-2.854-.511-4.282-.777-1.764-.327-4.661-1.3-6.755-2.066-.997-10.936-1.992-21.874-2.989-32.811-.037-.414-.191-.766-.4M 62-1.049-.261-.272-.61-.454-1.038-.54-1.873-.376-3.744-.763-5.617-1.165-.428-.092-.756-.049-.975.124-.226.177-.318.478-.276.892 1.095 10.943 2.19 21.886 3.286 32.828-2.039-.118-4.865-.369-6.635-.798-1.438-.345-2.879-.699-4.32-1.06-.503-.125-.998-.695-1.057-1.213 0-.001-3.698-32.633-3.698-32.633-.094-.824-.67-1.444-1.541-1.66-1.885-.469-3.771-.949-5.656-1.444-.871-.228-1.333.125-1.232.949 0 .004 4.481 36.661 4.481 36.66.102.825.661 1.454 1.497 1.681 15.134 4.104 30.208 7.334 45.205 9.692.821.129 1.279-.285 1.224-1.1M 09-.002.001-2.509-36.562-2.509-36.564z"/><g fill="#fff"><path d="m116.48 316.42-.03-6.246c0 .006.03-6.264.03-6.264 0-.357-.226-.569-.597-.569h-2.199c-.495 0-.597.306-.597.569l.027 6.27c0-.006-.027 6.24-.027 6.24 0 .377.22.596.597.596h2.199c.367.001.597-.229.597-.596z"/><path d="m124.418 303.119c-3.235 0-5.406 1.72-5.406 4.282 0 2.2 1.489 4.417 4.829 4.417 1.597 0 2.148-.291 2.784-.629.059-.031.127-.063.186-.097-.081 2.435-2.213 4.493-5.03 4.818.008-.002.015-.002.026-.002-.264 0-.488.209-.488.457 0 .01 0 .019.004.02M 4l.052.526c.003.01.003.021.008.03.056.224.236.375.45.375h.358c4.796-.056 8.021-3.165 8.021-7.745 0-1.943-.565-6.456-5.794-6.456zm.193 6.987c-1.79 0-2.431-1.512-2.431-2.926 0-2.175.978-2.457 1.828-2.457 2.514 0 2.785 2.699 2.785 3.859 0 .912-.878 1.524-2.182 1.524z"/><path d="m139.132 308.962c.961-.853 1.49-1.919 1.49-3.046 0-1.99-1.565-3.041-4.525-3.041-1.61 0-2.829.242-3.956.793-.024.011-.046.026-.063.044-.005.004-.012.011-.012.011-.068.064-.262.248-.154.521.005.008.251.583.251.583.045.109.138.2.261.246.137.055.29M 9.046.421-.017.615-.269 1.221-.499 2.315-.499.702 0 1.88.2 1.88 1.524 0 1.546-1.126 2.674-2.868 2.871-.011 0-.021 0-.033.005-.214.054-.345.246-.345.506v.071c-.001.178-.007.551.37.603.134.026.92.011 1.251.001.779-.013 1.536.283 2.069.807.484.474.741 1.083.741 1.762 0 2.144-1.21 3.146-3.805 3.146l-.253.001c-.407.001-.824.006-1.21-.081-.112-.027-.235-.011-.335.051-.097.057-.167.149-.195.264-.001.005-.111.502-.111.502-.001.016-.007.031-.007.049 0 .355.216.45.313.476.7.249 3.388.258 3.696.258 2.506 0 5.435-1.217 5.435-4M .636-.002-1.739-.995-3.147-2.621-3.775z"/><path d="m150.186 308.563c-1.557 0-2.169.306-2.819.63l-.185.09c.046-2.301 1.682-4.727 4.105-4.727.059 0 .153.004.264.007.369.011.667.014.812-.008.012-.001.029-.004.042-.011.32-.105.354-.327.354-.416v.026l.053-.496c.003-.01.003-.018.003-.026 0-.377-.275-.46-.394-.481-.48-.122-1.009-.118-1.523-.115l-.246.002c-4.509 0-6.867 3.88-6.867 7.718 0 1.938.566 6.451 5.795 6.451 3.251 0 5.435-1.731 5.435-4.307.001-2.632-1.895-4.337-4.829-4.337zm-.193 7.097c-2.49 0-2.758-2.738-2.758-3.9M 14 0-.909.854-1.495 2.179-1.495 2.02 0 2.322 1.798 2.322 2.867 0 2.24-.883 2.542-1.743 2.542z"/><path d="m147.63 334.214c.703-.699 1.169-1.164 1.169-1.164.336-.336.328-.747-.023-1.098l-2.282-2.283c-.351-.354-.763-.362-1.099-.025 0 0-.462.469-1.164 1.169l-4.082-4.086c-.252-.25-.497-.367-.726-.355-.169.011-.317.09-.427.233.012-.014-3.078 3.23-3.078 3.23-.147.19-.204.36-.185.533.033.236.204.397.333.499.029.021 2.957 2.338 4.227 3.606.039.04.042.229-.105.379 0 0-4.828 4.876-6.176 6.219-1.349-1.343-6.174-6.219-6.174-6.2M 19-.15-.15-.146-.34-.105-.379 1.269-1.269 4.193-3.587 4.226-3.606.127-.102.299-.261.33-.497.021-.173-.037-.343-.172-.518-.011-.015-3.101-3.261-3.09-3.247-.107-.143-.254-.222-.424-.233-.231-.013-.472.105-.726.358l-4.085 4.085c-.695-.701-1.161-1.17-1.161-1.17-.336-.336-.748-.328-1.099.025l-2.28 2.283c-.353.351-.362.761-.027 1.098 0 0 .466.463 1.171 1.164l-4.088 4.084c-.25.251-.369.496-.356.727.009.167.089.314.232.424-.015-.013 3.23 3.076 3.23 3.076.188.151.358.204.532.183.237-.026.398-.2.498-.33.022-.028 2.337-2.955 M 3.607-4.225.04-.04.232-.045.38.104 0 0 4.875 4.826 6.217 6.171-4.554 4.539-10.228 10.192-10.228 10.192-.335.336-.325.748.024 1.097l2.283 2.281c.352.354.765.364 1.098.027 0 0 5.649-5.666 10.188-10.22 4.538 4.551 10.188 10.22 10.188 10.22.336.336.747.328 1.098-.024l2.282-2.283c.351-.351.361-.762.024-1.098 0 0-5.67-5.653-10.225-10.194 1.342-1.345 6.215-6.169 6.215-6.169.149-.147.34-.144.381-.104 1.267 1.269 7.262 5.171 8.096 4.374.785-.747-4.442-8.314-4.442-8.314z"/></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! $" &0P40,,0bFJ:Ptfzxrfpn <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:B623F507ACBD11EDA6F588013417DE43" xmpMM:InstanceID="xmp.iid:B623F506ACBD11EDA6F588013417DE43" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:34a5d12d-353a-f542-8aba-b1c75b943ca8" stRef:documentID="adobe:docid:photoshop:e0d05554-da0b-ae46-acc2-17e585f02175"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c067 79.157747, 2015/03/30-23:40:42 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:exif="http://ns.adobe.com/exif/1.0/"> <xmpMM:DocumentID>adobe:docid:photoshop:f9e10e51-ab4b-11ed-a616-fe33a7197b7f</xmpMM:DocumentID> <xmpMM:InstanceID>xmp.iid:0ab72e05-0cd2-e849-9e3d-48c735443d8b</xmpMM:InstanceID> <xmpMM:OriginalDocumentID>DB49D0439357658641337A71F3BC6F0A</xmpMM:OriginalDocumentID> <rdf:Seq> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:f65e8e8d-8b7e-9e4e-a57d-5f8285b8b9b1</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="ResoM <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEM vt:instanceID>xmp.iid:9c7579d8-bada-be4c-9e41-fb0d6fc17452</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:80602eee-3e3b-da41-9973-0fe676b25a32</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/png to application/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="ResourM <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/png to application/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:e60d0d80-c111-e748-a84e-c9db7d43d079</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <stEvt:softwareAgent>Adobe PhotM oshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:c15b5456-3ebf-8441-8973-38869e8549a9</stEvt:instanceID> <stEvt:when>2023-02-13T11:10:56+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changedM </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from application/vnd.adobe.photoshop to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from application/vnd.adobe.photoshop to image/png</stEvt:parameters> </rdf:M <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:0ab72e05-0cd2-e849-9e3d-48c735443d8b</stEvt:instanceID> <stEvt:when>2023-02-13T11:10:56+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrM om rdf:parseType="Resource"> <stRef:instanceID>xmp.iid:c15b5456-3ebf-8441-8973-38869e8549a9</stRef:instanceID> <stRef:documentID>adobe:docid:photoshop:9f9f6bf8-ab00-11ed-bc9c-fe399e645a46</stRef:documentID> <stRef:originalDocumentID>DB49D0439357658641337A71F3BC6F0A</stRef:originalDocumentID> </xmpMM:DerivedFrom> <dc:format>image/png</dc:format> <photoshop:ColorMode>3</photoshop:ColorMode> <xmp:CreateDate>2023-02-12T23:06:35+08:00</xmp:CreateDatM <xmp:ModifyDate>2023-02-13T11:10:56+08:00</xmp:ModifyDate> <xmp:MetadataDate>2023-02-13T11:10:56+08:00</xmp:MetadataDate> <xmp:CreatorTool>Adobe Photoshop CC 2015 (Windows)</xmp:CreatorTool> <tiff:ImageWidth>3000</tiff:ImageWidth> <tiff:ImageLength>3000</tiff:ImageLength> <tiff:BitsPerSample> <rdf:Seq> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> </rdf:Seq> </tiff:BitsPeM <tiff:PhotometricInterpretation>2</tiff:PhotometricInterpretation> <tiff:Orientation>1</tiff:Orientation> <tiff:SamplesPerPixel>3</tiff:SamplesPerPixel> <tiff:XResolution>720000/10000</tiff:XResolution> <tiff:YResolution>720000/10000</tiff:YResolution> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> <exif:ExifVersion>0231</exif:ExifVersion> <exif:ColorSpace>65535</exif:ColorSpace> <exif:PixelXDimension>1024</exif:PixelXDimension>M <exif:PixelYDimension>1024</exif:PixelYDimension> </rdf:Description> M M M M M M M M M M M M M M M M M L <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! |http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:B8BD1DDCA8B711ED8E74844F077CBDB9" xmpMM:InstanceID="xmp.iid:B8BD1DDBA8B711ED8E74844F077CBDB9" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:e0d18448-e896-5e43-a0da-1b9382b0ded8" stRef:documentID="xmp.did:e0d18448-e896-5e43-a0da-1b9382b0ded8"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDD &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD IjGREFUND:91A9F68B7BFF2BC7E413FB3CB90BDBFC6CAA4AB7472D761D2C69F3D66134B13A IjGREFUND:C828B22752F39AED045CB2AB4D6381EAB4F5386E364A93938909FDE906EE7B30 FjDOUT:AA725F02A026B5467DD9AD09CA681DFF7CE410EDD44BC3B5FEB3FD0171E43C7F FjDOUT:F51C7BF1EE732C91BA6AB7F8460D87DEAC2A3F246C7CD834F40A543848E708CF iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >Brown Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternM al_URL>https://token.thesaudisnft.com/4252</metadata:External_URL> <metadata:Name>The Saudis #4252</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> metadata:External_URL>https://token.thesaudisnft.com/4266</metadata:External_URL> <metadata:Name>The Saudis #4266</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>#EpS R\}GOk.26,03%'%$& C( }zu:?K25E57?049+.,@/#!" QFbCJ`@FY;BY:@P[QH15=><5') ymhb]]bPIS5:MMMG-/>83;9<9L>M ~}fj{vvyf[xttobcjvoh efgZUkVTU:SCEP{8Pa2IDCA^*@ DjB=:BNB.BNB:bnb16pyjlgs05yz9tv3lq0hvua7st92e93jxl87hnk:96793436:te:0 LjJ=:BNB.BUSD-BD1:bnb1acv0ckhcnxgzej0kjg76hdujesfz8yryhykgg5:31250233739:te:0 FjDOUT:965C550B42D2377EC74DEA50F1D2DA09C55217C68B204338DA21128737BF1A24 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "axe"}]} <svg viewBox="-21 -21 42 42" height="800" width="800" xmlns="http://www.w3.org/2000/svg"> <radialGradient fy=".2" fx=".2" r=".5" cy=".2" cx=".2" id="b"> <stop stop-opacity=".7" stop-color="#fff" offset="0"></stop> <stop stop-opacity="0" stop-color="#fff" offset="1"></stop> </radialGradient> <radialGradient r=".5" cy=".5" cx=".5" id="a"> <stop stop-color="#ff0" offset="0"></stop> <stop stop-color="#ff0" offset=".75"></stop> <stop stop-color="#ee0" offset=".95"></stoM <stop stop-color="#e8e800" offset="1"></stop> </radialGradient> <circle stroke-width=".15" stroke="#000" fill="url(#a)" r="20"></circle> <circle fill="url(#b)" r="20"></circle> <ellipse ry="4" rx="2.5" cy="-7" cx="-6"></ellipse> <path d="M10.6 2.7a4 4 0 0 0 4 3" stroke-width=".5" stroke-linecap="round" stroke="#000" fill="none"></path> <g transform="scale(-1 1)"> <ellipse ry="4" rx="2.5" cy="-7" cx="-6"></ellipse> <path d="M10.6 2.7a4 4 0 0 0 4 3" stroke-width=".5" stroke-liL necap="round" stroke="#000" fill="none"></path> <path d="M-12 5a13.5 13.5 0 0 0 24 0 13 13 0 0 1-24 0" stroke-width=".75" stroke="#000" fill="none"></path> {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dragon wings"}]} text/plain;charset=utf-8 By the side of a wood, in a country a long way off, ran a fine stream of water; and upon the stream there stood a mill. The miller close by, and the miller, you must know, had a very beautiful daughter. She was, moreover, very shrewd and clever; and the miller was so proud of her, that he one day told the king of the land, who used to come and hunt in the wood, that his daughter could spin gold out of straw. Now this king was very fond of money; and whM en he heard the miller his greediness was raised, and he sent for the girl to be brought before him. Then he led her to a chamber in his palace where there was a great heap of straw, and gave her a spinning-wheel, and said, be spun into gold before morning, as you love your life. that the poor maiden said that it was only a silly boast of her father, for that she could do no such thing as spin straw into gold: the chamber door was locked, and she was left alone. She sat down in one corner of the room, and began to bewail her hard fate; when on a sudden the door opened, and a droll-looking little man hobbled in, and said, Good morrow to you, my good lass; what are you I must spin this straw into gold, and What will you give me, said the hobgoblin, replied the maiden. He took her at her word, and sat himself down to the wheel, and whistled and sang: Round about, round about, Reel away, reel away, Straw into gold! And round about the wheel went merrily; the work was quickly done, and the straw was all spun into gold. When the king came and saw this, he was greatly astonished and pleased; but his heart grew still more greedy of gain, and he shut up the poor s daughter again with a fresh task. Then she knew not what to do, and sat down once more to weep; but the dwarf soon opened the door, and you give me to do your task? The ring on my finger, said she. So her little friend took the ring, and began to work at the wheel again, and whistled and sang: Round about, round about, Reel away, reel away, Straw into gold! till, long before morning, all was done again. The king was greatly delighted to see all this glittering treasure; but still he had not enough: so he took the miller larger heap, and said, All this must be spun tonM you shall be my queen. As soon as she was alone that dwarf came in, and What will you give me to spin gold for you this third time? I have nothing left, Then say you will give me, the first little child that you may have when you are s daughter: and as she knew no other way to get her task done, she said she would do what he asked. Round went the wheel again to the old songM , and the manikin once more spun the heap into gold. The king came in the morning, and, finding all he wanted, was forced to keep his word; so he married the miller daughter, and she really became queen. At the birth of her first little child she was very glad, and forgot the dwarf, and what she had said. But one day he came into her room, where she was sitting playing with her baby, and put her in mind of it. Then she grieved sorely at her misfortune, and said she would give him all kingdom if he would let her off, but in vain; till at last her tears softened him, and he said, I will give you three days grace, and if during that time you tell me my name, you shall keep your Now the queen lay awake all night, thinking of all the odd names that she had ever heard; and she sent messengers all over the land to find out new ones. The next day the little man came, and she began with TIMOTHY, ICHABOD, BENJAMIN, JEREMIAH, and all the names she could remember; but to all and M each of them he said, Madam, that is not my The second day she began with all the comical names she could hear of, BANDY-LEGS, HUNCHBACK, CROOK-SHANKS, and so on; but the little gentleman still said to every one of them, Madam, that is not my name. The third day one of the messengers came back, and said, travelled two days without hearing of any other names; but yesterday, as I was climbing a high hill, among the trees of the forest where the fox and the hare bid each other gM ood night, I saw a little hut; and before the hut burnt a fire; and round about the fire a funny little dwarf was dancing upon one leg, and singing: ll brew, tomorrow bake; For next day will a stranger bring. Little does my lady dream Rumpelstiltskin is my name! When the queen heard this she jumped for joy, and as soon as her little friend came she sat down upon her throne, and called all her court round the fun; and the nurse stood by her side with the baby in her arms, as if it was quite ready to be given up. Then the little man began to chuckle at the thought of having the poor child, to take home with him to his hut in the woods; and he cried out, Now, lady, what is my Can your name be RUMPELSTILTSKIN? Some witch told you that!--some witch told you M the little man, and dashed his right foot in a rage so deep into the floor, that he was forced to lay hold of it with both hands to pull it Then he made the best of his way off, while the nurse laughed and the baby crowed; and all the court jeered at him for having had so much trouble for nothing, and said, We wish you a very good morning, and a merry feast, Mr RUMPLESTILTSKIN! Inscribed by etching.net Support the preservation of knoL wledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 There were once a man and a woman who had long in vain wished for a child. At length the woman hoped that God was about to grant her desire. These people had a little window at the back of their house from which a splendid garden could be seen, which was full of the most beautiful flowers and herbs. It was, however, surrounded by a high wall, and no one dared to go into it because it belonged to an enchantress, who had great power and was dreaded by all the world. One day M standing by this window and looking down into the garden, when she saw a bed which was planted with the most beautiful rampion (rapunzel), and it looked so fresh and green that she longed for it, she quite pined away, and began to look pale and miserable. Then her husband was alarmed, and What ails you, dear wife? some of the rampion, which is in the garden behind our house, I shall The man, who loved her, thought: bring her some of the rampion yourself, let it cost what it will. At twilight, he clambered down over the wall into the garden of the enchantress, hastily clutched a handful of rampion, and took it to his wife. She at once made herself a salad of it, and ate it greedily. It tasted so good to her--so very good, that the next day she longed for it three times as much as before. If he was to have any rest, her husband must once more descend into the garden. In the gloom of evening e, he let himself down again; but when he had clambered down the wall he was terribly afraid, for he saw the enchantress standing before said she with angry look, garden and steal my rampion like a thief? You shall suffer for it! let mercy take the place of justice, I only made up my mind to do it out of necessity. My wife saw your rampion from the window, and felt such a longing for it that she would have died if she Then the enchantress allowed her anger to be softened, and said to him: If the case be as you say, I will allow you to take away with you as much rampion as you will, only I make one condition, you must give me the child which your wife will bring into the world; it shall be well treated, and I will care for it like a The man in his terror consented to everything, and when the woman was brought to bed, the enchantress appeared at once, gave the child the name of Rapunzel, and tookM Rapunzel grew into the most beautiful child under the sun. When she was twelve years old, the enchantress shut her into a tower, which lay in a forest, and had neither stairs nor door, but quite at the top was a little window. When the enchantress wanted to go in, she placed herself beneath it and cried: Let down your hair to me. Rapunzel had magnificent long hair, fine as spun gold, and when she heard the voice of the enchantress she unfastened her braM wound them round one of the hooks of the window above, and then the hair fell twenty ells down, and the enchantress climbed up by it. After a year or two, it came to pass that the king the forest and passed by the tower. Then he heard a song, which was so charming that he stood still and listened. This was Rapunzel, who in her solitude passed her time in letting her sweet voice resound. The king son wanted to climb up to her, and looked for the door of the tower, none was to be found. He rode home, but the singing had so deeply touched his heart, that every day he went out into the forest and listened to it. Once when he was thus standing behind a tree, he saw that an enchantress came there, and he heard how she cried: Let down your hair to me. Then Rapunzel let down the braids of her hair, and the enchantress If that is the ladder by which one mounts, I too will try my fortune, said he, and the next day wheM dark, he went to the tower and cried: Let down your hair to me. Immediately the hair fell down and the king At first Rapunzel was terribly frightened when a man, such as her eyes had never yet beheld, came to her; but the king s son began to talk to her quite like a friend, and told her that his heart had been so stirred that it had let him have no rest, and he had been forced to see her. Then Rapunzel lost her fear, and when he asM ked her if she would take him for her husband, and she saw that he was young and handsome, she He will love me more than old Dame Gothel does yes, and laid her hand in his. She said: I will willingly go away with you, but I do not know how to get down. Bring with you a skein of silk every time that you come, and I will weave a ladder with it, and when that is ready I will descend, and you will take me on your horse. agreed that until that time he should come to her eveM old woman came by day. The enchantress remarked nothing of this, until once Rapunzel said to her: Tell me, Dame Gothel, how it happens that you are so much heavier for me to draw up than the young king is with me in a moment. Ah! you wicked child, cried the enchantress. What do I hear you say! I thought I had separated you from all the world, and yet you have deceived me! In her anger she clutched s beautiful tresses, wrapped them twice round her lM seized a pair of scissors with the right, and snip, snap, they were cut off, and the lovely braids lay on the ground. And she was so pitiless that she took poor Rapunzel into a desert where she had to live in great On the same day that she cast out Rapunzel, however, the enchantress fastened the braids of hair, which she had cut off, to the hook of the window, and when the king s son came and cried: Let down your hair to me. s son ascended, but instead of finding his dearest Rapunzel, he found the enchantress, who gazed at him with wicked and venomous looks. she cried mockingly, your dearest, but the beautiful bird sits no longer singing in the nest; the cat has got it, and will scratch out your eyes as well. Rapunzel is lost to you; you will never see her again. himself with pain, and in his despair he leapt down from the tower. He ife, but the thorns into which he fell pierced his eyes. Then he wandered quite blind about the forest, ate nothing but roots and berries, and did naught but lament and weep over the loss of his dearest wife. Thus he roamed about in misery for some years, and at length came to the desert where Rapunzel, with the twins to which she had given birth, a boy and a girl, lived in wretchedness. He heard a voice, and it seemed so familiar to him that he went towards it, and when he approached, Rapunzel knew him and M fell on his neck and wept. Two of her tears wetted his eyes and they grew clear again, and he could see with them as before. He led her to his kingdom where he was joyfully received, and they lived for a long time afterwards, happy and Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 text/plain;charset=utf-8 One fine evening a young princess put on her bonnet and clogs, and went out to take a walk by herself in a wood; and when she came to a cool spring of water, that rose in the midst of it, she sat herself down to rest a while. Now she had a golden ball in her hand, which was her favourite plaything; and she was always tossing it up into the air, and catching it again as it fell. After a time she threw it up so high that she missed catching it as it fell; and the ballM bounded away, and rolled along upon the ground, till at last it fell down into the spring. The princess looked into the spring after her ball, but it was very deep, so deep that she could not see the bottom of it. Then she began to bewail her loss, and said, Alas! if I could only get my ball again, I would give all my fine clothes and jewels, and everything that I have in the Whilst she was speaking, a frog put its head out of the water, and said, Princess, why do you weep so bitterly? do for me, you nasty frog? My golden ball has fallen into the spring. I want not your pearls, and jewels, and fine clothes; but if you will love me, and let me live with you and eat from off your golden plate, and sleep upon your bed, I will bring you your ball thought the princess, talking! He can never even get out of the spring to visit me, though he may be able to get my ball for me, and thereM fore I will tell him he shall have what he asks. So she said to the frog, bring me my ball, I will do all you ask. Then the frog put his head down, and dived deep under the water; and after a little while he came up again, with the ball in his mouth, and threw it on the edge of the spring. As soon as the young princess saw her ball, she ran to pick it up; and she was so overjoyed to have it in her hand again, that she never thought of the frog, but ran home with it as fast as she cM The frog called after her, Stay, princess, and take me with you as you But she did not stop to hear a word. The next day, just as the princess had sat down to dinner, she heard a strange noise--tap, tap--plash, plash--as if something was coming up the marble staircase: and soon afterwards there was a gentle knock at the door, and a little voice cried out and said: Open the door, my princess dear, Open the door to thy true love here! And mind the words that thou and I said y the fountain cool, in the greenwood shade. Then the princess ran to the door and opened it, and there she saw the frog, whom she had quite forgotten. At this sight she was sadly frightened, and shutting the door as fast as she could came back to her seat. The king, her father, seeing that something had frightened her, asked her what was the matter. There is a nasty frog, the door, that lifted my ball for me out of the spring this morning: I told him that he should live with me heM re, thinking that he could never get out of the spring; but there he is at the door, and he wants to come While she was speaking the frog knocked again at the door, and said: Open the door, my princess dear, Open the door to thy true love here! And mind the words that thou and I said By the fountain cool, in the greenwood shade. Then the king said to the young princess, As you have given your word you must keep it; so go and let him in. She did so, and the frog hopped the room, and then straight on--tap, tap--plash, plash--from the bottom of the room to the top, till he came up close to the table where Pray lift me upon chair, said he to the princess, and let me sit next to you. As soon as she had done this, the frog Put your plate nearer to me, that I may eat out of it. she did, and when he had eaten as much as he could, he said, tired; carry me upstairs, and put me into your bed. unwilling, took him up in her hand, and put him upon the pillow of her own bed, where he slept all night long. As soon as it was light he jumped up, hopped downstairs, and went out of the house. thought the princess, at last he is gone, and I shall be troubled with him no more. But she was mistaken; for when night came again she heard the same tapping at the door; and the frog came once more, and said: Open the door, my princess dear, Open the door to thy true love here! And mind the words that thou and I said By the fountain cool, in the greenwood shade. And when the princess opened the door the frog came in, and slept upon her pillow as before, till the morning broke. And the third night he did the same. But when the princess awoke on the following morning she was astonished to see, instead of the frog, a handsome prince, gazing on her with the most beautiful eyes she had ever seen, and standing at the head He told her that he had been enchanted by aM spiteful fairy, who had changed him into a frog; and that he had been fated so to abide till some princess should take him out of the spring, and let him eat from her plate, and sleep upon her bed for three nights. have broken his cruel charm, and now I have nothing to wish for but that you should go with me into my father s kingdom, where I will marry you, and love you as long as you live. The young princess, you may be sure, was not long in saying is; and as they spoke a gay coach drove up, with eight beautiful horses, decked with plumes of feathers and a golden harness; and behind the coach rode the prince s servant, faithful Heinrich, who had bewailed the misfortunes of his dear master during his enchantment so long and so bitterly, that his heart had well-nigh burst. They then took leave of the king, and got into the coach with eight horses, and all set out, full of joy and merriment, for the prince kingdom, which they reached safely; and tM here they lived happily a great Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 dB.dC>dDNdE^dFndG~dH fb.fc>fdNfe^ffnfg~fh " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c067 79.157747, 2015/03/30-23:40:42 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="httM p://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:exif="http://ns.adobe.com/exif/1.0/"> <xmpMM:DocumentID>adobe:docid:photoshop:4c1f3ff9-ab4b-11ed-a616-fe33a7197b7f</xmpMM:DocumentID> <xmpMM:InstanceID>xmp.iid:896f5985-30fb-cd43-97ce-e678048b9509</xmpMM:InstanM <xmpMM:OriginalDocumentID>DB49D0439357658641337A71F3BC6F0A</xmpMM:OriginalDocumentID> <xmpMM:History> <rdf:Seq> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:f65e8e8d-8b7e-9e4e-a57d-5f8285b8b9b1</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:9c7579d8-bada-be4c-9e41-fb0d6fc17452</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stM <stEvt:instanceID>xmp.iid:80602eee-3e3b-da41-9973-0fe676b25a32</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/png to applicatM ion/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/png to application/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:e60d0d80-c111-e748-a84e-c9db7d43d079</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:abfadfe6-9090-8444-829d-cd626a1ae1ec</stEvt:instanceID> <stEvt:when>2023-02-13T11:05:57+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from application/vnd.adobe.photoshop to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvtM :parameters>converted from application/vnd.adobe.photoshop to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:896f5985-30fb-cd43-97ce-e678048b9509</stEvt:instanceID> <stEvt:when>2023-02-13T11:05:57+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stM </rdf:li> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom rdf:parseType="Resource"> <stRef:instanceID>xmp.iid:abfadfe6-9090-8444-829d-cd626a1ae1ec</stRef:instanceID> <stRef:documentID>adobe:docid:photoshop:9f9f6bf8-ab00-11ed-bc9c-fe399e645a46</stRef:documentID> <stRef:originalDocumentID>DB49D0439357658641337A71F3BC6F0A</stRef:originalDocumentID> </xmpMM:DerivedFrom> <dc:format>image/png</dc:format> <photoshop:ColorMode>3</photoshop:ColorMode> <xmp:CreateDate>2023-02-12T23:06:35+08:00</xmp:CreateDate> <xmp:ModifyDate>2023-02-13T11:05:57+08:00</xmp:ModifyDate> <xmp:MetadataDate>2023-02-13T11:05:57+08:00</xmp:MetadataDate> <xmp:CreatorTool>Adobe Photoshop CC 2015 (Windows)</xmp:CreatorTool> <tiff:ImageWidth>3000</tiff:ImageWidth> <tiff:ImageLength>3000</tiff:ImageLength> <tiff:BitsPerSample> <rdf:Seq> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> </rdf:Seq> </tiff:BitsPerSample> <tiff:PhotometricInterpretation>2</tiff:PhotometricInterpretation> <tiff:Orientation>1</tiff:Orientation> <tiff:SamplesPerPixel>3</tiff:SamplesPerPixel> <tiff:XResolution>720000/10000</tiff:XResolution> <tiff:YResolution>720000/10000</tiff:YResolution> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> <exif:ExifVersion>0231</exif:ExifVersiM <exif:ColorSpace>65535</exif:ColorSpace> <exif:PixelXDimension>1024</exif:PixelXDimension> <exif:PixelYDimension>1024</exif:PixelYDimension> </rdf:Description> M M M M M M M M M M M M M M M M M ML <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:FE68BC9EAB2511ED8A29B2F56D60F78B" xmpMM:InstanceID="xmp.iid:FE68BC9DAB2511ED8A29B2F56D60F78B" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! liTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> mlns:x='adobe:ns:meta/'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:Attrib='http://ns.attribution.com/ads/1.0/'> <rdf:li rdf:parseType='Resource'> <Attrib:Created>2023-02-13</Attrib:Created> <Attrib:ExtId>596f6f71-7184-4378-bb79-97ab60b099b6</Attrib:ExtId> <Attrib:FbId>525265914179580</Attrib:FbId> <Attrib:TouchType>2</Attrib:TouchType> <rdf:Description rdf:about='' xmlns:dc='http://purl.org/dc/elements/1.1/'> <rdf:li xml:lang='x-default'>Astonauts - 12</rdf:li> <rdf:Description rdf:about='' xmlns:pdf='http://ns.adobe.com/pdf/1.3/'> <pdf:Author>ps20183089</pdf:Author> <rdf:Description rdf:about='' xmlns:xmp='http://ns.adobe.com/xap/1.0/'> <xmp:CreatorTool>Canva</xmp:CreatorTool> !22222222222222222222222222222222222222222222222222 <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! text/plain;charset=utf-8 <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! text/plain;charset=utf-8 << Satoshi 10000 NFT Distribution Inscriptions>> NFT Name: Satoshi 10000 NFT (abbreviated as SAT10000 NFT) Total Circulation: 10,000 pieces Main Chain for Release: Bitcoin Blockchain (Ordinals-Inscriptions) Founding Address (BTC): bc1pvlh8xa2dexht3yhcldy0uxtkek2rc2k0mywaxgud42zy4rc4rmqslkg680 0x7e2A6881e856513983D4237A2c4877dAE0E7FE45 Twitter: https://twitter.com/PeterHa41123979 Email: fule888@gmail.com ------------------------------------------------------------------- process is as follows: We call the process of sending Inscriptions text works to the founding address (BTC) "minting". Minters who meet the following conditions will successfully own an NFT: The Inscriptions text work is in TXT format, with two lines: the first line is the minter's BTC wallet address, and the second line is their Ethereum wallet address. The text format is text/plain;charset=utf-8. The first phase will publicly issue SAT10000 NFT with serial numbers #0000~#4999. People can send InscriptionsM text works to the founding address (BTC). If the serial number of the Inscriptions work ends with "0", the address that submitted it will receive the latest numbered NFT. The second phase will publicly issue SAT10000 NFT with serial numbers #6000~#8999. People can send Inscriptions text works to the founding address (BTC). If the serial number of the Inscriptions work ends with "00", the address that submitted it will receive the latest numbered NFT. The third phase will publicly issue SAT10000 NFT with serM ial numbers #9000~#9999. People can send Inscriptions text works to the founding address (BTC). If the serial number of the Inscriptions work ends with "000", the address that submitted it will receive the latest numbered NFT. SAT10000 NFT with serial numbers #5000~#5999 are owned by the founding team and are used to provide initial liquidity and community building. NFTs that cannot be received due to errors in the minter's address will be periodically publicly announced and destroyed. ----------------------M --------------------------------------------- Anti-counterfeiting and NFT Ownership Transfer: All "Satoshi 10000 NFTs" are created from the founding address (BTC). "Satoshi 10000 NFTs" that cannot be traced back to the official founding address (BTC) are considered counterfeit. For every successfully minted "Satoshi 10000 NFT", the BTC wallet address of the minter will receive the latest numbered NFT sent by the founding address (BTC). The "Satoshi 10000 NFT" received by the minter's Ethereum wallet address iM Wancong NFT of the Ethereum chain. As the Bitcoin ordinals NFT trading market is still in its early stages, "Satoshi 10000 NFTs" will be traded on the Ethereum chain at "https://opensea.io/collection/sat10000" Official initial release price: 0.005 BTC (or equivalent in ETH). The ownership of the Satoshi 10000 NFT obtained on the BTC chain and the Ethereum chain is equal. All NFT minting, ownership transfers, and destruction can be publicly queried on both the Ethereum and Bitcoin chains. ------------------------------------------------------- The creators are the biggest supporters of the community. In the future, they will receive more community product airdrops. As various ordinals infrastructure is gradually cultivated, the community will focus on more development around the Bitcoin main chain in the future. ------------------------------------------------------------------- Bitcoin Blockchain (Ordinals-Inscriptions) bc1pvlh8xa2dexht3yhcldy0uxtkek2rc2k0mywaxgud42zy4rc4rmqslkg680 0x7e2A6881e856513983D4237A2c4877dAE0E7FE45 https://twitter.com/PeterHa41123979 text/plain;charset=utf-8 Bitcoin ordinals NFT "https://opensea.io/collection/sat10000" <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! Bj@d00f5b8c2ca74e1804631400b527d6a7f5430897e3dbf591642c30e5cff696e6 FjDOUT:7EA2FBCE3E5437257F8F9F66447E3FA9A4EAE8984B391E310AE2EA2DDD7C7DFB FjDOUT:A40974EA41228F16B462AE2452BB73AF41BBE4B7085FF5695E475B852B3D11DE FjDOUT:230BC2CD2EAEA7AF731B909CB44BD91EEB4DFE1847EABCE9DA4D25399694C3C9 ?=6iL5CS/=L+73*S5")4 -4<yQ6:6-,8"3= JIFCCB CF;xO4uN3?M,e@*4@(8F'V6"%. HIACM5>K/_C/9I%R3!+6 AD743+X=)6D(8>'Z8$L0 dE29A:::~T8)05/1(^;&('&6B /6 Sz~HejJ^^Y\V=HSDHH<E-I>&K5& w~sjkk>PPWOH5>H7HEHF=8<=oM5<L'W:& \:B]:BC:FS:FK:Fk*B{* %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz Aj?=:BNB.BNB:bnb1dpeycxjeh00mxcv60l7gepzmwxyyfd70ywew90:3696474::0 Bj@=:BNB.BNB:bnb1epn7fegrlvw7h49kmnws9lcj3ujwauy74pnm5y:59505782::0 << /Filter /FlateDecode /Length 1942 >> << /Type /Page /Parent 2 0 R /ResouM rces 4 0 R /Contents 3 0 R /MediaBox [0 0 612 792] << /ProcSet [ /PDF /Text ] /ColorSpace << /Cs1 5 0 R >> /Font << /TT2 7 0 R /TT4 9 0 R /TT6 11 0 R >> >> << /N 3 /Alternate /DeviceRGB /Length 2612 /Filter /FlateDecode >> [ /ICCBased 12 0 R ] << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids [ 1 0 R ] >> << /Type /Catalog /Pages 2 0 R >> << /Type /Font /Subtype /TrueType /BaseM Font /AAAAAC+CenturySchoolbook-Bold /FontDescriptor 14 0 R /ToUnicode 15 0 R /FirstChar 33 /LastChar 39 /Widths [ 815 574 389 519 685 556 500 ] >> << /Length 263 /Filter /FlateDecode >> << /Type /FontDescripM tor /FontName /AAAAAC+CenturySchoolbook-Bold /Flags 4 /FontBBox [-36 -195 1011 741] /ItalicAngle 0 /Ascent 986 /Descent -216 /CapHeight 876 /StemV 0 /XHeight 657 /FontFile2 16 0 R >> << /Length1 6856 /Length 5052 /Filter /FlateDecode >> << /Type /Font /Subtype /TrueType /BaseFont /AAAAAE+TimesNewRomanPSMT /FontDescriptor 17 0 R /ToUnicode 18 0 R /FirstChar 33 /LastChar 91 /Widths [ 333 500 333 944 250 250 722 444 278 250 408 500 333 778 500 500 444 500 500 278 500 278 278 722 500 444 500 500 500 500 722 889 389 722 556 722 500 278 389 722 500 500 333 500 333 333 500 500 667 500 500 500 500 500 667 667 556 611 55M << /Length 570 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAE+TimesNewRomanPSMT /Flags 4 /FontBBox [-77 -216 936 695] /ItalicAngle 0 /Ascent 891 /Descent -216 /CapHeight 650 /StemV 0 /Leading 42 /XHeight 625 /FontFile2 19 0 R >> << /Length1 42320 /Length 31230 /Filter /FlateDecode >> << /Type /Font /Subtype /TruM eType /BaseFont /AAAAAG+TimesNewRomanPS-ItalicMT /FontDescriptor 20 0 R /ToUnicode 21 0 R /FirstChar 33 /LastChar 72 /Widths [ 500 500 278 500 250 500 444 722 500 500 389 278 500 500 333 278 389 500 556 444 611 278 444 444 667 500 500 444 333 833 500 250 611 500 611 250 500 << /Length 468 /Filter /FlateDecode >> << /Type /FontDescriptor /FontName /AAAAAG+TimesNewRomanPS-ItalicMT /Flags 68 /FontBBox [-172 -216 924 694] /ItalicAngle -8 /Ascent 891 /Descent -216 /CapHeight 792 /StemV 0 /Leading 42 /XHeiM ght 594 /FontFile2 22 0 R >> << /Length1 23196 /Length 17509 /Filter /FlateDecode >> << /Producer (macOS Version 11.7 \(BM uild 20G817\) Quartz PDFContext) /Creator (Writer) /CreationDate (D:20230215175040Z00'00') /ModDate (D:20230215175040Z00'00') << /Size 24 /Root 13 0 R /Info 23 0 R /ID [ <5559a653d350136075ead1943dfcf70d> <5559a653d350136075ead1943dfcf70d> ] >> CjA=:BNB.BNB:bnb1lk0glslcqldev6p6q69jltvdwgnz7j6w8rd78l:1846551:te:0 DjB=:BNB.BNB:bnb16nvefpza6g8k97c4xct4ff3cfr9scm5qtvrjp0:74383343:te:0 DjB=:ETH.ETH:0x187509d58A7465DFc1b5EA3736e7808A90e96c21:12185895:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pepe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "dragon wings"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "parrot"}]} text/plain;charset=utf-8 In ancient times a giant was once travelling on a great highway, when suddenly an unknown man sprang up before him, and said, "Halt, not one step farther!" - "What!" cried the giant, "a creature whom I can crush between my fingers, wants to block my way? Who art thou that thou darest to speak so boldly?" - "I am Death," answered the other. "No one resists me, and thou also must obey my commands. But the giant refused, and began to struggle with Death. It was a M violent battle, at last the giant got the upper hand, and struck Death down with his fist, so that he dropped by a stone. The giant went his way, and Death lay there conquered, and so weak that he could not get up again. "What will be done now," said he, "if I stay lying here in a corner? No one will die in the world, and it will get so full of people that they won't have room to stand beside each In the meantime a young man came along the road, who was strong and healthy, singing a song,M and glancing around on every side. When he saw the half-fainting one, he went compassionately to him, raised him up, poured a strengthening draught out of his flask for him, and waited till "Dost thou know," said the stranger, whilst he was getting up, "who I am, and who it is whom thou hast helped on his legs again?" - "No," answered the youth, "I do not know thee." - "I am Death," said he. "I spare no one, and can make no exception with thee, but that thou mayst see that I am grateful, IM promise thee that I will not fall on thee unexpectedly, but will send my messengers to thee before I come and take "-Well," said the youth, "it is something gained that I shall know when thou comest, and at any rate be safe from thee for so long." Then he went on his way, and was light-hearted, and enjoyed himself, and lived without thought. But youth and health did not last long, soon came sicknesses and sorrows, which tormented him by day, and took away his not," said he to himself, "for Death will send his messengers before that, but I do wish these wretched days of sickness As soon as he felt himself well again he began once more to live merrily. Then one day some one tapped him on the shoulder. He looked round, and Death stood behind him, and said, "Follow me, the hour of thy departure from this world has come." "-What," replied the man, "wilt thou break thy word? Didst thou not promise me that thou wouldst send thy messengers to me beforM thyself? I have seen none!" "-Silence!" answered Death. "Have I not sent one messenger to thee after another? Did not fever come and smite thee, and shake thee, and cast thee down? Has dizziness not bewildered thy head? Has not gout twitched thee in all thy limbs? Did not thine ears sing? Did not tooth-ache bite into thy cheeks? Was it not dark before thine eyes? And besides all that, has not my own brother Sleep reminded thee every night of me? Didst thou not lie by night as if thou wert alreadyMP The man could make no answer; he yielded to his fate, and went away with Death. From grimmstories.com Inscribed by etching.net Support the preservation of knowledge and culture with Monero (XMR): 8AETE6WsR8phQVvaXiCJsSBhpEMa4R1WC8zpNUg4uQ73eY8henktcJrcsM4SoJEWN2aJ6h3joA6FHHevLBjy8pZi18eq9t5 <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! $" &0P40,,0bFJ:Ptfzxrfpn <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:3520CAE8ACB911EDA6CA8CC798386832" xmpMM:InstanceID="xmp.iid:3520CAE7ACB911EDA6CA8CC798386832" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:34a5d12d-353a-f542-8aba-b1c75b943ca8" stRef:documentID="adobe:docid:photoshop:e0d05554-da0b-ae46-acc2-17e585f02175"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg height="2500" viewBox="0 0 192.756 192.756" width="2500" xmlns="http://www.w3.org/2000/svg"><g clip-rule="evenodd" fill-rule="evenodd"><path d="m0 0h192.756v192.756h-192.756z" fill="#fff"/><path d="m189.922 96.378c0 51.663-41.881 93.544-93.544 93.544-51.662 0-93.543-41.881-93.543-93.544 0-51.662 41.881-93.543 93.543-93.543 51.663-.001 93.544 41.881 93.544 93.543z" fill="#efc031"/><path d="m77.112 41.25v-35.373c-.756.16-1.508.331-2.257.508l-.567.139c-.518.126-1.034.258-1.548.392-.417.111-.833.223-1.247.339-.249M .069-.497.14-.745.21a92.315 92.315 0 0 0 -29.529 14.656v19.129z" fill="#fff"/><path d="m78.136 79.212v34.684l34.684-34.684zm80.555-51.188a88.28 88.28 0 0 0 -1.166-1.04c-.453-.399-.912-.787-1.371-1.176a96.031 96.031 0 0 0 -4.143-3.316v17.528l9.412-9.411a99.127 99.127 0 0 0 -2.732-2.585zm-118.497 51.188h-34.789a92.65 92.65 0 0 0 -1.613 17.22c0 6.35.647 12.596 1.888 18.674h34.515v-35.894zm36.939-36.939h-35.935v35.894h35.935zm-35.935 73.877v34.684l34.684-34.684zm73.876-73.877v34.685l34.686-34.685zm-1.004-36.725a93.428 M 93.428 0 0 0 -17.703-1.692 92.6 92.6 0 0 0 -18.231 1.807v35.566h35.934zm-90.872 147.54.191.246a97.788 97.788 0 0 0 3.793 4.561c.241.273.485.539.729.809a98.533 98.533 0 0 0 2.634 2.785l8.4-8.4zm16.996-130.189a93.366 93.366 0 0 0 -18.097 18.33h18.097z" fill="#cd3529"/><path d="m40.173 116.129h-34.263a92.842 92.842 0 0 0 2.547 9.359l.144.438c.41 1.227.852 2.441 1.312 3.648.134.35.265.701.404 1.049.26.658.527 1.312.802 1.963.358.842.728 1.678 1.11 2.51.248.541.505 1.076.764 1.613.404.832.816 1.66 1.245 2.479.263.506.53M 6 1.006.809 1.506a93.156 93.156 0 0 0 2.159 3.743c.499.818 1.01 1.629 1.537 2.434.216.332.429.666.65.994a90.598 90.598 0 0 0 2.067 2.947c.182.25.362.498.546.746.127.172.265.336.394.508h17.567l.204-.205c.002-2.838.002-34.781.002-35.732zm36.939-36.938h-35.893v35.934h35.688l.205-.205zm36.939-36.939h-35.894v35.935h35.689l.205-.206zm-73.878 0h-18.824a92.322 92.322 0 0 0 -13.374 26.633c-.197.634-.388 1.27-.571 1.91l-.049.166a93.21 93.21 0 0 0 -1.744 7.227h34.562zm110.815-20.555c-.027-.02-.055-.038-.082-.057a91.048 91.048M 0 0 0 -2.682-1.883c-.414-.28-.826-.563-1.244-.837a92.286 92.286 0 0 0 -2.559-1.614 93.984 93.984 0 0 0 -4.004-2.311 96.291 96.291 0 0 0 -3.449-1.771 95.092 95.092 0 0 0 -3.86-1.778 91.194 91.194 0 0 0 -3.176-1.303c-.316-.123-.629-.245-.945-.363a92.063 92.063 0 0 0 -13.893-4.006v35.477h35.688l.205-.205v-19.349z" fill="#fff"/><path d="m162.301 31.48a16151275 16151275 0 0 0 -130.885 130.883c17.429 17.174 40.465 26.645 64.951 26.645 51.047 0 92.576-41.529 92.576-92.576 0-24.486-9.47-47.522-26.642-64.952z" fill="#2b55aM 2"/><path d="m95.88 87.312-2.147 6.613h-8.531l6.9 5.014-2.634 8.111 6.899-5.012 6.9 5.012-2.635-8.111 6.9-5.014h-8.529l-2.637-8.112z" fill="#efc031"/><path d="m94.105 94.95h.372l1.89-5.822 1.893 5.822h6.121c-1.57 1.142-4.951 3.597-4.951 3.597l1.891 5.824-4.953-3.6-4.952 3.6 1.892-5.824-4.953-3.597z" fill="#cd3529"/><path d="m145.299 70.046h-31.248v8.959h21.178v34.993c-5.408-4.787-12.291-7.438-19.539-7.438-16.293 0-29.547 13.256-29.547 29.547s13.254 29.545 29.547 29.545c7.959 0 15.564-3.262 21.109-8.938.002 1.654.00M 2 6.125.002 6.125h14.746v-7.875h-5.736v-84.919h-.512zm-47.828 66.061c0-10.047 8.172-18.221 18.219-18.221 10.045 0 18.219 8.174 18.219 18.221 0 10.045-8.174 18.219-18.219 18.219-10.047 0-18.219-8.174-18.219-18.219z" fill="#efc031"/><path d="m135.74 71.07h9.047v84.918h5.734v5.826h-12.695v-7.676l-.895.996a28.573 28.573 0 0 1 -21.242 9.494c-15.727 0-28.523-12.795-28.523-28.521s12.796-28.521 28.523-28.521a28.387 28.387 0 0 1 19.697 7.904l.867.828v-38.337h-21.18v-6.912zm-39.294 65.037c0 10.611 8.632 19.244 19.244 19.244sLj19.244-8.633 19.244-19.244-8.633-19.244-19.244-19.244-19.244 8.633-19.244 19.244z" fill="#fff"/></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! c/Foundry USA Pool #dropgold/ +PLTEZZMTTHXXLVVJWWKJJ?RQFLLAQPEOODNMCBB9SSG;:1HH>?>565.54-32+*)#DC:A@7<;387/.-&GF</.(980('!FE<=<410)%# @?6,+%&% aJ2WD/DD:nT8jQ6_M4UB.P?, |`@rZ=\L4cM3WF/B:,S>)/$ l>FB6ZI2H>.XC+?5(5+!- Mvb@cW?VO?lL=jX9LE3jT2g Adobe Illustrator 27.2 (Macintosh) 'http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="htM tp://ns.adobe.com/xap/1.0/" xmlns:xmpGImg="http://ns.adobe.com/xap/1.0/g/img/" xmlns:pdf="http://ns.adobe.com/pdf/1.3/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:illustrator="http://ns.adobe.com/illustrator/1.0/" xmp:CreatorTool="Adobe Illustrator 27.2 (Macintosh)" xmp:ModifyDate="2023-02-15T20:03:23Z" xmp:CreateDate="2023-02-15T14:03:14-06M :00" xmp:MetadataDate="2023-02-15T14:03:14-06:00" pdf:Producer="Adobe PDF library 17.00" dc:format="image/jpeg" xmpMM:RenditionClass="default" xmpMM:OriginalDocumentID="uuid:9E3E5C9A8C81DB118734DB58FDDE4BA7" xmpMM:DocumentID="xmp.did:4568b5b5-7b24-449e-a0a3-4f41d2c32991" xmpMM:InstanceID="xmp.iid:5f9afc9b-996e-48dc-9526-ec5b42700789" illustrator:StartupProfile="Basic RGB" illustrator:CreatorSubTool="Adobe Illustrator"> <xmp:Thumbnails> <rdf:Alt> <rdf:li xmpGImg:image="/9j/4AAQSkZJRgABAgEASABIAAD/7QAsUGhvdG9zaG9wIDMM uMAA4QklNA+0AAAAAABAASAAAAAEA
AQBIAAAAAQAB/+4ADkFkb2JlAGTAAAAAAf/bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAoKCwoK
DBAMDAwMDAwQDA4PEA8ODBMTFBQTExwbGxscHx8fHx8fHx8fHwEHBwcNDA0YEBAYGhURFRofHx8f
Hx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8fHx8f/8AAEQgBAAEAAwER
AAIRAQMRAf/EAaIAAAAHAQEBAQEAAAAAAAAAAAQFAwIGAQAHCAkKCwEAAgIDAQEBAQEAAAAAAAAA
AQACAwQFBgcICQoLEAACAQMDAgQCBgcDBAIGAnMBAgMRBAAFIRIxQVEGE2EicYEUMpGhBxWxQiPB
UtHhMxZi8CRygvElQzRTkqKyY3PCNUQnk6OzNhdUZHTD0uIIJoMJChgZhJRFRqS0VtNVKBry4/PE
M 1OT0ZXWFlaW1xdXl9WZ2hpamtsbW5vY3R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo+Ck5SVlpeYmZ
qbnJ2en5KjpKWmp6ipqqusra6voRAAICAQIDBQUEBQYECAMDbQEAAhEDBCESMUEFURNhIgZxgZEy
obHwFMHR4SNCFVJicvEzJDRDghaSUyWiY7LCB3PSNeJEgxdUkwgJChgZJjZFGidkdFU38qOzwygp
0+PzhJSktMTU5PRldYWVpbXF1eX1RlZmdoaWprbG1ub2R1dnd4eXp7fH1+f3OEhYaHiImKi4yNjo
+DlJWWl5iZmpucnZ6fkqOkpaanqKmqq6ytrq+v/aAAwDAQACEQMRAD8A9U4q7FVlx/cSf6jfqyM+
RZR5h4Xnnz2jsVdirsVdirsVej/ln/xybr/jP/xoudR2F/dy/rfoef7X/vB7mYZu3UuxV2KuxV2K
uxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2M KuxV2KuxV2KuxVZcf3En+o36sjPkWUeYeF5589o7FX
Yq7FXYq7FXo/5Z/8cm6/4z/8aLnUdhf3cv636Hn+1/7we5mGbt1LsVdirsVdirsVdirsVdirsVdi
rsVdirsVdirsVdirsVdirsVdirsVdirsVWXH9xJ/qN+rIz5FlHmHheefPaOxV2KuxV2KuxV6P+Wf
/HJuv+M//Gi51HYX93L+t+h5/tf+8HuZhm7dS7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXYq7FXY
q7FXYq7FXYq7FXYq7FWnUOjKejAg/TgIsUkGmKf8q00L/f8Adf8ABx/9U80/8h4e+X2fqdn/ACvl
7o/b+t3/ACrTQv8Af91/wcf/AFTx/kPD3y+z9S/yvl7o/b+t3/KtNC/3/df8HH/1Tx/kPD3y+z9S
/wAr5e6P2/rd/wAq00L/AH/df8HH/wBU8f5Dw98vs/Uv8r5e6P2/rd/yrTQv9/3X/Bx/M 9U8f5Dw9
8vs/Uv8AK+Xuj9v63f8AKtNC/wB/3X/Bx/8AVPH+Q8PfL7P1L/K+Xuj9v6060LQbPRbeSC1eR0kf
mxlKk1oBtxVfDM/SaSOCJjG9+9w9TqZZiDKkyzKcd2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV
2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2
KuxV2KuxV2KuxV2KuxV2KuxV2KuxV2KrZJI4o2kkYJGgLO7EBQoFSST0AxVIv+VheQf+pl0r/pOt
v+a8Vd/ysLyD/wBTLpX/AEnW3/NeKu/5WF5B/wCpl0r/AKTrb/mvFXf8rC8g/wDUy6V/0nW3/NeK
u/5WF5B/6mXSv+k62/5rxV3/ACsLyD/1Mulf9J1t/wA14q7/AJWF5B/6mXSv+k62/wCa8Vd/ysLy
D/1Mulf9J1t/zXirv+VheM Qf+pl0r/pOtv+a8VQ9552/L27haGTzVp6I3Uw6lDC30PHIrj6DirF7z
TfyYvH5XPm6SU9QD5qv+I+Si9oPoxV1ppv5M2bcrbzfJFvUqPNV/xJ6bqb2h+nFWUWfnb8vbSERR
+adPdB0M2pQzN9LySM344qiP+VheQf8AqZdK/wCk62/5rxV3/KwvIP8A1Mulf9J1t/zXirv+VheQ
f+pl0r/pOtv+a8Vd/wArC8g/9TLpX/Sdbf8ANeKu/wCVheQf+pl0r/pOtv8AmvFXf8rC8g/9TLpX
/Sdbf814qi9L80+WNWuGttK1ey1C4RDI8NrcxTOEBALFY2Y0qwFffFU0xV2KuxV2KuxV2KuxV+b+
p/mt+aKaldonnDW1RZpAqjUrsAAMaAD1MVQ3/K2PzT/6nLXP+4lef9VMVd/ytj80/wDqctc/7iV5
/wBVMVd/ytj80/8Aqctc/wC4lef9VMVfYP5I6zq+sf8AOO0l/q99cajM fSW+qCS7u5XnlYK0qqDJI
WY0AoN8VfOv5b/lLpf5gaFo9ppLPpmvcrv67fXcKz2lxwatFaO4MkZihKcVa3FW5Hmdgqr1fQf8A
nCrQknKeYNcvboCKoksYYLWL1WJFAztcSNxFOsa/PsFWe+X/APnFT8m9KtWhuNMl1eViCbm+ncuK
ClFEBgQAnf7OKvNP+ciPyP8AL2g6TY3/AJO8tx2duhcX2oRfWrtkc0ESPBWdfTepHP0zRuO47qvm
XUYtLjhVIjKNRV/34rG1uVZa/AVoykHsR3oaFd1V+naHNeWNzdencuIo2aL6rALheSbt65EiNCgX
flxb5YqgBBIqxySApG/xIxFeQBIqAeo5KR4Yq9L/ACq/IrzP+Ybyao5TRfK0BZrzWrheMdFqXECf
AHKjruEXue2KvQvPWmfkL5O8hWuqeUvLkXnZXu5dLudduru59GK7iQSATLE0If1FYlfSCqQK8sVe
a/l5YaL5M wuvNWmXWmWsF/Lot3e+XktlZBFeWfGf046szN6kSuPjZsVXflF5Y0G40rzf5u8y2S3ui
+WtNJgt5GdEk1G6YR2iEoUJHKtRXwxV35u+WNAt9K8oebvLVmtjo3mXTAZ7aNndI9RtG9K7QF2cg
ciKCvjirX5jWOi+S9X8vaNbaVaz31no9nP5hiug8izX90n1h1ejo6hI5EUcGXFXpnkvRvyD85eQJ
NV81eX4vIzteJpVnrVveXBhmu3jMhMSytKqKigc/VBUV+14KvOPzU/I3zN+Xcq6hIqa35VuCps9Z
t+XplXoUEwUn02YdPiKt2NeirHfL40X65LrGo6euo2tvHLKulRUt4CAKKrTNKr8kJD8QshIG9RUh
V7l/zjD+Vn5e+cdH1258y6RFqV1bXMS28gmIiWCRGZQBbtFSStefIDbjsN8VezH/AJxt/J364pHl
i0+p+mwdDJd+r6vIcSH9fjx48qjjWtN8VfK//OQX5YM 6T5S8x8/L8FxHp0ryrJBLA8KxMsnw+j6rN
JLFxYKJR8JO1a4qyX/nCtWH5qapUEV0Kc7+Bu7TFUH/zkf8AmF5+0j85/MOn6V5l1XT7CD6n6Nna
31zDCnOxgduMcbqq8mYsaDqcVea/8rY/NP8A6nLXP+4lef8AVTFV0f5qfmxK4ji83688jfZRdRvC
T8gJMVVJ/wAzvzat6CbzjraMwDBDql1yAPTkolqvjviqj/ytj80/+py1z/uJXn/VTFXf8rY/NP8A
6nLXP+4lef8AVTFXrv8Azi1598861+bFvY6z5i1PUrJrO5c2t5e3E8RZVHFuEjstR22xV4Fq3/HV
vP8AjPJ/xM4qhMVdirsVfcP/ADj6jr/zjTRlKk2+qkVFNi8xBxVg3/OHX5d2WoaXqHm3UW9X6rqE
cWlQpIQYp7ePnNIyjb41mjA70B7HFX1ZiqBk1OK0KxXUnrTlm5/V4nbgh5MhdFMjKOIC17nw7VTzM 
wiaJ3+f3NkcUpbj9X3pD548w2MfkzzBI0ULGKwumjg1OJhbXBSB2aNo2MbSL8JDLUH9eCGohI194
I+9MsMgL/b9z8/dTuvJE3mdJ9OTUItKkYSTvItokokYEsIoUAgjT1KcQWPFcuanoep3Go+X7i+1W
z1RbJLJYxpmoNb2l1PfQzoZHaLVg6tLPG0o9RYiDxPelCq78n/ytX8wNQvfOHnG5Nh5E0Us95dTM
sfrlCZGh9RFjH7XKaQKCSdviaoVZR+cHnW5/MbyAsn5czSW/lHy3WHXPLEcYgnjhViLa7KRk+pbc
F+yP7sirA9VVYL+QFte+YdV1byDLaTXeg+Z7Qx38sMZkFjPBV7S+PZRHL8JqRUNT2xV6P5D/ACo8
k/lV5w0nU/OHnKKXzdFKEsvLmkKZnaS4UwiOUspfjIJCvxJGP8rFU0t9D8lS6JqFvpUclr5XtbZd
es9DtGnE8paQi0uGJFtdTyTQP6jxeM uBGBGEbi9Qq8/8ANd55f0XzjcaJ5hlXXfL1hqY1DUNKjuCY
IluAqSPB6RRg45bwcEMbfAeaFmCrKvPH5S+SvzW83avq/krzrCfNM9wwvtA1VTE4ki/dusTKofhG
qUHFHH+Virzf8/47zRde07yNDZz2WgeVbUW2mCeMx/WpJaPdXw7N68vcGlFHQ1GKvQPyi86Sfl75
AjH5lXZuvKfmTjHonlaWIXM4tnek18Uc1jtaVolDzPxKO7KsJ/PL8nrbyZdWvmTy4/6R8g69xk06
5RjIITIvNYjJ4FfiiY9RUGtDVVmf5V+WPL+iTeXdU8n+eLjS9Y1iGV5zqMUEdnO8aNxtzCXpIOas
jL65Kmh+FuNVXutj+Z+saNrtrpvnmfR4ob9ngFzp0rr9Suo15+leJM7/AASpukwIAPwsBUHFUdrP
mP8AJayttU1e91vTIP0oUXUL62vQLiUxIFRFktpPWFEFOMZ6V23NVXj/AORMnlGM X/nJDzLJ5RgEG
gPocrWfFeKOpurT95GCzni3vQ+IBrirzf/nJfTNDP51+YbrUdYWISfUuVlawSXF0gFjAtWEn1eCh
pXaYmnbFXls+o+WrdyNN0t5xQATalMZDUV+JYrcW6rX+Vy4xVA3Or6hcI0bSCOF93ggRIImPiY4g
iE7eGKoPFXYq7FXuP/OHzWI/NpVlSU3Zsrj6tIrqI1AX94JEKlmrtxowp79lXjOrf8dW8/4zyf8A
EziqExV2Kvpv/nD/APKnRdYF/wCddbtFvBYzi00iCdOUIlVQ8s3Fhxdl5qE/lNT1pRV9Q+Z2lbyr
rnqIEpZ3QSh5VUQtRjsKV8MVeb/84qqE/JXy/wDV7VI0kkv2vJyPTeSUXkgRwAv734AELFhTjTem
yr0/XhdfU4zbXL20izxbxqrF6uBwYEMeNTVuO9BTKc8zGNjny+ezZiiJS35MS1bVrmC+j0mwQfWZ
xRnm5HeUUIoyo1ZAM FZuYNDmg1GolGYxw+o9/n7wOe13buMGCMonJPkO7y/V5KNvqct1dy6NrEEN5
HeRkdKxyo3JyjqqyfC5Y/ZWpIpgw6qRnwZKN/tPS+vcLtOXTxEOOFiv7Pxe1PJdG/IbyToX5lerN
pGoarpRuax+iJ3itWmo8cc1utqwMYRxyZrgED9nN/p5kxo8xt+r7HUZogGxyP4+9gX5saCPNP5wa
V+VXlR+WmaTMbW1b1ZZ1t2uFSa9LcmIHolGLhfCh3GXtLOfzct/LusaLB+TPkLXrfTb3y2VWfQrn
9xHqcgRXEaXlRG06uxZo3pzkavVcVeQ/k15I/M+L82rfSdIjl0TWNOJbV3u42EUNpUCUTxmgljkB
CqvRqihH2gqzH80fzv0LywL/AMlfk7axaJpjTSHVdcs6iS4mYkOts5qyovQOD7R8VAJVeL6Pc39r
Fd6zHO8V/M31azuy5WQzTEGdxIStKREh3rtzHjyCr3LyF55/LuM 4tYdf1rS77Tp9Lv5E0S6tLbT5l
uVtY4Ira3Z5UW4M8MLooihZVYVan2qKpT+deu+VLryXpkXlvSJrfRo71mtp9TQCaFru2LS2dnEKL
HFbGhlVTxEhShO9VXhz39212t4JGS6QoVmQ8HDIAA9RQ8tq1613xV9CflT+d3l/zY2neTfzhtoNY
tYZ0fR9evRV4p1YcEun2LI9AC569JOSkkKsE/NzyN+aE/wCbl5pGrQS6zr+ov6mnPaxt6c9rUiIw
Jv6cUarxK1olDU98Vew/lRbeWtP0Gf8AJLzxr1vqmoa/6v1fSrSk8WlzBS5ia85en6xdeaogIVwd
zy3VeP6Vq/mL8rfN2s+UdQYs9tMYozJdXVrbhtmSZVgdP79OFGboCCTSuKvS/KC32v2t35s01dW8
s6HAAuoKl5Hp9kGQVc3Gozy3t2efqU4RWoAFCACcVejflp+WsKpqsgt00DRNQke4u7OPT5VaYp6g
il+M t6k0jj0jIXThbRU7bYqlv5eWkNp/zlR5ktoEuVgh8vPHHJezS3E8nC8tlZy87O/HkCIxWnALT
bFXn35/flV5i8yfnRqN9a6Zf22lXIthd64bOeeyHp2cY9QND6jtQoEYKnUfeq8P89eRfMXkjzDPo
OvQeldwgMkiBjDKjdJIXZU5p2rTqCMVY/irsVdirsVe1f84h/wDk5bb/AJgbv/iIxV5Bq3/HVvP+
M8n/ABM4qhMVfSH/ADjP/wA4+6F5t0m58z+crC4m04yLHo9sZDDBOq8hLIxjZZWCuAo3Vev2uyr6
O8v6Pat5ruLOzghsPL3lBUs9L0q3QJGbu6gjnkuWVaD4IZhHGKdWkJJJFFU313UI73yr5hMYoLeC
8tyQwarRxMG+zWm+1PvxV5T+Svmafy7/AM406HqMOn3t+6R6jxFhAl08ZF9c8XaFprcuAf2Vep9u
uKsYu/8AnJiOGby7o9rBLJp9kY5PNWpau8VtcM s6Gk8UcTTy0kRpEkMaySOAeFKqco1EDKG3Tf5fr
bcMqlu9YvLOSe8g1zSPRvY5o1KhCoV0ccIpYyGYUfoo5ctvu0GfBLjGSAB8uXkD+ir4tncYc0eDw
5mvxf46O07TdQn1NNT1FEt0gjKwxcgxIVBTkWb9lH5/E1SOm3SOHBOWTxJgAAbfL39Ab3O45MsuW
EYcEN7P46d+2w2WeZX8nvpetajdX7w6toVnNqFzFYXTwzw24hHFZ4FZkIljhHGOdG67DN/pY1G/5
2/6B9gdPnlZru/t/S8Y/5w48qz3tz5m89XJU3pJ07T7iUckFxNSa4Yjbf4ouh6EjvmS0MG83/k15
N0nzFfweZ/zPgttd9Vp75Z9LvfVaSUl2kqCQ3MmtV2PbFXodv+ZX5ap+U8nkp/zXlbV7lTb3XmOX
SdRnm+plifq0YKRuF4HjVpGpVqdRRV5Efy9/JIzJHB+aM12z1+CDy7e8ttz9qVe3gMVSrz/M onlTT
JdO0/R7y8v8ATbKJjPqtxB9WEj3Ef1uKFbcBmRyrgepI1TX7NExVl/5M6rrNh5C816j5fvv0HeaV
aM99fJI863KXEgiRJ7UBvTaPmWgmio4IYEMp2VYH+Z/mfzlrHmR9O80aqNUuPL/LS4JlYNEVtj6b
SKV+00pTk7n4ievSgVQfkbR/J+q6nLa+Z9WutItvT5W91aWjXtZK/YeNWVxUdCAemKstX8vfyTEr
RXH5ozWrpSqzeXb0HffoszH78Veval+Zf5bXX5UweTE/NeVNYtVSCPzFFpOowyyWat/vNKoSRyvC
gJWQFuIr3qq898k/k95O1LzLpieVfzOt7jXVmS40+OHSr0SLJERIrnkRx4kVJagHfFWYf85n+UHt
r/y/5zhCiW5Q6bqMsXwr68NZIWHXcr6g3PRRir2v8q/KMb+VYb7zFrjeatR8xrZaql3cgxk29p6U
1mqwGSRB6LsrMygVZvirscVZM vrWgWmrzWYvkFzYwOzzWMtDBI1AY5HjKt6jRuvwgkLuTQkLRV4p5
Btbmz/5ym1+zuYwktv5bZTKoULMGvbeQT0UKKyB6vts/Ib9Sq93vbwWkSuYZZy7rGEgQu1WPU02C
jqScVfFX/OT/AObOleb9Wg0SPy7Np1/oU00M95qAEd0CSAY1WJ3T0yV5fET4im9VXhJJPXFWsVdi
rsVe1f8AOIf/AJOW2/5gbv8A4iMVePajN6+oXUxiMHqyyP6BJJTkxPCpofh6YqhsVfoh+S15Ppf5
J+W7nzGI9IFpp4M7XDrGkdujMIZJGbiF5w8HNelcVZRZRQXVvf6np8ctpJfyxz/WkKPLcxwpGqlF
m5KiuicApA7tsxriqBn1GXUfIetXU2nNpcpg1BHtHeKRqx+ohctCzJV+PIitR0O+Kvz903z3qeme
WLvRbKWaL69A1nccTD6DW0khllRo2idmd24fvA6svGm4xVCeWvLHmDzbqUM 1vYRtcSW1vLeXlw4kd
Ire3jLu8hjWR6UXioA3JAGKvpvSdL81flFotlpx1q7u7vU7X1LVHe1Gk6ZeTkxwvN66+v6BlNGdA
gVSajKJaeJNjY+X4r4tscxAo7j8fFn+hfnP5M1bzpe+U9Gsb/XtQ09DLBLBNpv1a5WEKOVuzXUEc
hUU4/tADtQ5GGliOe/47hQZSzyPLZiH/ADkF55N7+XHmK00fVFt3gkji1/TLsRpqSSTzRKln6IVe
MCxsz+qpblQBWZeWZLQwHWJ5PLn/ADh3oCWshhuPMGr87hozxb4J55kaoofh+pxb9jiqE8ifmBpH
5sjT/wAvvzLtXu9YlrB5e83WwUXsMlCVS4P+7FNNz3/aFfjCrMPMmt/m15Nis/I/mvWL+0DsYvKn
nbR4mnW4Y0CWt9aorSSM2w+H94p3/eAk4qyj8qfy1/PRrmPV/Ovnq+shPG7R6NHItxOA3wsziZXt
4yKggBHpX9lM hsqjfPf8Azjv+WXmWzvbm/wBb1GDV9HU/pDXr68kupEiWH1gJ/rJ9P0kV+dU49xy2
IxV5JqP5H+brTStf8padpuoNci4SQSpawNp88USokE1rI90kqySFaysI3MYcp05F1XhGvabrtjqd
2mtRTLfrcTQ3ckxLs1zE1JwZKsHZWPxbnFVml69rekljpd/PYl3ilY28jRkyW7+pC3wkbxv8Snsc
VZ1J+ff5wareafHN5tuLJ4uFubpXMERBkLCS4WFeLcedGbhUqN64q9k8sa7+aXnmzuPJ3k3XrvVb
J2EfmT8wdQQpbx0HxQaZCQrDZtmP7xjQ/u1ocVYh55/MLRvyoXUPy/8AyztJLPV4j9X8w+brpR9e
mkA+JLeo+BBXZu3VRX4yqjrSWXzJ/wA4b6m90zT3Hl3WOUTuSzVe4id2LN/k37mu+KvYf+ceZV1z
8rPJ91Lp8kuoaNb3ken6rIyehFIJprYRFVlSVqwha/u+NM P2uQxV6Na+YrkeYrTQ79BHqctiLq4tb
WOSa3jq7KZPrjiEFQY+AUxhqsDuOirzbRv8A1rjXv/AVT/qJtsVe1Yq8T/O38pfN3n+8hgWw0aW0
HOKz1cmaLUbMcGZPUJ5xyxM/wsACRyqq1+IKvkHzh5C1/wAsTSpqemT2CepJFEbwGNmETU5xFlh9
RXG4omKsVxV2KuxV7V/ziH/5OW2/5gbv/iIxV4/qbB9Su2HRppCPkWOKvaf+cdPyrutZnk8z3L2k
VvFPHptkt5EZZEuLgxP9ZhheN4pGW3aT0uewfixBCnFX2TpHlHy/pds8NvaLK85V7u6ua3FxcOjc
1eeaXk8jK+68j8PamKpR+avnWy8o+Rta1W5aWN4bGY2skauB9YfjDAglUUR2llWnelW7HFUi8iaR
pGk/klPaaRrH6fsGs9Qnj1UkM0rXHqyy8iOrLI7A138cVeEfkx+QXkPzD+V8fmzzJ9cu9Q1G5kh0&#xM A;2ytJktyxjkMKQoZPhZ5XRqsxoF8KE4q+nPy88l6H5T8uw2Gl6Lb6GzjndW1vIbhi9TQyXLqjzNx7
t06DbFWFfnv+XnmbzQlte2HmCy0uzsLd4raC/ZreKO+nmQJdfWVEh58R6aAICCSORDsuKsM/KjyF
+aHkbSJtOv8AyidQlR6x32n6hp0EsoqRxaZ0julQLxApLWnYdMVYL+Y/q+VvP17dfmj5Rtj5U86q
kqW2m3AlubWayVUE0U59NzPGstJR8KPy70pir2PRdPsEsPLvm6wvPqGh6vLYGa1sEksLi8utQJhR
7/6vL6B9SWaJ24xclNQG4kgqpdqN1pemeSJ/MOm65f6R5ktV1O3TS55Itaf9IaUk5u4lmuYZphtC
xWbkg4lWYUPEqs5/KXRvJtz5b0/zRpumPHqmoRu97dagXuNQS5LlbuKSeceoCJ1cMqhVruFGKsZ8
9+fYrDzw50oDUNbhgNjaW8qBbSwWEma+M vb6ZyvCFfVtXbiwNEHQMDirWt61oWp6Z+cs+n3aahCui
I0jwOrxNG2kzFfTlTkpDfFuK4qnX54af5wvvId1e+RzcPqs4t0uVs5ZIbuSwDmR1tCKhJizCrcal
OQ60xV88/kTq/wCWmo6/qF/+YY0x0mVjC2sPZsfrAkDFpIzbwFmYE8nZiG6EeCrIPzM8lf8AONOu
XK2nlG7eLzFPI6JH5cX6/CX4lgZLbmE9Pb7UDKo/aNMVeK+bPyf83+XbSK9ktvrVpJqc+h+rAeYb
ULeV4jHGpCu6y+kWQ8fFTuN1Ub+W35r+YNB1byzo+p6xcQ+TdJ1aK+ubOOrIq+qrSEiMF5EWhfhu
K1IFTirLfzK/5yP86J561VvJ2q2sWgmZZLCaKws5GkUxoRIzzwNJyr/NuOh6YqzLQPPHmvzd/wA4
vef9V813z6pLFci0tpXWNCoAtmApGqfZeUNvirK/+cY9f1/Sfyk02vl+71PSZLu6b6M 9ZzW7tCnqk
MXt5pIZCqsCaRcydzTxVesXT3z6jBrulX1hdWuoQRRWrpKitc+lLLOkMDsJkYSwuasG6rUUH2VXn
vl+dZv8AnLXX2VWUL5XCfGpUkpd2ykgHelRse43G2KvZ76xt72AQXAYxiSKWiMyHlDIsq1KkGnJB
UdCNjscVSu/0Of69Je2N1dRXV7LAl1J65dIraEVZIYZfUhj58aMUTmeXXoVVeLfnT5h1rzna3Vp5
OWLWdGtuOjT2nNBFeXmsI8cEyPJ+7pZyJE0cnIAszAGm+KvkPzD5Y8w+XNRfTde064029TrDcxsh
IrTkpOzKezLUHFUrxV2Kvav+cQ//ACctt/zA3f8AxEYq8w8m2FhqvnXQ9Pvz6en3+pWtvdGpIWGa
dUfetdlY4q/SPR7bU7fUdSilCxaRE1vFo1sixIiQpAvPiI/ip6hK0bpTYU3KqF85X0GnWMV/cXF5
a28BmM9xZ0YRoLaV+csM ZD+oKxhUUKWLlQOuKvhfz/wDm/wCfvPEFtod5czXNlc3Ut3Dp7QqFkmuZ
ZfR9DZpjHGs3pxI0jU4g+AVV9OfkXaGz/wCcc5bYvzaODVAzUIHItKWAr2BNAe/XFUq/5xo0vWbr
yV5bvfSEmn6fpN42lvO7+hHqU2q3yM6xqOLN6ICu9eSKaD7ZxV6j+Wep6pLpd5o2qSXN7qGgXUth
c6xcxmJbxwxcSRhviIWN1BNKV+zVaEqpvLp36Vhsb3UdKtl1K0leS1S5YT/ViSVWVSq0MnChIUil
SofuVVtzq1wqvoum3MF55mhtkkk9cMsaVKp604iVgleRdYqqXoQpABZVXzx/zlx5bk1QxXDSvPq2
jaZBeRRRqVja0E8sWozFfi48ZJLSgL1oTStCQqkeuebda0/8lr3SYPVsjB5f8qarpt3FIwJb60qP
Ku9Y3EkKAFKfY8eqqW/nF5/XzDpuuarp13BLo1m0el2N1b2wtWl1WM 99F7+WN1Z/XjMGnv+8NDxlC
7jFUiP5r6r5T8oWvlrRdUOpWttrs+tJewSMytaqI5LKC4DDkqyXQeSaNzy++uKpHe33ma+sPLnkC
yu6XnmeWPUdaeSvqz3+sXCmATzUZ2iNsltNxG3I8jUhaKvT/AMt3sLH8vfzUfTIS+jX9leaJpN6p
pFK+l6TLJJIwrXncRFp/s0rUd8Ve73fmhvLf5FW+u2Vz6lzaeXoZtOmvOJeWVLIPGzqGozkLyZVb
x3pir4z/AD4vxqP5g3NytpbWrR2mnJdmzRYoZLiWzSaSRVAVqMztQtvQCvhirAbO0nu5WigALrHL
MakD4II2lc7+CIcVei3nn6OfyJDolzdTXNxcaKHBkkJCarF5gubszMXNObWUrjl9o1C4q8zxVlPk
3zT5Y0iK5tvMXlW28y2lwyPH6k81ncQlag+nPAeVG2qrAjb3NVXvHna68s6N/wA4nRfoLTJtGtPO
GpRyR6M dcT/WpFKzeoW9UqhKslipBp0IxV7L/AM4++WDpn5T+T3eSaKYWUty0KuVikW/la5UyR/ZY
qrrxbqMVZL51WDRvKz3GmxRWlzDdRfUZ1hjkNvcahci3knjVwVDn609T7nrWmKvNfKcs03/OU2py
zsGmk8nwNKyjiCzT2pYgVNN+2Ks01Oe3078w49O1TUNQaLzFcWt5oQQE29td2MLrcW/qKGEcdxDE
CUf7RL8d9wqjvPMl8dCvbfUn9DRWmtfr99Byipp81yUuYnNXdQsKj1ZRx+FiRx41xVhn5lwwaf8A
mh+XUumKto810tiWt6Rq9s0UhET8Kc0X0xwBrx340qcVeH/n5Ne+XxaeULLT5l06zVmTUNdigmDz
8Yo7hNNku1DLbKIo+PAdSQoVQMVeBSRvG5RxRgSPuNDQjruMVWYq9q/5xD/8nLbf8wN3/wARGKpb
/wA44/lXeeefPUF1JWLRNBkhvdQnKkh2SQNFbKf5M pOJPsoPtir76kdEjZ3YIigszkgBQBUkk7bYq
kbaBb3vlgaM2pSXcxtyF1Z2SW5DzIy/WUNOKtR24ECg7bDFXzT+fGl+aNN86adrdvps+t6D5EjtY
/Wumtp4y0pkuVMllaCERRDnFDyMabRj7XXFXpf5ILMP+cdXeeF4JZrXUZ2R1ZSfX9SUOAwB4uH5L
4qRTbFWJ/wDOP35iatpn5R6ZZR2ka2+ntdqksyMTKrXEkxdCrioBkKdBuDmi13aeTFl4I8JG3f8A
bu7fSaDHkx8UuIfL9Sfflp+Zfm2Pyxw1KWO+uI5WL3l2pMzhkSQGRlZAaB6CvRaDtlWp7XywlURH
7f1tmDszHKNkn7P1J7P56fWI7W6uLGwvYlX1bVpI5HSknFg4BkpvxG9P15RLtvODREft/W3DsrER
YMvs/UjLj8y/MvpH6vb2Rm24+osoXqK1o5PTGPbmW9xH5H9ansjH0Mvs/U8j/PzzprGqaehWBIM 7q
70u905I4o3V5Fur/AE2qNVm/338IzP0PaOTNKiI8+nuke/yDh6zRQxRsE8v0j9bzC88gfn6PL15Y
6loOpPZfU7a0MkoXhFZWMjXCRfaoER25e2bnd1bGNC8m/mR5u0FLHy7ptzq+h6VczMptoUVFubhI
/VZmoruWSKOnM7ADpiFKWeY/LPnXygTpGu2lzpA1FUnazmPATLEzBHZQaMFYtSuFDJ/y68nfmh5n
10a7oun3M0npTQJqSxqkUbPbPbxcCeCKqVCjjsn0ZRPOAajvLubYYidzsHt3lXy1+YPkDyJf6F5g
0W1h8rSaXMl9I8ysZLy8U+qzsj+nFSOY2/qFgKKvzzE1GpzQ+mPXuvbv2Lk4MGKXOXTvrf4hjPnn
zp9d/Lu18mwX8P1C0aPStHQI4lmSKwjVWdeXIv6yOn2QAXpTpleDW5pyAMRy3+dd/dv82zNpcUYk
iXXb5frSDz3+VH5taneavJbeUp5M 4NSvoGtpxEBPHBpsL20VKtVUmSUNQ/wAozPwzmQOIUa39/wCx
wssYgnhNi3ncHl7zV5Q1yMa/o95pjXcF1Zxi7t5Ig/1u1kt/gLgBv73tXLMhIjYYQAJosb9S8vms
7RV9V41Fvaxoo5HnIzhdh8RLyHJsWZT/AJF/m7bwSTz+Vr6OGFWklkZFCqqirMTy6AYqknk3ytD5
m1E6YNQjsb+QD6lHLG7pM25deSA8KKK7jfMXVag4Y8VXHr5ORp8Ayy4bo9HqP5ya1c+Z/MXlL8tN
NWOKw0CGKzjWEMKNIiKWerNy9OCMNX3bMbTa2ZwHLkAHdX472/PpYjMMcL830lZef9VsrOCztrW0
jtraNIYYwklFSNQqgfvOwGaj+XM3dH7f1uz/AJIxd8vs/UgfM/nvXr/RZrf0LUUeGY/DINoJkmP7
Z/kyUO28pNER+39bGXZOMDYy+z9TFPyr1W41T/nJHUrm4VFkHlKNKRggUWe0AM 6ls3mh1EsuPilzs
up1eEY58I7mcfmDHeJ+ZnlG5gjYpJe29ursXWFpUs9TlEbMKjupOx7GnTMxxWUieXzFoKXQ1UafB
fw/ULu2VVZYrsT+jcxxyOIpPVDLJAK/tUIWooVXm35m6hZ2H51fldoNsqBIJOaW7AtSP05beMgmv
2N6VNa0PbFWG/nx5d/ND8wPP2q6d5Z0YahpOiQw6dLKxhpG80a3Uslu1zJFF6zLOI3CfFxVfHZV8
x+ZPLusaBqsthqun3Omzglo4LyF7eQx8iqsEct8J49QzD3OKpXir2r/nEP8A8nLbf8wN3/xEYq9a
/wCcI76d/JvmKxNqqQQaik8d6GBaV5oFV4in2gIhCrA9Dz26HFX0e6I6MjqGRgQykVBB2IIOKqNx
NY2MEt3cPFawRJWe4kKxosaVNXc0AVffpir5P/PK7nsfMutasmr2GtaT540Sa1s5hHbRRW9taXMU
kYSdmEdzJyRwjAM NIPh49Foq9G/IIAf8AONdAQR9W1M7EEVJlJ6AfTiryf8qpIbj8qvUiuXY2drfW
s1tQrGkjSyTljUDkxjkTft9+cr2iCNTy5mJ+4frei0JBwc+QI/Syz8v/AFBpFwshq6XLIf8AYRxq
P1Zg636h7v1uXpfpPvZNmI5KXeYLm4t9IuJLd/SnbhHHLQEoZXWPmAdiV5VFctwxBkLa8pIiaQGi
+V7jzovk+TUJkS6tr2zvbwenyWZYZFkmioGXjz9PruB4eGz0Mxj1PDEbE04GsgZ4OIncbvZPzm1c
6T+VPmu+U0ddMuIo222edDCh322aQZ1bzjDf+cS9DstN/J+0u7WVpv0vdT3kzunpkSKVtmQCrVVT
b0Brv126ZCBkbsVuykAKpgf5raZ/jv8A5yRsPK2mWy/X9Ntrb9Kapcqs6W1pGPrbCKBwY6t9YA5O
CeTACg3yqeKUybPp7ht9rZDIIgUPV5/qfR082ieWdEeaVkstM NskLSOdgAoqSfE4gY8ENtoj8fElS
Z5p95b0bV9I8yaFBqNkRc6ZqEZ4iVCvJCSjK8cgBHQgqwy6ExIWGuUTE0XyxN+Vem+V/z48u+XrO
ZDa32sNqMFkIVkWGygU3MauTQ8gxKK3YCu9MwZSMsshW0eEc++r+xyhERxxN7m/sfVeua3pmhaRd
avqkxt9OsozLdTBHk4IOrcI1dzT2GZ5IHNxALQ13Z+XPN3l6NZli1LRtRjjuLeQfErKwEkUsbdmG
zKw3BxlEEUVBINh8N6J+X36P/wCcitL8lkB49N1pAzMP722hmN2pI8Wt6A5ECknd9pfmleQ2n5c+
Y3muksVlsJ7ZbyXdInuUMCO3srSDHJIxiSBddEwiDIAmnx95V8uRfllouoebPMIik1dg1ro1sjh1
Yt0dSP8AflK16hK+NM0WpznVzGLH9POX48vvdvgw/lonJP6uQ/H42Q35F2l5e+drzXNTQyT3VpPc
wM XDj7TvOqSSL97Lku2JCOEQjyBA+xj2ZEyymcuoP3vfM5p3yX61em1tlVYfXe6ZoI468asYnZR9J
Sn05ZihZ51TXklQ96F/KBFj/AOckdZjQURPLHFR4AXNqBnVdjm8HxLz3ag/e/APT/PurL/jfyVp0
OoRlhq6G604KrSANYXrJIzdVU8dh3p882rrmS+adIF1ossOnxVv7WVNSs7aCVLZpbiCYXAUyMkiq
JnXi7Mp+0cVeU+ebOG+/5yX/AC/a4jaMrZmURsF5K0cGoTKC6sw2eMVAqD44q9k0a1sodNWK1sTY
27PK/wBVdVDEySMzuwUvvKzFzU13+KhqMVfKn/OVSeWrXy/FpFlY21le6ZrJFskZtBIttcW3qSIk
NqE9KIt6bUkBfoehxV8y4q9q/wCcQ/8Ayctt/wAwN3/xEYqp/wDOLGv31p+Y8Whrb3l3pesgrfwW
RpxKRSwxzzkUb0Y1un5UYUJDblQCq+4V9HSM 9PtraKPmIljt7e3jKqW4rQKnquPsqpbdq0HfFVmt6
jp9rbpBeXo09r9/qtrOWEZM8gPBEdwyB2p8NRuelTir4f/5yQ8pa5Y67b+Y9Rd501Mvaq6m8uIoj
ZMbcRyXd4ImaZvSLFREq9xUfEVX0F+Q11c3P/ONvqXEzTyLaajErsSSEh9SONN+yIgUewxV5f+WE
cafkzCyqFaS3v2cgU5H1plqfoUDOR7QP+Fn3x+4PS6If4N8D+lk3kpHWyvQ4oxvHala0DRxsB9xz
D1R3HucnT8j72Q5jOQlPmllXRZCxAHq24qfE3EYGXaf6/n9zVm+n5feyL8kI2u10m4YiQpatMzit
CWHGu/u/fNpoMd6s/wBG/wBTrtZOtMPOv1vY9Q07T9SspbHUbaK8srheE9rcIssUi9aOjgqw+Yzq
CAXQA0t0zStM0qxi0/S7OCwsIKiC0tY0hhQMxY8Y0CqtWJOw64UPNvyw0Hy5c/mL5487aM Zdi7uL+
4XTZRsfRktGaOZQdmHP04zQ+FdwRmJp8s5SnGQrhO3mHIzY4CMTE3Y396Rf85I6xFLc+XfK72E2p
R3hnvri0hvI7QMLfgiLKrlfVjf1HBXlT59q+0JEQsSEfhfy7mzRAGVEcXxp6L+VZtm8gaQ9rbxWt
u6SPFBBx9JVaZyOBUKpBrWoGW6GEo4oiRs+fva9XISyEjk8/8srDqv8Azk55wujyc6JZafbR8qFR
6luzMV2qKM9PnXK8gvNCv6R+QEf0s4GsUr/oj7yzz807tYvKxtBMkM2pTpbQCRQ6uyhp2QqaVBjg
avtlfa0qwHusM+zo3lHuKt+V2hDQfIOj6SrmRLaJvTYgiiPI0iKASxoqsAN+mZWkyGeKMjzIcfUQ
EMhiOheN+VZNJ1z/AJy18y/WLIveaOoutPuwDWP0rKKwmV9hVGaQMldlbp13JjLxBKJ9PUIEhwEE
b9HpX58ax5b0v8vLiXzEynM TJbiBWt2oTNJG/rxxKn7ZLQ14+2/w1yrXeIcfDj+qRr3Nuk4BO5/SN
3yRYWWvfm75u+vXivaeWbBuKqPsomx9JDtylkoC7dv8AgRmvnOGhxcI3yS/F+5zIxnq8lnaA/HzZ
/wCSI4ovOl/Z20YisdOtp4raND8Ch9QkSgFBT/ecD6M1mrJOEE85Ef7kfrdhphWQgcgD/uj+p6Jm
rdg8q/MzzdrSTfohrZdHCvJJa6hKzXPrIsbxhlit45TGCJOQL9xTxI3Og00COO+LvHKviSHV6zPK
+GuHz5/cyH/nG/zH/iP88dQ1coqGfyywPDlxLJd2yMRyCkfEp2/E5vdDg8KHB3Eun1mbxJ8Xk9E/
NSSK2/NfylPMzmGWe1iaG35fWG/0bVl5R8CHqvq7cd6nbemZrip9FryaH5VuNc8z6rHanQryOBdd
EX1q6l06RoZ0gvY1hhlhlljlEbqyKVfi++1VXjPmj/nI3yhc/m5onmLSM 4J73y9pZtxfXoSSNkX0L
62Z/TaOtF/SlRvUlCO4OKvXfKH51+UdU0SK10rVLjzZrkNqZ746fbNHK0zTwwEJDdfVyitNdj0+X
whFPJvh3Vec/85Avpsf5OafYXGm6laaxHcRxwWWoNWWQ3EkzGeaW3MltNcS+k0jIkhYM24xV8kXK
RpcSJHyCKxCh/tAA9Dsv6h8hir2X/nEP/wAnLbf8wN3/AMRGKp3/AM4a+aU03zlq+ifU/Xm1m3je
O4G3pfVPUPEkBqCRplHYdPDFX14tgb+bSdTu4oI7q1jZzEFS44STxgMIbhlVgBuOSgchirxP/nKf
8x7bTNLtfLGn65Bp2sTSR3F3b3FtduRAG9SOaOaJHj5LJFx4FW+1y+FlU4qhRqHmHzH+VWtXlzYq
mrea703fkjT1leGScnTYxJIGiMaiZ4o55KN8JkrQH4aqsg/JGa1m/wCcd5ntbd7WD0NUVLeVkd14
NKvxNHHApM bbf4BiryL8rJF/5VE7NFNEI7a8UzSv+5cCSduUS824heVGPFanxpnKdoj/CvjH9D0eh
P+D/AAP6WYeVVl43bBwIhOwaOm5Yww8W5V7AHb3zA1Fbe79JczB19/6k+DKSQCCVNGA7Gld/vzGb
0m83AHR0UqXV77T0YDrxa+gUnavQGuX6b6/82X+5LTn+n4x/3QZ3+QtsP0JHchXVVtIVT1ac6SVf
4qFhX4R3zfdlQvNkl3bfj5On7Rl+6gPiyL8ybiXhp1rExDyu7UBp04qP+JYO3JmoRHW17JiPVI9G
X/u7W1/4rgj+miD+zN5tCPkA6neUve8b/wCcbNPt9M/xlZ21x9ZtZNX+sQytTmzSQoZd1PFlRzxr
Qbg5iaLV+LGpbTq/v/U5Oq03hnbeN0yP84PyjtfzEgsba4EQjtyQbh3dJYeTLV4eKsGbhy+FtiaV
8RPNgmckZwlXQ+YY4ssRAxkL7veyXXNa0HyF5Jl1C+lM MelaJaKic25SOIlCRRg/tPIaKPEnMoAAU
HHJt5l/zjZq195hGu6/qgb9MzTU1BzIJEP1hjcwiLgSgRYZFXsRShzXabH+/nIfTW3xO/wBsXNzz
/dRj1/FfYXonnryVJ5ql0dGuktrTTrr63MfSWSZiFKKImcMI6qzBmA5UOxGX6rTnKBG/T1/H49xa
dPmGM316J1f3dloejmT7EFrGI4I6kk8RxRBXc9MnnzRwY+I8h+KY4cUss6HMvKfyg8q6gv5jeZPN
2o3Md1c3tpDbh0haGnqSF2Bqzq28IOxr49sweydR4kZbVv8Ae5faOHgkN+n3J1+d35TX35k22iac
t7HaaXYXMl3foxYSSnhwjWMhXA2Z6k/d4bHNx8Pori83CxcHF67ryYmPLNp5YH6CtIooYLIBFSCv
DcBjuwDE77k9TnE6yM45SJnik9XppROMGAqLA/JV4L3zhqlyoVIjafu0T4QQ2o3nxuv85CjfMrVx&M #xA;4cUR5/72Lj6aXFkJ8v8AfSZ7mtc9i/n260nTtNGqX6svoR3ES3MNsbidBNCykRuBSKpoSzELtQ5l
6OMpy4Y9a60Nj9rjaqUYx4j59L6fYt/5x/s4rL89ru3jtEsAnlJC9nHTjG7XFozrsBX4ianvnUdm
yMsZN36ju8/ro8MwKr0h6J+ZN5d/8rc8mWtpZpeSwO176SPGlxI8VlqRiiX1Xjj4uVb4ifh+k5sH
CeqXEL/VLprBYVurhGZHkWsby+mERpeFGZaKoO9eIpir5g/Nb8tNAvfzb0vQILCGBtY1mwv5pYme
O2SzntXS4tjbqRD6skmnSy8uIZudKnsq9s0uby35ci1rXLqGKA6bctpNnBZxIgSAtGbeztYI/wBu
Z5EqD8TuR+wECqpR5m0L8pdZWTU9b0AXjWb3F/qkV8ZYLm1ikEsZu3tp3jZ45XsvSjKA8qLwqo2V
fEf5h3vlq882ahceWLOKy0F5nOnRRMM 7H0QaAuHCMpNKhSooDSrfaKr0X/nEP/wAnLbf8wN3/AMRG
Ksq/5xY8g+WIdKn/ADK1+5uI57C/Nlo1tbmYM8qRo7cYrcGW5aT1OAiUGtG+E9lX1F5Vv43tINPs
9Iv7HTLK3iitLm9RIQ6xqEEYiaT6yGVRuXiUeBOKvhj/AJyKtJn/ADk8wTRTxX0V2Y7uCW1kaZPQ
9BTuxZ6FFQ8hWg7UFBir2Xyjd6z+Zf8Azjnf6Hb6xHp2t+UiFWeyVUWe1itTJDE/ARmNZI3aJilD
VN6gsCqyz/nHv/1mg/8AGDVf+Tk2Kvmxdb88aR+U2my2N3CNCvDdWUkAt29dfUkm51kYMjK3xfEt
KdOoOac4sM9VISB4xR57dHZ+JlhpxR9JscvenH5OeZfzF1fUZbS3uoZNNhYT3s95Cz1qVXgrx8Tz
KjYFu2UdqafT442QeLpRbuz82aZoHbrb263uY5L66hiClYhGZJFHWVuQZSehZUVPM lUZz0o1EF3YO
5Chr0QksYlJpS7sm/wCAu4m/hksJo/CX3FjlFj4j7wm/5Seco9D8kWAazEhmhSV39X0woC9KcW6b
5tsfaH5ecxw8Vy7/ANjrZ6LxoRPFVDuX6z+ZkGr+YrG5t9Mnnt7TjzaNgY2ZZqFVdxGW3+0UUhQK
k9Mr1OpOXJHJICPDXpv492zPT4BjhKAJPF1r4d+6f+ZPzcsrfR7n67arZW06NBJeSXACReopUMxK
KPYb9aDMqXa8s0TCMNyO+/0OOOzI4yJSlsD3fteQflb5o/wtBYfo4yyWMltdXQuQvqRP6d+Y5+TA
DkAJlY0/ZFcqyHLHIckdpAgV5cPL7Pm2QGM4+A/SQT/sv2/J7NP+cltBp1zcLYLczafJHDqIS4ji
SJ2415NJ8KGjghWP05n4+1SavHIXy/FOHPs4DlOO3473gf5xfmF5q80XWqW2o2znSPLtyYdY8vpG
6q+nzsDDfKXAf1YyvM HnXiNiPhLVsGWeThv08QuPlIcwfewOOELrejR8x3hJvym/5yG078r/L15pF
volzrU17em5V5rgWyJB6SRxhH9KV5P7utSibdszscSDZA/Hl+0uJMiqBP4/Hc9sg/wCcj9Rl8qpr
1z5bXTlMMlyYnunnHpAlIQGEEKl55B8IrTj8Ve2YeXXnj4IRvpf3/AOTj0Y4OKRry+75ql15g17W
ba1l1mSM3QiQyw29RbpKVHP0gSTx5dCxJpnM6zVzzTJJ9PR3+l00cUdhv1YJp3/ORq+S5/M8SaUN
bSHVLS2tiLtbaNFktWDAsYZQAstu5Jr+12pv0XZkPDxxFbyBJPuO23uLpNfLjnI39JAHy/Y2n/Oc
0RkAfyWVjJ3calUgeNPqg/Xm1N064IDXPzL8w3upXfmGxWG60UztJPbRW1zKohpydodQLJBJx3+0
Fp048qA8vlwQyTPFcZy8x8AY8/xbv8eaUIjh9UY+R+/kkv5TazFM deaNR9YC2uL6zjmgtWJ5kfWrh
3BqBuhloce0sRGONbgS5/CKdDkvIb2sfpL1nNK7Vh/5qK0nk+/ihatyLeeZbehJkRImSTp09MSh/
mBmd2dtlBPKx9/4Dh67+7Nc6KZ/k7wb/AJyT1yVGJWby0JBWooDcWgGx3HTOh7H/ALgDzLpe0/77
4BgH5/eevMflz8/r3VbHUEaXQ5bGTT9PlMrR7WKMRJGnFSP9Jk3rWjNQ9s2jr30J+RnnWz82eQjb
2t08GtWqsb6EQuqWb3bSPEsHrxqHjjoQledKULN1Kr5x/M3yn+Ztp+YUXlB719R1DUdRtbnStWE8
olMsimOG6cm6f0ZQtu4AKgABilBir6YTzBZeTLWy8r6nrB1DzTc2017qetJZqrPFY29ZLu4iV6F/
QgjiHxM1eJIIxV86/wDOVX5w2fma5sfLOjRSRWMMVtf6hcSAI87XFus9tEVHxcYUuCSGP22O3w1K
r56xM V7V/ziH/AOTltv8AmBu/+IjFXu//ADifopn/ACl0a/1K1j5WeoX1xocyFg3Bw1vJJIAQC3Iz
JvX4aYqq/wDOVPmbzX5Y8qadrPl66uLKVJzBJdW6EiNneKRC7iVAoIhZKNFIG5U+Huq+HZ55p5nn
ndpZpWLySOSzMzGpJJ6k4q9g/wCcYtXvLXzT5h06NibTUdAvxcR1+HlDH6kbkeK/Eo/1jir3z/nH
v/1mg/8AGDVf+Tk2Kqv5B6LY6n/zjjYW2pmW60y9sdRtrnTgyohT6/dl2R1CyK7huJJegoKAb1VU
f+cZrTSfLH5V395JR5ZNWuIbu9joGm4SLBHJV2oFCnl1oBU4q9Z8pIYbKaAWSW6LI0hu4ePo3TzE
yPMh5ySSV5DlJJQu1TSmKvC/zo/5yXudEe68u2egXWm6xaXVvNHNqg4LJHbXCTq8SRiVXSX0wAS4
6nuMVeU+U/zv1rzLr/l7y/5rsP0h5PtONrPolhM yhikM1IBPdD940qxmXkqclXlxpv1VfT97oHkvy
/NBFZaFYmLRrA2N1r+pSRzLZWM4f91KZGe4kWjEsshROBPx9sVeZ6+vly4k1jzHr+pz32rQziePS
Lb11t0jjRTBIzP8AV0giSOphkHoM7DaZ/tFVU8v+freDQovMWnwSR6N5c11J9SRzNIg0HXYmW4lX
lH6kqpdkzEfF9k/E3XFWTeZNOs9J832V55jgSXRPP0LeWPNjrWK2kv41/wBx12I2DN+9jV4gwai1
G+2KsI8yWkPlXTV8y6815d3flQXnlHzHC1D+ltMnUy6YbgmtY5YZFjaT7Qc/5GKsR0H8jNFvfKs/
me51KyvvJtjdNcaZqlzqL2wWwLKTb3EMNnPKHZm4uvqoVkrwB5Esq9f/AC388Q/mZrU2h6UYX8ke
WWZ71RAII7tZppl0yzihKrS3t4IVZ+QBd1A48PtKvRPzQ/MTSfy/8nXfmLUf3hjpDY2oIDT3M UgPp
xCv+qWY9lBO9KYq+G9MS7078j9R1u2lKT33me0tGcpy2tbC5lBEhBAYG5+ffFXnWKvpjy5+ZuheR
vyf0ZtO8v67rNlPBcNLfz3Tpp1ve3YMFxbUVPRdBJF6iJJE3EtUHka4q8d0bVVutQle+vbm3tzZr
ZtFZziSeVnPMRxxKymWsr1UMSAdySRir6v8Ayy/M260D8uNIvPOOrRzW0U1zb3txqAki1S3gSb0L
b1baP6zJMxkorMeHFStamtVVn/OQP5h+UtHsYLl78XEuqaFr2naeLKRX5S3S28auXXkoVXiIr1r8
jiql5M1PStU/5yi1LUdJnS40y68nwyWc0X2GjNxa8SP6Yqpa75Z8s6j/AM5VWS3+mWt20uk/Wp1m
USc5I0aOJ3iZeDFVjoGJJFB0oKqvZdX1Dy9ol5BqV+BDd6i8GmRXKQySPIXkb0ImMSuQoeVqFvhF
TuMVeN+fxaQfn7otxey+ha+pYM 3TSnYBdMsNVnenUtX1VFAP14qxDzd5V/NnztrU3mOwhsNP80Em3
GhfW41ng065hVoIbiOSo+tvHWavIcVjrsQoKr5n8x2d1Z67e2t1dpf3MMrJLdxmQq7KaE/vVjkHh
RlBHhiqW4q9q/wCcQ/8Ayctt/wAwN3/xEYq+gf8AnGLz35fvvyesrL62h1Hy5DMNWtI0YyRRCaWS
JxGoLOGioaoDVqjrirwX/nIfzD+XWuSL/h5FtLrThZ2thGbK7snksYYWRoyJWZX9J+CozRRGisvx
cVOKvMdK8ha7qXlybzFHJZW+lQyvbiW7vbW3eSeNFcxRxSyLIzcZAfs098Ve3f8AOOsHlPyzY+cb
XV9Vs/8AFuoae0FpaRMs6RwmF34C8j5wGSV2UGJXrVQN22VV6f8A849/+s0H/jBqv/JybFXz/p35
++btK/LDQfy98qRfVpvTuYr69VVmuJXu7ydlhgT4+FUkAqV5kn4abFlUi8mM eZ5PIutzW3nPyzLer
OkkfC/E8N3Z+uKST2sc37oS/tcmj5VGzLvirHrLz75t0m9W40TVZ9KaI0Q2EkkCsAa/HQh5a/wDF
vI02OKofzX5w8x+bNUOreYr6XUdTZVjM8hUARoKKiRoqqgG5+HqTXrU4qyn8p/zcf8vJr+4g0s31
zf27WhuPrLwvDEzBz6I4Sxq/NVYMyNQjFXqupf8AOR3kXzHHZ272t35YET+tP6cf1mOW4kdA8888
M0MzMiLyDLEJi32ZY6klVkt1qP5V22n2Gq3vmVNQsrq4kubXRzplLh4rh1p6FtKIh6bIvK4kkVkk
48gqyblV51qf5x+XNOv/ADLpWmS3Wp6ZqulXuhXk15JGscoiWQ2VzbPHFLKQheSONJmbZ1+MKKKq
zzQvzM/LnzT+TVvYeevNcMUx0x9L1OymWWa5S6hetjewxKpdpIxuzLUPtyO1MVepaFf+UfzB8l2Y
v9Q/TSeYLCPRM 9UhtJ3mto7hYpJjI0LrG0E1VZg7Rq2y16Lir5Cl1jzf+Unm3XPJtywvNF+srHq+k
TpG9tfWysrpIEmSZY2li4lXC1XbrSmKvsn8jfI2n+VfIts8OnJp2oa2TqepW6liY3uCZI7erVPG3
jZYwPYnqTir5l/5yp/N6XzV5ol8o2AjOheXrkj11qXnvET05WJOwWNmdFA67mpqKKsI80pPpn5Re
UNLkajahqGq6rJF+8UgD0LOMkbI28Em9D7GhNVXn2KvsT8h4ofOP/ONmqeT9P1BF1qJb2BIVk9OW
B5Xae3Z+DB/Tdz9o7H4hvQ4q+efJWhzDzlJFqF2bS50VXYQwyC2Z5bUlSIZo2WNfTlj5GXkF2LM3
fFXtepWcmraZe33mq2spNOjvIhqYjja2vTHFdW0xjheUGeDkbocl9f0lUqrGB6F1WF6pYT+UrG/g
v9BniuNQFx6N/HemG0lsRewXstpLFdOJfrMcaMRWT1eLUkM QsG4qvV/yq1fytq/8AzkTc33lX018v
yeTolsIoVEaxolzbIYuA+yyMpVh4jFUz15wv/OWflsu7L6mmyRRKvqAORa3chDfCYjxG/wBoMK9x
TFXpp87Wdv5mm0zULmzt7SaJG0dlklea7cMUlVf3awlxJ+7WGN3k2rT4gMVfPfmXRIb388vJ+qep
qUGnahrNulvo9wOMEK2NtFNHszclMnq8uDR14sakVpiqe+SPJuo3H5lefNav5pPLurRazdx6VOzN
Mk4urSVovrEMbqJIoYWWZfjAqxU+yr5y/OHRb3SPOItrh2uYJLKznsNTaWScX1vLArC7SaX4nWR+
VP5acP2cVYPir2r/AJxD/wDJy23/ADA3f/ERirLf+cPobCLR/Pl/rKJLoCQ2a30Ried2Ces5/dxq
7svGvJQp5fRirGf+cltGe41641zTbG1j8uwm1+qajALS2eRL6EvHE9tGsc5ZHglo0i8gAQegxV5f
M ;JrGlHQNO0es8lvbSXF9dBgsZa7nSKMRoR6v7pUgX4upJOy7HFXp/5G6X5atNW1N/MdzY/XL3RbuL
TNOuUYS+uqo9u0RK+jIkkJ5oxPIsBx8Sq9w/5x7/APWaD/xg1X/k5Nirx/8A5xy8y248o+edBuDe
6hcyaPcm00x5GmsREUbYW6hihaWU+pJ9kA++Ksz/AC/87WPm/wDKSTRvP01tM1hcSWmja1cWh1Fp
1tPTeVHhZFkEkUUiF2HB2iqwIZHYKvMPzh/J2DSbqTzL5ctGtfJF3UWN8ksV9aGQM9CkkE1zOsM0
ac0Z0+Eng382KsBfzlDKqx6h5c0a9eJFiWRYJbQ0Qcan9HTWiOxpUswJOKqFvr3l0SFrryzaupYn
hBc3kQC/ygvNMfpOKofWNQ8uXaV03SJNNlB/5azPHTvVXj5f8Piq/SPNF3Y2v6PuYo9R0klm+o3A
5emzsjPJbSfbt5G9JQXjIqBRqjbFUomaJM pnaFDHEWJjjZuRVSdgWotaDvTFVmKsg8hecNS8oebNM
1+wlZHsriOSaMMyrLEGHqRPxO6utRir6h/OHyVpf5lWvlLz9p9uS8epWuma9bsjRyCxuLpVjaWKT
jICnqqdwCUk5fZpiqbf85N/nrpvlvQbvyhoN2JvM+ooYbuSB/wDeGB/tl2XpM67KvUA8jT4eSr5N
8jeQPNPnLUpLTQNP+vtax/WbtWlit0WFHRHJlmZFFPUFab03pirIfz18xQ6p5wttOtb2LULHy5p9
rpMF7bsGglaFOc8kXEsvAzSOEAOygDtirznFX2J+TsEvl38gDe+VbmyfXrky3OrTB1juYz6f1hYk
FxSNpVt0FA5VAKv8VKMqwLTtCkP5p2vl+4jVNNj8vWOp65NxkUQNDAt9Lc2ywGMmRZZmjR/iZQ7B
WXqqrPdctvI+h6H5Rutb9TVvI2uyuX1m4jJYT3qhHjvLUiNIY2hUFJYmDxSK/FeDFcVM Sv81U1web
vLnlu/0toNKliew1LW44bq6t57EARxXAaJnHxwmk8fFX5KCZKLFIiqRf84m6f+jvzs16xEU8Mdvo
10sKXQdZDEb21aNuMkcLgOpDCqDr0xVnPmTUbZv+ctvLfKOOKa19SzE7yOvMPpcslKFeBq1yFUBq
g9ftrir0rQNMtdcs/NM8NmY4rnWZJLGzuxJDCJrSOKP1wInPwzzxvN6ifaDBiC1aqvM/OySP/wA5
B+VYURSX8y3Upkb7QEOh6USqvWgUgk8Otd+4xVPfJHmqC7/OvzrFJqEGm6VY30ds2mSvPDPd388U
NnFM3J3gkU+g8caLQmqsVrxoq8m/Nrzdon5n/lLd+bYrA22r+XNSGnSQxqsUaWc0jG1ld2UyOVT4
OCuoDOxKfZxV844q9q/5xD/8nLbf8wN3/wARGKsW/Jf83NX/AC38zrewky6NfNFHrVkACZIUb7cd
aUkjDNx370PXFXt35ufkM S/n/AMwP50/LtNP1fTdcsy1xMt2UVb6IkGVCp4FpVCoVbo4YvQnFXytP
a3EDMJYyvF2iLdV5psyhhsae2Kpv5X1210q6vby5V5L36jLBpVwCSbe5biqSU5KCBFzQVrxrWlQM
VfYf/OPf/rNB/wCMGq/8nJsVeB+SfIcWnflTqX5gatql5pujzwz29vaQlVN/fhpILaNBvyhjYszs
x+1Wi/ByZVnf/OKKeRdd8s6n5R1W5C63cX5u1sXVf39kq27vHGZA4+J7b95xo4ABUjrirPPzL/5x
0vvMcd2bLU5rewmmnuzpFtKI4lkaRnDx2/GK2nkdeO0npty+1OVAoq+ZPMH5L+afLzXFxraSabpU
Br9duba4BMfNY+fCJJVAEkiIfjpVhueS1VSqx038v7S5Q69eazLbSRh4hZ2UEPqAkjnHJcTmqfDs
fT39qYqjtci/JKSxhbQJvMlvfK9LiK/jsZ45EI/3W0LQmM1r9oN4e+M KpDF5dvLuP9zayQcJCgZ47
iVmJ+yh9KJ151BFNvliqV3VjeWrcbiGSLcgGRGSpHWnIDFWra6mt2douNZI3ifkiuOLji2zhqHwI
3HUb4qynyf5F81+d1S20+MSQWEc0VsB6SyyOsct36MKExvO54sSByKg+FBir6J/JA6h5X/KB7S4m
1G91bzXaXsugaZLFKdPtJIBcelGLhv3EL3Mg5kFhvSoB6qsF8ueRPN3ned087+QLuGK8uvUi8xad
ax6TPbiVi0zTRpbyfW4/i5AmNn2+3virvzEl81eRvKU/lbyZbtoflKKSRtVvbzUtPl1PUZZ0ELep
bxTM8cXBgFjjT/KO9cVeA4qnvkrQdK17zJZ6Zqus22g2E7gT6jd8/TRajkBxUrypXjzKr4sMVfb3
5taVY6Z+XNrZeVJtM0iC0hmm0qMytGlDGRytbeEqtxIxm5AmpDEOoZ6AqvDf+cfofzdPnc32n3lj
qN3Y6RYM x3Fhqc7GQ6VOfUggjlRJWgZAFah+yCPhb7OKvpnUb3y3b6VPeee9Qs4bG/iiF3pOqNF9R
SW3cqzwpdIkhDvxNGqKhSu5qyrwrX/Mn5i+YNN0zQ/y9pZanokd1bSQ6ZO6adf6fDOvC6sFn9SO4
t/3KL8ErOpLRlWRsVRX5E3cl3+f1/Nwigtj5UUWFlE0rm2tRcWvo28jzM8hljSgcE/Cfh7Yqxz83
PzGn8l/85CT6hNp0l1aWGpW19zcgq6NpFtbvHbB0KowV2LkN8R4dCgOKvadY/NeTy5+U955mn8qy
W8djdS2CaLDJ9XAt/VZIZVkiRhGpjKkkLsa07Yq+VL782/M2l/mJp3mR9I+rWunXb6hpuj3jzT1S
a1hsyXuZT6kz+jbp+9ap57+2KvR9S1HUfOC6f+c3lTRltr2TWbez1by/qCpe2093BEILG4t+CQSy
HlcFGC7h6PQcK4qkf/OSWm+UIbd5dBuIoLy21P0tbM 06yuvWs5b25jknluEjLGRJE4KjAqFUFUUni
wCrwLFXtX/OIf/k5bb/mBu/+IjFXjDCH00KsxkNealQFHhRuRr9wxV9h/ld5x1nR/wAi9F0jVNHu
dR1W9MjaPpVndyrqF7pSyrLLcxmJxLGIkkKqit8SgADicVfLPnfWGv8AzDqEcMCWWnwXUy2ljFF6
ARBIQvqKwWRpOI+Jpav44qx/FX3B/wA49/8ArNB/4war/wAnJsVYT5UuJtT/AOcaPLfl/T4JLuZX
vbi9WJxGFK6jKlrCZDuss1zcQmPjv8JIpSoVQH/OKt15ahvvPk8M1vpmrIETSteu6PFDb3MzRKv7
1wDWb0ti9XNBXFX0W/5jWNzJ9X8t6dfeZpBzQ3VjGi2Qkj4VVr2dobdv7z/dTP0YdRTFWD/nrH5y
1v8AK/VNK1OLQvL9tf8A1YfWLzVnqDFPDPx/eWsEfL90woHNR032xV4b5T/IbRAn1nVfrN9brBJM K
+tXyyaNoEMgVhCrS3Po3l2jOlD6KxkLvir03yLpPkBdBl0ry3a3XmrU29KS4u/LNnHpcMM0BLmJN
XmNqTGSB9u5eTaq70AVZH5t85/nR5Wjttdv9P0fT/JenCFr+KW8e41F0YrEIpJ3QR+oWarFFbvRm
7qvmrzx53/MTzQ11/iXzVHYaVqTCS10q5ad0NqX5RTCG2tnKKRQq7xozqagcTirCfLc+n+XPN1jd
+Y9H/S2l2swN3p0wlhWeMqCCOQjb7LrIoYUO3IUOKvsW70LyzrflDQLjyDYtaaW92PMGhy+X2t7a
7+uQI0MizW12YoGCo3pyEzgk7cadVWVWvmfyTb2cGtX90/kbUOTiWy1d004SyqpjJmtTIsFxXiKO
h5UA4sMVYP8AmJ5W8v8AmmGLUbyZ/MGn6oZp9JjsvMrRtMwUo6WVrcRJZHgrsSPVLD7O4qMVfG2u
aPf6RqlxYX1lc2E0TmltextFOqVPM HmjAb0xVAYq7FX1N+QP5uflx5e8g23l/zx5jgvZGumn06ymt
Lq4Swj4KFR5Hh4A8+RHCqrX7W+yqD/J/WPMEfmbWbHSfXh1y40DQ7S2mitVkjjiigiiWeQqikh0a
Pi4jlKB+f7yOIkqqf/OQfk6z8xQ/4kfVrQ+araMWt5A4nsvUXTreV70ejOrr6gkMQj4OFbl7glV5
x+XH5+ebPJt9byypHq1nY2hs9MsZ0RYrUO8fOSIRqrBmRGDUYc2bk5J6qvefyn88aL53/wCcj9R8
x6OW+q3flNA8TijxSrc2okif3RtqjY9RirG/+c2LSa1v/LN7AeEdx9dMxoKmUpbxGhO5DRIFZem2
/XFU78nflJ5Q/NLydpusarPfW9tc3N6zWFnK6C3vJp5JZpGRo7iPm9eJclVCqopyJxVJ/wAxfyI/
Kvy3pOp32q3mtxWul8LbS7RLvn688yRi3jiWaxKNzdnaQQyNwUVpvRVWE3Go6ZM +Req6WNPgTXPPj
Wvr6pFqDepaaV66MYraFIWQm5Xn+8kY/Z+yBzNFXkPmLzBqPmDWLzVtQKfWb2Z7iWOFBHEHkpy4R
r8K/ZH3b4qlmKvav+cQ//Jy23/MDd/8AERirxY8aChNe4pirOta/M/WbjRtLttMvJ7GSDTotJufT
mlEot7dEUxIQERIZ2X1HVSSzfa2C4qwUkkkk1J3JPWuKr4DCJVM6M8IPxojBGI9mKuB/wJxV9v8A
5AtE3/ON0jQoY4jDq3pozciF9SagLUWp96DFXiv5Ua3+cev+SbHydoME0fluwuDcR30Fks85kS6F
2ggll9C2UxXChwZZlNSfiNOIVZNpv5GedPJun3WvtY6PYWVugmvbjV0udfveK7uxtrWFrYBft/Ch
K95CN8VUpfz7886zqVt5e0TU7/WtXeT0Rb6da2Wk2zOxCxqLh3vZSvxGv90RSnuFU+8k6H+Yuv8A
mtbfU5f0TcwyvFqM 93ocf6RurZlHxR3Os6nLdpFIDQejaO7DuigYq9N/5V1+WoW5udaaXzlNaSCOa
O7EmtTwu0heMFQLm4jPH4WAKxkfsgYqhPO/56eWPJ9jNpywHSrm2Y29srixmWNEIAkFjBeR3HCn2
VKofGmKvD9E1XXPzqurvWPOuuwWuh6E4ttF05LV5PXvrksY3GnQySSTyJErNw5NWgG6c6qsyX82v
yy/KawvLDSNOlu9Yup+GrNf3Cy6jcOvL1JZ44fWSMqW4+lK0Tf5O2KvJvzg/NTyh+ZnpTraDSdWg
PM6jPHMBIiow9AJFPcoKll+P06mg3A2xVX/Ib8+7v8uNT/QOpyrqHk67nDTSRhy9s7gBpoA4RinT
mhXtVd/tKvo380P+cgfy58r6PNY6tHDrupXQkT/D9u8V1G8fIhGuZCGjjSRQrcWBbf7JxV8jeZPz
l81ard2kemMfLWg6dMZ9M0TRpHtobdnMnN42BJEjiZwxpT4j8M IBpirMtG/5yX8yoPq80YuUacp9T
vniazlspPhZJSscH1eZEpSW2CIx3MPI1xV47q9vYRXkjWLn6rI7NBbycjNFGTVFlbgiM3EjdNj1x
VBEEEgihGxB61xVyqWYKKVJoKkAb+52xVnDeefMflPzJcz+Xb6W1t7uys7aeJHliEsMdrGqo5Qxv
yTjTmjDevFuJqVVDzP8AmH5q83yy3fmLUjNJMyS3KRRoiusRKRk+lTiVrxoaCnE7mlVWLX6Qi5Z4
I2jtpCWgDAiqciARUkkbePtir3r/AJwwlkl/NfVZZG5O+hTljSn/AB+Wg7AeGKoz/nMUa1N5iiku
dRs7nTbWVYbGwhjk+tWoltonkFxJxEVJHQuo5cqEdhsqnH/OO0TXXkFpPMnneytvLEGpw3d1ojSL
6/qSS0iju7hpEMaTyQEiKh5ipPUjFWWebv8AnKn8udOivpNE1i+1icGB9PsLS2W2tw0J+KJ57mHn
wlM P94QpPHZKb4q+Otd1i71rWr/WLwg3eo3Et3cca09SZy7U5FjSrbVOKoHFXYq9q/wCcQ/8Ayctt
/wAwN3/xEYq8ftYrCRKTzyxzE0RUiRk7Uq7Sx079v7FW9Rh0yKbjYXE1xGK1eeFIT7UEctwD/wAF
iqExVE6fp95qN9DY2cRmurhgkUY7k+JOwA6knYDfFX3F+R2m3Gn/APOOAhmUj1LTU5onIK845HmK
SKrANxcbryAJG9Bir5c8s/nJ558veVbTRIfMVxFo1sJ/qWkaf6VvMjSSNIWmuxCZFRpJGbirlj0+
AFWxVG/lv+XXn385fMU5mv7iPSYWDalqt1JNcpFXdY4/WdmkkPYF/cnxVfSPlT8vvy28oeYD5bs7
Ca7t5RbxTq8c31syxeu0t3eEwwc7BwyR8hK0BcceFQxxV6DrflqHzJfaddwSWF3oSFvrlvOLi6hn
UufUCwxXEVpyrUc5I5KGu2KpPrGr6Z+Vun32M razqUh0OZW+pWyQ2kFvaPGqrHbwW0PoySvMxJ2rQ
A8io3xV8Jed/O2p+btbudUvIoLX6zK8721pH6MJlkPxzNGpKmVxTm/Vqb4qyqTzRZ+TPIjaFo7Ov
mvWxz1a9V3H1C0JjIt7c/Cyy3XopJP0ovGMioNFWFJ5s8xLE0LXzzwu6yvFcBZ0aRSSHdZQ6s3xE
VI6bdMVUbvXtQu4ZoZhb+nOyMQlrbRlPTrRYSkamFSWJZY+Ksd2BOKpl5g8g+ZNB0bTdZv4Y/wBH
aqrG3mjkVykkZ4yQSp9uOWM/aRh/HFUo/Rp/RiX4uICGkkja25ETJ6YjIZlIAo/q/BQkni3hiqY+
WtB0jWWkt7jWE0q8SOaZTdQyNbtHBEZWHqw+o4chTQGOn+VXbFXs35EeYvyH8ma1rNxrF2dVuo4W
k0rWLq0Ma+ktVeCO2Yy8J5OobmaqeNV35KvJ/O+p+Tdb8zXmoeVNMuNHhu7kvbadK8UkQDM Ntx4hP
SBO/D4gvQGmKvXfN35Yflj5f/LjTbTzxrcGj+eLEy1j0u3E15cQ8m9OOe35xqzVqVmcpyWlTir56
U8ZAUHKjVUMAa0O1Rv8Adir0zzf5Y8zeYfPul6bc6Po+hPfxCWO10MWiQQWokZXeYxSFfUTgyn1G
BJFO+Kp5oH5P6THftHrsdtbS3ETz26HU7K4it+d16Sho47iIyiOEcgxmQFqghgMVZ/of5BflrrHm
GS6uGuZtG0BRa6ta2XB3kuyGueEr2oRiI4pYoQLeNndwd9icVT78qtH8uaV/zk5r9t5csm07SD5b
529m9rcWbofrNor1iuVjl+J1LBiu4O22+KpJ+fH5U+fvM/nzXNT0vyXFf6bELcx6nHcRQ3N1wtYg
4CF/Uco1UFF340GKvFfMHkLTPK+gQ33m0Xmm63qz+rpXlSIcZoLVJPTknvGnBaPnxYRLwJNN9uir
FYbvygLF459Mv5L0zu0U8d9M FGiwHj6cbIbWTm60arArXwxVvzDqukzanef4ftTZ6LOkccFtcLHJO
iIEYgy0Y8jIpJdSOXgAeOKpLiq+ONpCQpUUBPxMF2H+sR92KvaP+cReP/K57fiCF+pXfEE1NOI70
GKvK9O1h0spbBo7BEKErc3Fqkkw4kPxSQRyNyalAW8eoGKuS8RTE9tcW9uVFR6kQd1I6Vdbcb/f8
8VQU08Ml0WmX1UApWHjDyI/aH7sdT4rXFX0b/wA4u/k3aa1Y3WveY9K9fR7+3ZLa6eR0DqJzG8UX
psjCpgf1T3Qqo2Zxir6Y046BrXkm50/yrPDLpaW0+lWMkTFrdTBGbYIrjlVEK8eQr02rir5Q/wCh
KvzT/wCrrof/AEkXn/ZJirNvJv5Ef85BeT7i1uNF1XyzHJY20lpa+o146ok8nqzPx+rBWklYLydg
TxVVFFAGKovXvyd/5yU1zR5NIv8AzDon1OYTidYrzVY2l+sElxMyxfvVBM Y8Uk5IvQLTFU/0ryn/z
lXpWmWmmWOteVIrOyiSC3j4XR4xxqFUVNtU7DqcVYD56/wCcafz688a0dY8w67oM91xCIqS3aRoo
HRFFpt44qx3/AKEq/NP/AKuuh/8ASRef9kmKu/6Eq/NP/q66H/0kXn/ZJirv+hKvzT/6uuh/9JF5
/wBkmKq9j/zhv+bdjdQ3dtq2hJdW0qTwSma7Yq8bclPFrQqd6dQcVZvefkv/AM5GX9xJcX+r+V7u
a7i9DVPVWf076MfY+twLaLDK6UHCTgJFoKNiqVN/zjX+cj8/UPk6TlJFKpeGdihgYuqqTaVKGtGV
qgjY4qxpP+cMvzZR+aatoSNxdCVmul+GQFWG1p3DEYqtX/nC782FR0XV9EVJABIoubwBgDUAj6rv
uK4qi9I/5xC/OTR7wXunazoUF6gYRXImumePkpUtGWtDwah2cfEvVSDiqFn/AOcMPzanmeefWdFl
mlYvJK9zeMM zMxqWZja1JOKr7P/nDX82LSdZ4tT8vO6ggLM9xMm4puktm6n7sVTvUP+cZPzyv3vWl
1by5H+kQwvkga5hSXlSnJY7RRRKVQDZd6Dc4qkT/APOGX5tvEkL6zorQxFjFEbm84KXpy4r9VoK0
FaYqyv8AL7/nHr8+PIVzLd6BqXlkXcu3r3L3kxQEUPphrbihI2LAVptWmKvQvy0/LT809P8AzT1D
z1561DSbyW80k6Yq6YZgwYTQyISkkMS8eMTVPKtabYqlH/ORF1oNzf2dhAPL9v5vt2jlXVNXkVXt
tNCkiV3eLtOz8YlctUBlDVZQq+PfNXmLVtf1eW+1W5F5eCsZugWbmisxX4mJYhQaLXfjTFUooaV7
Yq1irsVRsOoT20kc0f1eR+HHi9vDIoAJ+0skZQt77/PFXtX/ADifFqMv5v2l5PbhIXsrzjJHEkSG
qqekaqO+23yxV4qnBrFnW1icx/DI4E/NQdhIxDenuTQeM /bFVN7qBoyotIkYigdTLyHvvIR+GKodQ
DWpA2rvX7tsVeueYPza86235R+XvKOipLYeVzbvb3erRgh7ycuZZ7b1B/drGZOJT7Tjc/A1MVXj8
xvzU/LLy/p2ieXvNcRso0D3unxWMDmxurlRcNbSy3Nu3OQeoeXByFIK7UxVM/In/ADkH/wA5AeYv
N2maLaa2L6e9m9NLdrKxWM7ElpWjgVxElOUhUg8QaHFXvXk782/MOseeNG8spaX17osT3drJ5vWG
E2eqy2cBEsvKNEjgjWZW4iItyPEV6jFWvMf53a5p51uzjgtYLjS5v3ly6G5aGBo2kPqQwzmAPEeE
TNNdQqz8+IPGhVfPOuf85ZfnHfX3r6dqkWlW/pxqbWG1tZV9QKPUcNPFK9GepC8thQVJ3KqlpX/O
R/8AzkHql8llZeY+cz1YlrLTkREQcnkkdrcKiIoLMzGgG5xVV1z/AJym/N/62kOleYyLa3iSKS4a&#M xA;ysSbiZRWWejW/wAKs5PBQBRAtfiqSql3/Q0f57f9TN/046f/ANk+Ku/6Gj/Pb/qZv+nHT/8AsnxV
cn/OUP58O6onmUs7EBVFhp5JJ6AD6virI/Ln5z/85E67p11qMPnbSrG1tVJJ1B9FtXdgQOCRyRCT
keoqoB7GuKozzD+d/wCcGmaPb3sXndjNcKTbk2OjTWlw0KK1wkV1bLLxlj9Rf3Usamh61oGVY3pH
/OTn59z6jCkesPqVG5PZR2FkWkRd2H7u35jbuMVZXbfmJ/zmLrGoRGxtNStbfUJyLYNo9ulvErts
GlmtjxjQH7cjdO5xV6teeTv+cnLa2t5G/M/TEmdwtws2nWkUar3Mb/V2MhA6AqvzxVONF8rfnrBZ
jVLr8xINakhb1YtLt9Lsfq90ib+kZx9XZfU3XkGHHxxVMbv80NGm8lTXWo+YIvKGuW8bSXkN5Asd
5AY/iIFhdH1X5rTjxryr8JOKvH/Pv/OM XP1HTLnTvKN8usajN6bWuttZG0jt0onNGhmaT1pDRvi4I
or0OKsJsf+cwPzOtrdkmaK8nZEUT3EcPFXVqs4jgigqGG3Et9OKs20f/AJyoj1jTJYNe8wSeW7y3
uzIt7pNilw1xapDJ+7WK8jnSL1JGjAqWYEb0WrYqqaf/AM5Y+V7G3kuZ9U8yatOeKw2Nxb6PCoql
GZngt0+ywqKMa1+zTFXhv5t+fx5w1eO6/SNzq/FVKXl/DHBcRjgFMAWBhBw5Dl8ES1PxUBZsVYDi
qtbW11dN6NvG8zqGf0kBZqAVYhRuaAVNO2Kq0yahG50yRbiILKW+oPyqshAWvpnj8fHb7OKq5ugV
S3Goz+kpH7u4Q+iOAJWqB5a77U44qpWragZpRaXSxcm+JlmW2Rqk0IDGLb6NvbFXr/8AziRLLL+d
MDzO0khsbrk7EsTRAOpxV4lirbEE1AC+wr/GuKsl8m6H5YvNQiPmXzJ/hu0PxR3MVM tLey1HcxwlW
QeBO/ehGKsr1rXvyh8uI+n+VYNS80R3KOL++1C6nsIHkVyqFLa2ELshX4v3jV37GuKsI17Vr25jj
hNgul2Uzm8jto/rBWRpAF9bncyTSPULSvKmKvYfyc/J7zBceUI/NsDzNZ668un3Q09BPdQ6ekqi5
5RCWGSlwqSKTETIFAVVb1aoqhZ9Vl/KbVvMFuNeumkuiEs/LGn3DWrJISkouL02xMVqAKr6MTGSj
ceS/axV5T5i85eYfMPBNSui1rCzPBZxgRwIz/acItA0jftSPV2/aY4qkmKuxV2KuxV2KuxVteNfi
BIoehpvTbse+Ko467qx0RNC+tONJS4e8+pg0QzyIkbSNT7R4xKBXpvTqcVQkFxcW8nqQSvFJQjmj
FTQihFR44q9A/LX89fPv5f3UraVci80+4objTL8vNAzgAeotGR0f3U7/ALVaDFUB+Y/5tebPPutH
UtXlRFQKLS2iSMC3UUM bjFJxEgHMct2J8ScVUE/N380I7X6pD5q1OC19NIVghupYkVIxRQioVCe/G
le9cVY1PqWoXDzPcXMs73AAmeVy7PRuQqWJPXFUNirsVdirsVbIINCKHrv4HcYq1iqtJIBEIgVcE
iQvxo4YihUsd6YqsEjLIHj/dsp5KVJBBBqKGtdsVa5Gjd+XUkAnx6nFVuKvav+cQ/wDyctt/zA3f
/ERirxXFW241+EkjxIp/XFU7gv8Ay/qGtPca5Hc21jIEVf0cI2eNY1VABHMQrVRf51339sVVNQ1L
y3YSsPLMVzISxKajqSxCZF/ZWKGMyRow7yFmPTjwpuqg9I0jWPMusfUrPleardCR4o2YtLPIqlyi
k1LSMAeI/aOw3xV6F5t/Nr82dGsIvI+oN+hrnSGiLLFxFxBS2EUMcLoStuqwPSkXFqluTEk4q8rk
kklkaSRi8jks7sSWLE1JJPUnFWgSOmKtYq7FXYq2OPE1B5djXb7sM VVjaXS2y3TwSC2kJSOfiRGWH
UBqUNPDFVNEVkdjIqlaUQ8qtXwoCPvIxVpwgI4NyBAJJFKGm479Diq3FW2VlNGBBoDQ7bEVH4Yq1
irsVdiqLsXsI2El3DJMisOSxypGSD4B45vDrTFVkFvHdXyQROtuk0gSN7hwEQMaD1JKAUHdqAd8V
Tnyxrfl/TJiNV0ODV1KTqTPLKoR3TjE6iEpyEbfFxJ+LoGXc4qotJ5RisnEcN3cXzxkRu7okKMdu
RRRyqvUDmR44qiNYtfJRsvX0lr+B35GFblorhTxO8bsiW/B6EdA34jFUnuRaekskLgsyqrROzvIr
DqQfTjSm1Kb4qhMVdirsVdirsVe1f84h/wDk5bb/AJgbv/iIxV4/ZDTeam9aXjyoyRoG+EqfiBLp
uGpt+OKoYgcqLUiu225+jfFUwXRxHKseoXUenuyczHMsrSAGvEMkaOVJoCA1NiD0xVPdN8s+T5Yh
JeeZoM 4IxyWScWV7LGrGM8BRY13D0qeXTsehVZh5e/LTRLhrTWtPvtblsLJKjU9F0e/Ev1hCzx3Cz
SFoQQ/Fftx0G/UElVH/mR+V3nrUZtR81+ZbpzbaPa2n6VuZo7dtTMMrFLd5Le2mniZgvFP3lzz4g
M2KvEzSpoajsTsaYqqQ21xMJGhieUQoZJiilgiAhS7U6LVgKnFVLFXYq7FVysyk0NKgg/I4qnk+n
+X4XtiutQ3arUMiWs6AKG5UkJETNy5EAgk7dRtiqvd2/keFbeIXU1xtWa4tEcvUqtQVuBCuzA/Z+
87YqhbV/JyXCm4TUGhHE1Q2/IHl8XwsrKw49Pf8AFVGXV75Jnl4sNWnhFPTTlbQhW6bRqjqPhCjb
wxVB6poYs+M9xBqNpayHhFJc2wozKBULIXRW+jtiqFt7PSJT8V7LEgrzZreoApUV4O/U7D3xVUuL
DQ4kT09W+sc1LsI7ZwVK9FJkKbmv7NR44qho/wBM GKzKZJXiZG6xKCJOJCdJelTXr9BxVU+uf6NBb
2lLUuhW9eN5/3nxN8Uq1K0CHog6V8aYqjNLuEtbyaf8ASdoZm4kPd2rXkLs/xMzJPDKKruCxjJ8K
g1xVk2uapolpDJpTS6dMSqT/AFu0022q5aMyxr6jW0UgHOUB+HEUWlO+Ku1n/CpkgudJ1nQrYRRK
htYtOvpQQ782Lm9t5ebr027bVpXFWNSWthEU9PWbGSSaRmk/0Wb0kHFiCedvWjbAKqUBPYb4qlF1
aXNpO0F1E8Ey0LRyKyMAwDKeLAHdSCMVUcVdirsVdirsVe1f84h/+Tltv+YG7/4iMVeQ6To+q6xf
xadpVnNf3854w2tujSyMfZVBOKvUNJ/5x41+Kanmy4k0qVFSaXSLC1n1TURFI7KjvHbAwQo5jYB5
ZgB3xV6H+Xv5d/l3rPm2Xy3p3leaWz0yJr3XdevL631G9dEp6dqsdmZrW3llkO9G9XirgcSOWM KsT
84+ePyi8z6nFpfLXvLtjpEjppq309zqFiGHwl5bUzC6tnqNjFI1Kbod8VZ7Y/mr5csLWM/4017SJ
oUVItZjuU8yaXIDRf30E0QuIm7hZIo3+eKsr0HRvyo826PLB5k8zWnmNJZTcNDZXwtvrcjsZpJJN
Ns0tJEleUlmSjk7HkT0VSLzx5Q8oaJrPl3T9N/K36pDPqUEV7eXMcM6S26SoaQTpdSRRlv2mueFR
tQ1NFWAfnroOkeUPOWledfLVjc+XbK8uby1WGzAtHW40+b0jdW6ENE1vcRMrIFUKwrX7WKvPfOb2
nmXS7vzaLy1m1CCe1trv6vbSWTyidJvTaeBY/qscwW339CQqw3pUMSqwLFXYq7FXYq7FVSIIwZWK
psWDty6qCeI41+103H0jFVWRbGOVOJlmiK1cMqwtyI2pvNt0Ne/tiq6KxBszcyM4U8ggSJmrxpUl
jxQAFlBoxO42xVcNJ1cWj3SW0zM 2QAElzGpeHcc+LSJVK7VIJ2p7YqgyzGlSTQUFewxVxNcVXwpM7
+nCrM77cEBJPelB1xVYQQaHYjFWsVTTTND8x3theXunWdzLYWyn69cxK3oooHKkjj4enY4qyeX8v
7vStMrq9pcW+tjm0enRlkvDCYjLb3iQPEecHJG5urrxUb7nFUqsNCl1PRbrVLq8t7G3diIZJVeeW
5urYI061UTTpSK49V2A4Hv0+FVj31WcyJEqF5HUMiJ8ZIYVGy17dsVamgmglaKeNopU2eNwVYH3B
3xVTxV2KuxV7V/ziH/5OW2/5gbv/AIiMVVvInmn8wdF8u6Qfy08tanZzzRNb6lqi6bBeW+oXLSMw
K3MkHqR8acOPqlfhHwhqkqpPd/mH+Y/mK61Dy/8AmL5yvfL9i8LtcQXVpKFlmVVaO2kt7WNHRZA4
YkrxA3odsVZfL+bHl38uvJD6X5M0mHRvNerRIW1G2vV1JBbsW/eTp67m2uiOM JEZVuFfamKvAI7OS
WB5/UiHH9h5UV28aKTX/AD2xVThnmgfnE5RqEEjuD1B8Qe4xVMIp9Eu1K30b2Vwfs3VqoaIn/iy3
JWlT1MbADshxVnvkq2vxYwpY/mOukPK4hSBrj0bWIEgcpfrE8Eir7pA22KpD+Y1lr+mav+gtY8zW
muR2oa6jlsLh7m1EkwHLiQir6rqi8tuwBO2KoiPyv+Y+t+XbDSdB8qarJoKy/Wlmhs7iUXNzKoX6
xLMsfCgT4YxXii13JLMyqcX/APzjV+a2maEdb1Wxt7CyQB5/WuI+cSH9qXgWWNR+0WYBf2qYqmFp
/wA45z6xpkl95b82aRqH1S2W71NZri3jWBOHOSptpr1v3XRzIqDwqMVYp5g/KrUtG06xupdRtJJ7
4ErCWMUagLyP+lTenbt1Aork+NMVSzS/y3876wsraLpUmr/VyouF05o71ouaGRPUW3aRkDKpoWAq
Rx+1tiqV635d1M 7QbiK21rT59NupohPHb3UbQy+mzFVYxuAwBKmlRiqBjhlkr6aluIq1O29PxO2Kr
ri1ubaX0rmJ4JeKv6cilG4yKHRqNQ0ZWDDxGKrGd2ChmJCiigmtB7Yq0CQag0PTbwOxxVfB6HrJ9
YLCGv7z0wC1PapAxVER30MNzJJHbxyxOvBUuFDUG2/wcBy264qprcQiH0zaxlzUeqTJy36bBwu3y
xVQqKEU38e+Kp1oml6XfK1xqNxc29ulxCl9dW9sZkt4JuQM7UKglWH93VeXY+Cr0W0/Mn8vfJ/l3
Trbylp8mpeY7c/WH1q7gFnxmdJYnB4SzTEBZfh9OSOlOp6BVien65pd9PPq2sPPqWsmOZ54ri4Nv
DMFFAj+hH6rReigjEKyr7FVxVNB56tdLg1KC30jT9NtdSmkuLO5sbNXnmtnhe2eyeZ7yeW2glUj1
UjkLCrCtDuqkOheZtK0i7FzY2k0lwJCq28s6xWcsLBqpOqgM SFaldjL9OwxVX1bzPY+ZtWuNQ8wWl
pYXMzvLJJptnRSWJqGWO5t1rVfhrUnud64qk/mNdJN36untWJ1qCI4oSzbE8oIprhIhQkCjmtOgr
iqVc4vQ4CP8AeFqtKTXYVoFG1Ou9a9undVTxV7Z/ziMwb85rYhQg+oXIoK9RGoJ38euKv//Z" xmpGImg:width="256" xmpGImg:height="256" xmpGImg:format="JPEG"/> </rdf:Alt> </xmp:Thumbnails> <dc:title> <rdf:Alt> <rdf:li xml:lang="x-default">HODL GODL LP touch up</rdf:li> </rdf:Alt> </dc:title> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:softwareAgent="Adobe Illustrator CC 22.1 (Macintosh)" stEvt:changed="/" stEvt:when="2018-04-2M 6T08:12:57-05:00" stEvt:instanceID="xmp.iid:724323a7-3774-447b-ad61-7de3de8b78c3" stEvt:action="saved"/> <rdf:li stEvt:softwareAgent="Adobe Illustrator 27.2 (Macintosh)" stEvt:changed="/" stEvt:when="2023-02-15T14:03:14-06:00" stEvt:instanceID="xmp.iid:5f9afc9b-996e-48dc-9526-ec5b42700789" stEvt:action="saved"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:renditionClass="default" stRef:documentID="xmp.did:f8334927-8d08-46bd-90f9-215dfc4ea2a6" stRef:instanceID="uuid:1ec66036-a75a-df4f-8cce-35ec60f53b4a" stRM ef:originalDocumentID="uuid:9E3E5C9A8C81DB118734DB58FDDE4BA7"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> HODL GODL LP touch up8BIM %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &&&&&&&&------55555<<<<<<<<<< >*#*>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz DjB=:ETH.ETH:0x187509d58A7465DFc1b5EA3736e7808A90e96c21:12183382:te:0 text/plain;charset=utf-8 On the Origins of Money - Bitcoin and the Evolution of Cryptocurrency Ryan Walker joins the dots between Darwin's theory of evolution, fiat money and the rise of cryptocurrencies through the lens of Universal Darwinism. Charles Darwin first published his theory of natural selection in his book On the Origin of Species in 1859. The result of over 30 years of research, Darwin delivered to the world a new understanding of how modern species came to be, evolving over generations. The son of a wealthy EnM glish family, Darwin was not a man in need of money. Nonetheless, for On the Origin of Species and his other publications, Darwin received royalties that were most likely paid in British Sterling. Still in existence, the British Pound has origins dating back as far as 750 A.D. making it the world's longest-surviving active currency. At the time, I wonder if Darwin recognized that the very currency by which he was being compensated would one day be subject to his very theory of natural selection? n that would become far more evident 150 years later with the advent of block chain technology. For the fortunate minority throughout history, as with Darwin, a given currency is not subject to question. It serves as the accepted means of exchange and is recognized as such from the time one is old enough to understand value. In this way, currencies are not understood as subject to the laws of natural selection. For the less fortunate majority throughout history, and likely for more fortunate generations to come, M this may not be the case. Natural Selection can be defined as the process by which specific traits become more or less common in a population over time and it serves as the foundation for the theory of evolution. It is the result of the relative success or failure of these traits competing in a given environment. Put more simply, it embodies the concept of survival of the fittest . Darwin famously defended his theory by describing the various species of finches observed on the Galapagos IsM He noted 13 separate species of finch within the ecosystem, each with its own unique food supply. The key differentiating trait between each species was the unique structure and size of beak. Darwin argued that each species of finch had evolved as the result of varied food supply, where each beak was the best suited to each specific food source available within their environment. The law of natural selection is most often observed in nature but can also be applied outside of this realm. Corporations are foM rced to continuously compete and evolve to remain relevant and profitable. Those corporations with the necessary traits such as the ability to innovate, adapt and comply with regulations succeed, while many more go extinct. Whatever the environment may be, specific traits prove advantageous while others do not. It is in understanding which traits provide advantage and which do not that once can better understand how the fittest survived, and furthermore predict who the fittest will be in the future. Before we can understand how natural selection applies to currencies, we must first define the traditional traits that have been used to characterize them. For the purposes of keeping in line with the language of Darwin, we will refer to what is traditionally stated as a property of money as a trait. Table 1.0 displays the commonly accepted traits that characterize money as well as an estimated rating as to the ability of each specific medium, in this case gold and fiat currencies, to fulfill M these traits within the modern environment on a scale of High, Medium, and Low. While the ratings of these traits are subject to debate, the table below provides a relatively accurate representation. Gold has long served as an established means of exchange as well as a commodity. Gold coins were adopted by King Croesus around 550 BC. King Croesus was no fool. He selected gold as it fulfilled many of the necessary traits to act as money. Relative to the era, it was highly fungible, non-consumable, durable and scaM rce. These traits were strong enough to become a leading form of money simply because there was nothing else around that fulfilled these requirements as well. But why did the king not select stones or feathers? The answer is that these forms failed to be fungible, highly divisible, secure, and scarce. The fact that gold has remained a valued commodity for thousands of years speaks to the importance of these specific traits. In fact, the combination of traits possessed by gold and other precious metals eventuallyM provided the foundation for the next evolution in money, fiat currency. s next evolution of species, fiat currency fulfilled several critical traits to an even greater degree than gold. Paper was more portable and could be more easily transacted. That is not to say it was entirely superior. In many cases fiat currencies lacked durability, and as we will see, would eventually become less and less scarce. In fact, many fiat currencies have failed due to inflation; a inevitable result of the inability of M the currency to remain scarce. As a species of currency, fiat currencies were not perfect but nonetheless flourished in the last millennia. But how can this be? Are the benefits of better fungibility and transportability really that significant as to reign as the dominant species of currency for so long? In reality, much of the credit for their rise, survival and success is due to the existence of another less recognized trait. The trait of centralized sovereignty lead to the creation and issuance of hundreds of M new forms of money. Table 2.0 displays the degree to which gold and fiat currencies fulfill the traditionally recognized traits of money in addition to the newly recognized trait of sovereignty. As of May 2014, there were 193 recognized fiat currencies in circulation regularly competing in global markets. Each of these currencies belong to the same species, fiat. It is important to recognize that dollars, euros and yen were not mined or extracted from the environment. These are man-made; designed and issued by ceM ntralized authorities. For centuries, the species of fiat currency has thrived as a result of this fact and that these forms of money could be used to pay taxes. In the course of its existence fiat currency has evolved from a hybrid, by which the currency has been backed by a valued commodity such as gold, to a self-standing form of money with no physical backing. During this period of time, the most notable trait to have changed for the world's most widely recognized fiat standard, the US dollar, has been scarciM ty. Once backed by gold, the dollar was severed from the commodity in 1971 and as a result its scarcity is no longer a trait that the species of fiat currency fulfills. In fact, to the surprise of many, there no longer remains a single fiat currency in existence that is backed by gold. This evolution, or what could possibly be regarded as de-evolution, of fiat currency as a species may have significant implications on its ability to compete and survive in an environment with dynamically changing conditions. currency and the New Traits of Money The invention of the block chain has given rise to a new species of currency, that of cryptocurrency. The arrival of cryptographic-based currencies has enabled key new traits previously not possible with traditional forms of money. Furthermore, the realization of such traits will likely have a dramatic impact on the environment in which these currencies compete. Table 3.0 now includes the species of cryptocurrency when rated against the traditional and newly realized traits ofM money. The two newly-realized traits include the following: 1. Decentralized: Defined as the delegation of power from a central authority to regional and local authorities. With regards to block chain-based cryptocurrencies decentralization implies a trust-less and distributed network. This trait is a dramatically new innovation as a direct result of the invention of the blockchain and was impossible with any other prior form of money. 2. Smart (Programmable): The trait of smart currency indicates the capabilityM to fulfill a growing array of functions still yet to be determined. Existing innovations in the cryptocurrency space foreshadow the potential that currencies could be designed as such to not only act as currencies but represent other forms of value as well. Survival and Extinction Extinction can most simply be described as the failure of a species to compete in an environment to such at a degree that it eventually ceases to exist. The inability to compete itself may be the result of two primary causes; increasedM competition from superior species or a dramatic change in environment. For the dinosaurs, particularly land-based species, the traits of size and strength were essential to their rise to prominence. Although these traits enabled them to thrive for centuries they did not allow them to compete as a species forever. The advantages they enjoyed at the time also meant that they required large consistent amounts resources, most particularly food and oxygen. As a result, at the end of the Cretaceous Period many species M were unable to survive what is widely believed to have been the arrival of a earth-shaking comet known as the K-T Event. Evidence suggests that a large comet impacted earth and darkened the sky with dust and ash. The blocking of the sun starved sun-dependent plant life and resulted in a sharp reduction to the supply of oxygen. The Journal of Geophysical Research-Biogeosciences estimates that this event killed off 75% of species. The traits that had once helped dinosaurs flourish now proved to be the traits that lM eft them susceptible to extinction. Meanwhile, studies show that the freshwater organisms of the time only lost 10% of their species. The commonly accepted explanation is that the freshwater species were already conditioned to endure annual winter freezes where their oxygen supplies were diminished. Their relatively limited dependence on oxygen insulated them from the effects of changes to their environment allowing them to survive. Dramatic changes to the conditions brought on by the K-T Event changed the paradiM gm and a new combination of traits became necessary to ensure competitiveness and survival. Meanwhile, the majority of land-based species disappeared forever, their greatest strengths having become their greatest weaknesses. Currency, like the dinosaurs, has already shown us that it is not always the immediately dominant species that will survive the test of time. In an era that has seen hundreds of highly evolved fiat currencies go extinct, gold endures. s theory of natural selection originated M to provide an evidence based explanation of the past. We now leverage this theory to look forward and understand its implications on the future of currency. Given the ever-changing conditions of the future, will gold and fiat currencies continue to compete or go the way of the dinosaur? The New Paradigm - Currency Competition According to a study of 775 fiat currencies by DollarDaze.org the average life expectancy of a fiat currency is 27 years. The study also indicated the most common causes of any given currencM ies extinction are hyperinflation, monetary reform, war and independence. With fiat currencies being so susceptible to failure, gold has long served as an alternative as it is more scarce and durable. In terms of scarcity, fiat currencies can be printed and inflated at the will of their authorities. With regards to durability, the US Federal Reserve estimates the longest average lifespan of any paper bill is 15 years ($100 bill) with the shortest lifespan being 3.7 years ($50 bill). As a result, gold has maintainM ed a relatively high value in the era of fiat currency and remains the primary alternative store of value when faith in fiat currencies waiver. In this way, these stores of value have primarily competed based upon only two of the traits of money; scarcity and durability. Fiat currencies and commodities now enter a new paradigm where money can exist that possesses even more dynamic traits. Gold and fiat currencies are not capable of possessing the newly inherent traits that would make them decentralized or smart (pM Cryptocurrency has arrived adding heightened competition. To date, bitcoin is the most widely recognized cryptocurrency, but it is not alone. In the 5 years that cryptocurrencies have existed over 200 have been established and the list is growing. Furthermore, the currencies themselves are in a state of hyper-evolution as they continue to take on a varied array of distinctive traits that set them apart from one another within their own competitive ecosystem. Equally as threatening to traditional foM rms of money, the conditions of the environment in which currencies compete is in a constant state of change. Undertones of growing distrust in centralized entities encourage populations to considered alternatives stores of value. Sovereignty, once a trait that was necessary for the survival of a currency, may now be falling out of favor. Centralized failures such as the US financial crisis of 2008 or hyper-inflated fiat currencies such as Zimbabwe dollars or Argentinian pesos compound these sentiments. The most pM rofound of these conditions is the growing awareness throughout the world that decentralized trust is possible. It is interesting to imagine what Charles Darwin would make of the current state of currency. History would have us believe that the existence and survival of any entity, be it plant, animal, corporation, or currency is the subject to the laws of natural selection. With this understanding, it is hard to imagine Darwin contesting the opinion that cryptocurrency will prove a competitive force against tradL itional species of money. Ultimately, the real question may not be whether or not Darwin would predict the survival of cryptocurrency, rather would he be willing exchange those British Sterling pounds for it?h! (((((((((((((((((((((((((((((((((((((((((((((((((( <svg enable-background="new 0 0 283.5 222.1" height="278.388" viewBox="0 0 283.5 222.1" width="359.211" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><clipPath id="a"><path d="m0 .1h283.5v221.8h-283.5"/></clipPath><clipPath id="b"><path d="m-302.1-40h1666.1v16750h-1666.1z"/></clipPath><clipPath id="c"><path d="m0 0h284.3v222.1h-284.3z"/></clipPath><clipPath id="d"><path d="m81.2 12.2c1.5-1.6 4.8-4.8 11-4.6 3.9-1.8 8.3-1.1 9.9-.1 0 0 2.8-.1 4.6.8 11-3.7 22.8-5.7 35-5.7s24 2 35 5.7c1.8M -.9 4.6-.8 4.6-.8 1.6-1 6.1-1.7 9.9.1 6.2-.2 9.5 3 11 4.6.9-2.4 2.3-4.4 5.8-5.6 1.2-6.4 9.7-9.3 21.5-3.4 5.3-4.8 13.1.3 15.6 7.2 3.9-1 10.1 2.6 9.7 14.2 4 .2 5.5 4.3 4.4 11.1 2.4-.5 13.9-2.6 22.2 7.8 4 5 1.7 11.4-2.5 14.5-.3.8-2 7.7-7.3 10.6-.3 3.5 5.8 11.1 8.2 16 6.5 14 3.3 37.7-20.8 41.8 1.1 1 3.5 4.3 4.3 7.1 1 3.6.3 7.1-1.6 10-2 3.3-9.4 7.9-11.3 10.2 3.4 2 7.4 6.2 5.6 14l-6.9 30.6c-1.1 5-4.5 9.2-9.9 10.3-2.8.6-5.7 0-7.4-.5-12-3.2-20.7-.7-34 3.6-6.9 2.2-14.5 4.7-23.4 6.6-9.2 2-19.8 3.4-32.6 3.4-12.9 0-23.5-1.4-32M .6-3.4-9-1.9-16.5-4.4-23.4-6.6-13.3-4.3-22-6.7-34-3.6-1.7.5-4.6 1-7.4.5-5.5-1.1-8.8-5.3-9.9-10.3l-6.9-30.6c-1.8-7.8 2.2-12 5.6-14-1.8-2.3-9.3-6.9-11.3-10.2-1.8-3-2.6-6.4-1.6-10 .8-2.8 3.3-6.1 4.3-7.1-24.1-4-27.3-27.7-20.8-41.7 2.3-5 8.5-12.5 8.2-16-5.3-2.8-7.1-9.8-7.3-10.6-4.3-3.2-6.6-9.5-2.7-14.5 8.3-10.5 19.8-8.3 22.2-7.8-1.1-6.7.4-10.8 4.4-11.1-.4-11.6 5.8-15.2 9.7-14.2 2.5-6.9 10.3-12 15.6-7.2 11.9-5.9 20.3-3 21.5 3.4 3.5 1.2 5 3.2 5.8 5.5"/></clipPath><clipPath id="e"><path d="m0 0h284.3v222.1h-284.3z"/></clipM Path><clipPath id="f"><path d="m111.5 205.7c-8.5-1.8-15.7-4.2-22.3-6.3-12.9-4.2-24.2-7.6-39.1-4.2-3 .7-4.1.7-4.8-2.3l-6.2-27.6c-.6-2.6.2-3.1 2.7-3.7 18.4-3.9 33.5-1.2 48.7 2.6 8 2 15.9 4.3 24.2 6.1 8.4 1.8 17.3 3.2 26.9 3.2 9.7 0 18.5-1.3 26.9-3.2 8.3-1.8 16.2-4.1 24.2-6.1 15.2-3.9 30.4-6.6 48.7-2.6 2.5.6 3.2 1.1 2.7 3.7l-6.2 27.6c-.7 3.1-1.7 3.1-4.8 2.3-14.9-3.5-26.2 0-39.1 4.2-6.6 2.1-13.8 4.5-22.3 6.3s-18.3 3.1-30.2 3.1c-11.7 0-21.5-1.3-30-3.1m-.3-158.1-.8-.5.2-.9c.5-2.4.2-4.6-3.5-4.7h-.9l-2.8-8.9.8-.6c2.6-1.8 2M -4.1-1.5-5.3l-.9-.3v-.9c0-1.5.9-2.3 1.5-2.9.2-.1.3-.3.5-.4s.3-.3.5-.5c.3-.3.6-.7.9-1.3l.2-.4.4-.2c11.1-4.4 23.3-6.7 36-6.7s24.8 2.4 36 6.7l.4.2.2.4c.3.5.6.9.9 1.3.2.2.3.3.5.5s.3.3.5.4c.6.6 1.5 1.4 1.5 2.9v.9l-.9.3c-3.5 1.2-4.1 3.5-1.5 5.3l.8.6-2.8 8.9h-.9c-3.7.1-4.1 2.3-3.5 4.7l.2.9-.8.5c-1.1.7-2.1 3.4-1.5 5.3l1 2.9-2.8-1.3c-8.2-3.9-17.5-6.2-27.3-6.2s-19 2.2-27.3 6.2l-2.8 1.3 1-2.9c.6-2-.4-4.7-1.5-5.3"/></clipPath><clipPath id="g"><path d="m-302.1-41.3h1666.1v16750h-1666.1z"/></clipPath><clipPath id="h"><path d="m2M 43.9 73.4c-.1.1-.2.2-.3.3-1 1.1-3 2.1-4.8 2.1h-1.5l.1 1.5c.6 6.3 4.4 14.8 8.2 19.2 3.9 4.5 5.9 9.3 5.7 13.7l-.1 1.2 1.2.1c7.4.7 12.5-2.8 14.4-7.8 2.8-7.6-2.7-15.8-6.4-21.4-4.9-7.3-4.1-15.7-3-20.9l.2-.9-.7-.5c-1.5-1-2.3-2.7-2.3-4.6 0-2.1.5-4.4 2.7-6.6s4.7-2.5 8.1-2.5c1.7 0 6 1.9 7.2 3.7v.2c0 .1-.1.2-.4.4-1.4.8-2.2 2-2.8 3.3-.5 1.1-.8 2.4-1.3 3.6-.8 2.1-1.8 3.6-5.2 3.6h-1l-.3 1c-.5 1.7-.7 3.5-.8 5.3-.2 5.4 1.2 9.1 3.2 12.4.7 1.1 1.8 2.7 2.9 4.5 1.1 1.7 2.2 3.7 3.1 5.6 4.8 10.3 1.6 22.9-10.1 26.5-1.9.6-6.1 1.2-10.5.4lM -.7-.1-.5.6c-.3.3-.5.6-.8.9-.4.4-1 .9-1.6 1.4l-.3.2-.1.4c-1 3.3-.7 7.1 2.6 10.9 1.3 1.5 2.5 2.7 3.3 3.8.9 1.1 1.3 1.8 1.5 2.4.2.8.1 1.8-3.1 4.1-8.1 5.8-11.4 10.8-13.2 14.3-.8 1.6-1.3 2.9-1.8 3.8-.4.6-.6.7-1 .7-1.6-.1-3.9-.3-5.7-1.1l-1.1-.4-.6 1c-1 1.7-5.2 2.1-6.9 1l-.6-.4-.6.2c-3.4 1.3-5.8 1.1-7.2.7-.7-.2-1.2-.5-1.5-.7-.1-.1-.3-.2-.3-.2-6.1-.5-6.6-6.7-3.9-10.1.6-.7 2.4-3 6.3-3 2.6 0 15-7.7 15-11.8 0-.9-.6-1.6-1.1-2-.5-.5-1.2-.9-1.9-1.3-1.4-.8-3.3-1.8-5.1-3-3.7-2.4-6.9-5.5-6.9-9.9 0-3.6 1-9.8 11.2-9.8h1.3v-1.3c0-7.3M -7.4-14.6-11-17.3-1.6-1.2-3.4-3.2-4.6-5.8l-.2-.5-.5-.2c-3.8-1.3-7.1-5.6-10.3-10.5-1.6-2.5-3-5-4.4-7.2s-2.7-4.3-4.1-5.7l-.4-.4h-.6c-1.7 0-3.8-.6-5.6-1.3l-.7-.3-.6.4c-3.2 2.2-6.8.8-6.9-1.1l-.1-1.2h-1.2c-1.8 0-2.6-1.1-2.7-2.8-.1-1.9.8-3.7 1.7-4.2l.8-.5-.2-.9c-.5-2.3-1.4-9.1 18-.6.5.2 1.1.5 1.7.8l2.5 1.2-.6-2.7c-.8-3.4-2.3-6.6-5.5-9.3l-.7-.6-.8.4c-1.3.6-2.2.5-3.3 0-.6-.3-1.3-.7-2-1.3-.8-.6-1.7-1.2-2.7-1.9-2.7-1.9-2.1-4.2 1.4-5.4l.9-.3v-.9c0-.7-.2-1.3-.6-1.8-.2-.2-.3-.4-.5-.6s-.3-.3-.5-.5c-.2-.1-.3-.3-.5-.5s-.3-.3-.5-.5M c-.3-.4-.6-.8-.9-1.4-1-2 1.3-4.3 4.1-3.1l1.8-1s.1-.1.3-.1c.4-.2 1.1-.3 1.8-.2 1.7 0 2.9.6 3.1.9h2.2c-.1 0-.1.1-.2.2 0 0 .1 0 .3-.1.3 0 .7 0 1.3.2 1.1.5 2.8 1.8 4.1 5.1l.4 1.1 1.1-.3c1-.3 2-.5 2.9-.6.6-.1 2.9-.2 3.4-.3.6-.1 1.2-.4 1.6-.7s.7-.7 1-.9c.1-.1.3-.3.4-.4s.2-.2.4-.4.5-.4.7-.5c.1 0 .8-.2 2-.3l1.5-.2-.4-1.4c-.1-.4-.2-.9-.3-1.4 0-.2-.1-.4-.1-.6 0-.1 0-.1 0-.2.1-.2.3-.5 1.3-.8s2.1-.5 2.8-.7c.4-.1.9-.3 1.3-.4.4-.2.9-.4 1.3-.7.9-.7 1.4-1.8.8-3.1.3 0 .6.1 1.1.2.9.2 1.9.4 2.7.8.4.1.7.3.9.4.1 0 .1.1.1.1 0 .1 0 .2-.1M .4-.1.3-1.5 2.8-1.5 2.8s2.7-.3 3-.3c.4 0 .8 0 1.3.1.7.1 1.3.3 1.9.3.6.1 1.3.2 1.9 0 .8-.2 1.5-.7 1.7-1.7.1-.5.1-1 0-1.6.5.1 1.2.3 1.9.6 2.2 1 3 2.3 2.7 3.2-.3.7-1.3 1.4-1.3 1.4l-1.5 1s1.6 1.2 1.6 1.2c.1.1.2.1.3.3.3.3.6.7.9 1.2.9 1.7 2.9 1.1 3.7.7.8-.5 1.7-1.4 2-2.6 1 1.1 2 2.9 2.1 4.2.1 1.1-.2 2.4-.7 2.8-.2.1-1.2.3-1.4.3l-1.9.2s1 1.9 1.1 2.3.2 1.1.2 1.9c-.1 2.2 2 2.6 3.1 2.4.9-.1 1.8-.6 2.6-1.4.1.2.2.3.3.6.6 1.4.9 3.3.5 4.7-.2.8-1.4 1.9-1.7 2-.1 0-.2 0-.5 0-.2 0-.5 0-.7-.1-.3 0-.6-.1-.8-.1-1.2.1-1.5.8-1.4 1.6 0 .3.M 1.6.1.9s0 .6-.1 1.2c-.3 4 3.1 4 5.4 2.8.1.6.2 1.3.1 2.1 0 1.1-.2 2.2-.6 3s-.8 1.1-1.2 1.2c-.9.2-1.3 0-1.4-.1-1.7-.9-2.2-.3-2.4.7 0 .2-.1.3-.1.6-.1.2-.2.5-.3.9-1 2-.1 3.6 1.7 4 .8.2 1.8.1 2.7-.2 0 .5-.1 1.2-.3 1.9-.6 2.1-1.7 3.4-3.2 3.2 0 0-.1 0-.2-.1-.2-.1-.3-.2-.5-.3-.2-.2-.5-.3-.7-.5-.3-.2-.7-.3-1.2-.3-.4 0-1.2.3-1.5 1.3-.1.4-.2.8-.2 1.2-.1.9-.1 2 .1 3.1s.4 2.3 1 3.3c.5 1 1.5 2 3 2 .6-.3.7-.2.8-.2m-179.8-62c-.5 1.2-.1 2.3.9 3 .4.3.9.5 1.3.7s.8.3 1.3.4c.7.2 1.8.4 2.8.7s1.2.6 1.3.8v.2c0 .2 0 .4-.1.6-.1.5-.2 1-.3 1.M 4l-.4 1.4 1.5.2c1.2.2 1.9.3 2 .3.3.1.5.3.7.5.1.1.3.2.4.4.1.1.3.3.4.4.3.3.6.6 1 .9s.9.6 1.6.7c.5.1 2.8.2 3.4.3.9.1 1.9.3 2.9.6l1.1.3.4-1.1c1.4-3.3 3-4.7 4.1-5.1.6-.2 1-.3 1.3-.2.1 0 .2 0 .3.1 0-.1-.1-.1-.2-.2h2.2c.2-.3 1.4-.9 3.1-.9.8 0 1.4.1 1.8.2.2.1.3.2.3.2 4.7-.3 6.9 2 5.9 4-.3.6-.6 1-.9 1.4-.2.2-.3.4-.5.5-.2.2-.3.3-.5.5s-.4.3-.5.5c-.2.2-.4.4-.5.6-.3.5-.6 1.1-.6 1.8v.9l.9.3c3.5 1.3 4.1 3.6 1.4 5.4-1 .7-1.9 1.3-2.7 1.9s-1.4 1-2 1.3c-1.1.6-2 .7-3.3 0l-.8-.4-.7.6c-3.2 2.8-4.7 5.9-5.5 9.3l-.6 2.7 2.5-1.2c.6-.3 1.1-.M 5 1.7-.8 19.5-8.5 18.5-1.6 18 .6l-.2.9.8.5c.9.5 1.7 2.3 1.7 4.2-.1 1.7-.8 2.8-2.7 2.8h-1.1l-.1 1.2c-.2 1.9-3.7 3.3-6.9 1.1l-.6-.4-.7.3c-1.8.7-3.9 1.3-5.6 1.3h-.6l-.4.4c-1.4 1.4-2.7 3.5-4.1 5.7s-2.8 4.8-4.4 7.2c-3.2 5-6.5 9.2-10.3 10.5l-.5.2-.2.5c-1.2 2.6-3 4.6-4.6 5.8-3.6 2.8-11 10.1-11 17.3v1.3h1.3c10.1 0 11.2 6.2 11.2 9.8 0 4.5-3.2 7.5-6.9 9.9-1.9 1.2-3.7 2.2-5.1 3-.7.4-1.4.9-1.9 1.3s-1.1 1.1-1.1 2c0 4.1 12.4 11.8 15 11.8 3.8 0 5.7 2.2 6.3 3 2.7 3.4 2.2 9.6-2.9 9.6h-.5l-.5.5c-.1.1-.2.1-.3.2-.3.2-.8.5-1.5.7-1.4.4-M 3.7.6-7.2-.7l-.6-.2-.6.4c-1.7 1.1-5.9.8-6.9-1l-.6-1-1.1.4c-1.7.7-4.1 1-5.7 1.1-.4 0-.7-.1-1-.7-.5-.9-1-2.2-1.8-3.8-1.8-3.5-5.1-8.5-13.2-14.3-3.2-2.3-3.3-3.3-3.1-4.1.2-.6.6-1.3 1.5-2.4s2-2.3 3.3-3.8c3.3-3.8 3.7-7.7 2.6-10.9l-.1-.4-.3-.2c-.6-.5-1.1-1-1.6-1.4-.3-.3-.6-.6-.8-.9l-.5-.6-.7.1c-4.4.8-8.6.2-10.5-.4-11.7-3.2-14.9-15.9-10.1-26.1.9-1.9 2-3.8 3.1-5.6s2.2-3.4 2.9-4.5c2-3.3 3.4-7 3.2-12.4-.1-1.8-.3-3.6-.8-5.3l-.3-1h-1c-3.3 0-4.4-1.5-5.2-3.6-.5-1.2-.8-2.5-1.3-3.6-.5-1.2-1.3-2.5-2.8-3.3-.3-.2-.4-.3-.4-.4s0-.1 0-.2cM 1.2-1.9 5.5-3.7 7.2-3.7 3.5 0 5.9.3 8.1 2.5 2.1 2.1 2.7 4.4 2.7 6.6 0 1.9-.8 3.6-2.3 4.6l-.7.5.2.9c1.1 5.3 1.9 13.6-3 20.9-3.7 5.6-9.2 13.8-6.4 21.4 1.8 5 7 8.5 14.4 7.8l1.2-.1.1-1.3c-.2-4.4 1.8-9.2 5.7-13.7 3.8-4.4 7.6-12.9 8.2-19.2l.1-1.5h-1.5c-1.8.1-3.8-1-4.8-2.1-.1-.1-.2-.2-.3-.3h.4c1.5 0 2.4-1 3-2 .5-1 .8-2.2 1-3.3.2-.9.2-2.1.1-2.9 0-.4-.1-.9-.2-1.2-.3-1-1.1-1.3-1.5-1.3-.5 0-.9.2-1.2.3-.2.1-.5.3-.7.5-.2.1-.3.2-.5.3-.1.1-.2.1-.2.1-1.5.1-2.6-1.1-3.2-3.2-.2-.7-.3-1.4-.3-1.9.9.3 1.9.4 2.7.2 1.8-.4 2.7-1.9 1.7-4-.2M -.4-.3-.6-.3-.9-.1-.2-.1-.4-.1-.6-.2-1-.7-1.6-2.4-.7-.1.1-.5.2-1.4.1-.4-.1-.8-.4-1.2-1.2s-.6-1.9-.6-3c0-.8 0-1.5.1-2.1 2.2 1.2 5.7 1.2 5.4-2.8 0-.5-.1-.9-.1-1.2s0-.5.1-.9c.1-.8-.2-1.5-1.4-1.6-.2 0-.5 0-.8.1-.3 0-.5 0-.8 0-.2 0-.4 0-.5 0-.4-.1-1.5-1.2-1.7-2-.4-1.4-.1-3.3.5-4.7.1-.2.2-.4.3-.6.7.8 1.7 1.2 2.6 1.4 1.1.2 3.2-.2 3.1-2.4 0-.9.1-1.5.2-1.9.1-.3 1.1-2.3 1.1-2.3l-1.9-.2c-.2 0-1.2-.2-1.4-.3-.5-.4-.8-1.7-.7-2.8.1-1.3 1.1-3.1 2.1-4.1.3 1.2 1.2 2.1 2 2.5.8.5 2.8 1.1 3.7-.7.3-.6.6-1 .9-1.2.1-.1.2-.2.3-.3 0-2.2-1-2M .9-1.2-3.7-.3-.9.5-2.2 2.7-3.2.7-.3 1.4-.5 1.9-.6-.1.6-.1 1.1 0 1.6.2 1 .9 1.5 1.7 1.7.6.1 1.4.1 1.9 0 .6-.1 1.2-.2 1.9-.3.5-.1 1-.1 1.3-.1s3 .3 3 .3-1.3-2.4-1.5-2.8c-.1-.2-.1-.3-.1-.4h.1c.3-.2.6-.3.9-.4.8-.3 1.8-.6 2.7-.8.6-.2 1-.3 1.2-.3"/></clipPath><clipPath id="i"><path d="m-302.1-39.1h1666.1v16750h-1666.1z"/></clipPath><clipPath id="j"><path d="m16.1 56.1c.9 2.4 1.5 3.1 6 3 .8 2.5 1.3 5.5 1.3 7.3.2 5.7-1.2 9.6-3.3 13.1-.7 1.1-1.8 2.7-2.9 4.5-1.1 1.7-2.2 3.6-3 5.4-4.6 9.8-1.4 21.5 9.4 24.9 1.6.5 5.1 1 8.9.5-.6M -1-1-2.1-1.2-3.2-7.9.8-13.8-2.8-15.9-8.5-1.6-4.2-.8-8.5.8-12.3 1.5-3.8 3.8-7.3 5.7-10.2 4.6-6.9 4-15.1 2.4-22 1.5-.8 3.1-1.4 3.1-4.2 0-2-.4-4-2.3-5.7-4.1-3.9-10.6-1.4-12.9.3 1.3.9 2 2.2 2.5 3.3.6 1.2.9 2.5 1.4 3.8zm53.6 24.8c.8.8 1.9 1.3 3.4 1.3 3.4 0 6.8-3.2 10.4-8.8 1.8-2.6 3.4-5.5 4.9-8s3.1-5 4.7-6.7l.8-.9c3 .4 7.6-1.7 7.6-1.7l1.2.8c1 .7 2.4.9 3.5.8.9-.1 1.2-.6 1.3-1.3.2-1.4-1-2.4-1.8-2.8-1.6-.8-.4-3.1 1.1-2.4 0 0 1.8.7 3 3.2 1.3.1 1.4-.6 1.5-1.4.2-1.6-.8-4.3-5-4.3-1.7.1-1.9-2.5-.2-2.6 0 0 1.8-.1 3 .4.2-1.2-.3-1M .8-.8-2-1.5-.6-5.6-.6-15.4 3.7-2.2 1-6.8 3.8-11.3 5.4 1 1.2 2.5 1.8 4 .6 2.4-1.9 1.9 8-1.8 8.6-1.4.2-2.4-.6-2.4-.6s-.2 1.2-.5 1.9c-.8 1.6-.5 3.5 2.1 3.3 0 3.1-2.7 7.4-7.2 5.8-3.2-1.1-1.9-5.9-5.4-5.3-.1 0-.5 1.7-.3 3.9.5 6.5 3.1 5 3.3 5.7.5 1.5-1.4 3-3.7 3.4zm2.8 3.9c-3.5-.2-5.4-2-6.4-4.3-1.9-.7-3.4-2.4-3.7-5.5-.3-2.9 1.4-6.7-1.6-6.7-.5 0-1 2.3-1.3 3.4-1.5 7 1.9 5.1.6 6.6-2.2 2.5-9.6 2-8.8-5.3.2-2.1 2.3-6 .1-6-1.5 0-1.3 5.6-4 8-.2 7.4-4.9 17.1-8.6 21.3-6.3 7.2-7.2 14.7-2.1 19.8.7.7 1.8 1.6 2.8 2.5 1.1 1 2.4 2.1 3.4 M 3.4 2.1 2.7 3.7 6.7.1 10.6-.9.9-1.6 1.8-2.3 2.6-1.6 1.8-.5 2.4.9 3.4 6 4.2 9.5 7.9 11.9 11.2 1.2 1.6 2 3.1 2.7 4.5.6 1.3 1.2 2.5 1.7 3.6.4.7 3.5 1.8 5.8 0 .1-1.5-.5-3.1-1.4-4.4-1-1.5 1.2-3.1 2.3-1.6 1.2 1.7 2.2 4.4 1.9 6.6 2.5.9 4.6.8 6.3-.2.3-2.6-.4-4.4-1.3-5.6-1.1-1.5 1.1-3.1 2.2-1.7 1.2 1.6 2 4 2 6.2 1.5-.2 2-1.1 2.2-2.3.3-1.8-.4-4-1.2-5-.5-.6-2-2.4-5.1-2.4-2.9 0-16.4-8-16.4-13.2 0-1.6 1.1-2.6 1.6-3.1.6-.6 1.4-1.1 2.1-1.5 1.4-.8 3.2-1.8 5.1-3 3.7-2.4 6.3-5 6.3-8.7 0-3.2-1-7.6-7.6-8.2-1.4-.1-6.2-.6-9.3 1-1.6.8-3.M 1-1.2-1.6-2.2 0 0 1.7-1.2 6-1.7 0-8 7.9-15.7 11.6-18.4.9-.8 2.1-2.1 3.1-3.7zm-33 37.4c.1 2.8-.9 5.8-3.5 8.8-1.3 1.5-2.5 2.7-3.3 3.8-1.6 2-1.7 2.3 1.4 4.6 8.3 6 11.7 11 13.6 14.8 1.2 2.5 1.6 3.9 2.1 3.9 1-.1 2-.2 3.2-.5.6-.1 1.1-.3 1.5-.5-1.9-4.1-4.7-9.3-14.3-16-5.3-3.7-2.7-6.1 1-10.1 2.9-3.3.9-6.3-1.7-8.8zm44-81h-8.5v-6.6s6.8 0 8.8-.2c.5-.1 1.3-.1 2.3.1.1 0 .5 0 .5-.2.2-1.2.1-3.8.1-3.8s1.5-1.5 1.5-4.1c-2.3-.9-4.7-1.6-6.5-1.8-.7-.1-2.9-.2-3.4-.3-.9-.1-1.5-.5-2-.8-.4-.3-1.6-1.9-2.3-2.1-5-1.2-10.5-.6-11.8-.4-1.7.4-2.1M 1.9-2.1 1.9-.9 0-3 0-3.8.2-1 .2-1.4.3-1.4.9 0 1.2 2.9 3 2.9 3s-.6 3.5-1.7 6.5c-.2.7-.2 1.2.3 2.5.8 1.8 2.7 2.8 5.3 3.2 1.9.3 4.3 3.3 5.5 3.8.7.3 5.3.2 7 .2 3.5-.1 7.1-.4 8.3-.7.5 0 .8-.8 1-1.3zm-7.3 4.4c-4.2.2-8.9.3-10.1-.3-2.4-1.3-3.7-3.3-4.9-3.6-2.7-.5-5.8-1.6-7.1-4.6-1.5-3.5 0-4.3 1-8.9-3.4-2.6-3.2-5-1.5-6.5.7-.6 3-1 5.1-1 .6-2.4 6.7-2.5 11.2-2.2.1-.4.2-.8.3-1.1.2-.6.2-.8-.8-1-2.1-.4-3.3-.8-4.8-1.6-1.3-.7-2-2-1.8-2.7.3-.7-1.9 0-2.2.4-.4.7 1.5 3.5 1.5 3.5s-2.6-.2-4.2-.1c-2.3.1-3.7.7-5.3.5-1.9-.2-3-1.7-2.9-2.8.1-M .7-2.5 1.2-2.4 1.9.1.6.9 1.6 3.1 3-3.7 2.2-2.8 4.8-6 4.9-.9 0-3.5-.7-3.7-2-.2-.8-1.9 2.2-.9 3.8.5.8 1.1.7 3.8.9-1.1 2.1-1.2 3.1-1.2 4.9 0 1.7-.5 2.3-1.9 3.1-.9.6-3.1.9-4.4-.4-.4-.4-.7 2.4-.4 3.2s.8 1.2 2.1 1.2c2-.1 3.1-.5 3.1-.1-.1 1.1-.1 2.8.1 5.6.2 3.1-3.2 4.5-5.5 3.3-.6-.3 0 3.7 1.1 3.8 2.1.2 4-1.7 4.1-1.1.5 3.2 1.2 3.5 1.4 5.1.5 3.6-3.1 4.6-4.3 4-.9-.4.3 3.5 2.1 2.8.6-.3 1.5-1 2.3-1 1.3 0 2.1.5 2.7 2.2.3.9.4 2.8.1 4.7-.2 1.2-.4 2.4-1.1 3.6-.4.7-1.1 1.4-1.8 1.6-1.2.3 2 1.8 3.6.8 1.3-.7 2.2-5.6 2.5-6.2.8-1.9 2.1-M 2.5 3.2-2.5 1.6 0 2.9 1 3.3 2.5.3 1 .1 2.1-.1 2.7-.1.7-.8 3.1-.9 3.5-.9 4.3 3.8 4.4 3.3 3.9-.7-.8-.6-3.3 0-6 .1-.6.7-2.8 1.2-3.7.8-1.3 1.9-1.7 2.6-1.7 3.7 0 4.3 2.9 4.3 4.6 0 .7-.2 3.7-.2 4.3 0 5 6.4 3.7 5.3 3.2-1.3-.6-2-2.5-2.4-6.2-.3-3 .5-6.1.8-6.2 2.6-.8 5.2-.9 6.8 2.3.4.8.8 2.2 1.3 2.6 1.1.9 3.2 0 3.7-1.4-2.4-.7-2.5-4.1-1.4-6.3.5-1 .9-2.4 1.2-4 .4.4 2.6 2 3.7 1.7.8-.3 1.7-3.8.8-3.3-1.9 1-4.1-1.3-4.9-2.4-.4-.6-1.4-1.8-1.5-4.2-.1-1.6-.3-3.6-2.1-5zm11.2 2.4c.6-4.3 2.1-8.5 6.3-12.1l1.3-1.2 1.6.8c.9.4 1.3.4 2.1 0 .5M -.3 1.1-.6 1.9-1.2s1.7-1.3 2.8-1.9c2-1.3 1.2-2.3-1-3.1l-1.9-.7v-1.5c0-2.4 1.1-3.4 2-4.2.2-.2 2-1.6 1.7-2.6-.3-1.2-2.8-.8-2.8-.8-1.1.3-2 2-2.4 2.8-.7 1.7-3.3.6-2.5-1.1 0 0 .7-1.6 1.7-2.7-.1-.6-2.3-.4-3 .1-.6.8-1.1 2-1.3 2.7-.3 1.8-3 1.3-2.7-.5 0 0 .2-.8.6-1.6-1.3-.1-2.8 1.5-4.1 4.4 1 .3 1.9.7 2.8 1 .5 2.4 0 4.8-1.4 6.5 0 2.5.2 6.1-2.7 5.7-.6-.1-1.7-.2-2.3-.2-2.1.3-5.2.2-6.7.2v1.9h8.6c.9.9-.6 5.6-3 6.1-.7.1-2 .3-3.6.4 1.2 1.9 1.3 4.3 1.5 5.7 2.3-.8 4.5-1.9 6.5-2.9zm108.7 0c2 1 4.1 2.2 6.5 3.1.1-1.4.3-3.8 1.5-5.7-1.6-M .1-2.9-.3-3.6-.4-2.4-.4-3.9-5.1-3-6.1h8.6v-1.9c-1.5 0-4.6 0-6.7-.2-.6-.1-1.7.1-2.3.2-2.8.4-2.7-3.2-2.7-5.7-1.4-1.7-1.8-4.2-1.4-6.5.9-.4 1.8-.7 2.8-1-1.3-2.9-2.8-4.5-4.1-4.4.4.8.6 1.6.6 1.6.3 1.8-2.4 2.3-2.7.5-.1-.7-.6-1.9-1.3-2.7-.7-.5-3-.7-3-.1 1 1.1 1.7 2.7 1.7 2.7.7 1.7-1.8 2.7-2.5 1.1-.3-.8-1.2-2.5-2.4-2.8 0 0-2.5-.4-2.8.8-.3 1 1.6 2.5 1.7 2.6 1 .8 2 1.9 2 4.2v1.5l-1.9.7c-2.2.7-3 1.7-1 3.1 1 .7 1.9 1.4 2.8 1.9.8.6 1.4 1 1.9 1.2.8.4 1.2.4 2.1 0l1.6-.8 1.3 1.2c4.2 3.4 5.7 7.6 6.3 11.9zm11.1-2.4c-1.8 1.4-1.9 3.5-2M 5.1-.1 2.3-1.1 3.6-1.5 4.2-.8 1.1-3.1 3.4-4.9 2.4-.9-.5 0 3 .8 3.3 1.1.4 3.3-1.3 3.7-1.7.3 1.6.7 3 1.2 4 1.1 2.2 1 5.6-1.3 6.5.5 1.4 2.6 2.3 3.7 1.4.5-.4.9-1.8 1.3-2.6 1.6-3.2 4.2-3.1 6.8-2.3.2.1 1.1 3.1.8 6.2-.4 3.7-1.2 5.7-2.4 6.2-1.1.5 5.3 1.8 5.3-3.2 0-.6-.2-3.6-.2-4.3 0-1.7.5-4.6 4.3-4.6.7 0 1.8.4 2.6 1.7.5.8 1 3 1.2 3.7.6 2.7.7 5.2 0 6-.5.5 4.2.4 3.3-3.9-.1-.4-.8-2.9-.9-3.5s-.3-1.7-.1-2.7c.4-1.5 1.7-2.5 3.3-2.5 1.1 0 2.4.6 3.2 2.5.3.7 1.2 5.5 2.5 6.2 1.6.9 4.8-.5 3.6-.8-.7-.2-1.4-.9-1.8-1.6-.6-1.2-.9-2.4-1.1M -3.6-.3-1.9-.1-3.8.1-4.7.5-1.7 1.4-2.2 2.7-2.2.8 0 1.7.8 2.3 1 1.8.7 3-3.2 2.1-2.8-1.3.5-4.8-.4-4.3-4 .2-1.5.9-1.9 1.4-5.1.1-.5 2 1.3 4.1 1.1 1.1-.1 1.7-4.1 1.1-3.8-2.3 1.2-5.7-.2-5.5-3.3.2-2.9.1-4.6.1-5.6 0-.4 1.1 0 3.1.1 1.3 0 1.8-.4 2.1-1.2s0-3.6-.4-3.2c-1.4 1.3-3.5 1-4.4.4-1.3-.8-1.9-1.4-1.9-3.1 0-1.8-.2-2.8-1.2-4.9 2.7-.2 3.2-.1 3.8-.9 1-1.5-.7-4.6-.9-3.8-.3 1.4-2.8 2.1-3.7 2-3.2-.1-2.3-2.7-6-4.9 2.1-1.4 3-2.4 3.1-3 .1-.8-2.5-2.6-2.4-1.9.1 1.1-.9 2.6-2.9 2.8-1.6.2-3-.4-5.3-.5-1.6-.1-4.2.1-4.2.1s1.9-2.8 1.5-3.5M c-.2-.4-2.4-1.2-2.2-.4.2.7-.5 2-1.8 2.7-1.5.8-2.7 1.2-4.8 1.6-1 .2-1 .4-.8 1 .1.3.2.7.3 1.1 4.5-.3 10.6-.2 11.2 2.2 2.1 0 4.4.4 5.1 1 1.7 1.4 1.8 3.9-1.5 6.5.9 4.7 2.5 5.4 1 8.9-1.3 3-4.3 4.1-7.1 4.6-1.2.2-2.5 2.3-4.9 3.6-1.3.2-6.1.2-10.3 0zm-7.3-4.4c.2.5.6 1.3 1 1.4 1.2.3 4.8.5 8.3.7 1.8.1 6.3.1 7-.2 1.2-.5 3.6-3.5 5.5-3.8 2.6-.4 4.5-1.4 5.3-3.2.6-1.3.6-1.9.3-2.5-1.1-3-1.7-6.5-1.7-6.5s3-1.9 2.9-3c0-.7-.4-.7-1.4-.9-.9-.2-2.9-.2-3.8-.2 0 0-.4-1.6-2.1-1.9-1.3-.3-6.8-.8-11.8.3-.6.1-1.9 1.8-2.3 2.1-.5.4-1.2.7-2 .8-.5.1M -2.8.3-3.4.3-1.8.2-4.2.9-6.5 1.8 0 2.6 1.5 4.1 1.5 4.1s-.1 2.6.1 3.8c0 .2.3.3.5.2 1-.2 1.8-.1 2.3-.1 2 .2 8.8.2 8.8.2v6.6zm44.1 81c-2.6 2.6-4.6 5.6-1.7 8.7 3.7 4 6.3 6.4 1 10.1-9.7 6.7-12.4 12-14.3 16 .4.2.9.3 1.5.5 1.2.3 2.3.4 3.2.5.5 0 .8-1.4 2.1-3.9 1.9-3.7 5.3-8.8 13.6-14.8 3.1-2.2 2.9-2.6 1.4-4.6-.9-1.1-2-2.3-3.3-3.8-2.6-2.9-3.6-5.9-3.5-8.7zm-33-37.4c1 1.6 2.2 2.8 3.3 3.6 3.6 2.8 11.5 10.4 11.6 18.4 4.3.4 6 1.7 6 1.7 1.5 1.1 0 3.1-1.6 2.2-3.1-1.6-7.9-1.1-9.3-1-6.6.6-7.6 5-7.6 8.2 0 3.7 2.6 6.4 6.3 8.7 1.9 1.2 M 3.7 2.2 5.1 3 .7.4 1.5.9 2.1 1.5.5.5 1.6 1.5 1.6 3.1 0 5.3-13.5 13.2-16.4 13.2-3.2 0-4.6 1.8-5.1 2.4-.8 1-1.5 3.2-1.2 5 .2 1.1.7 2.1 2.2 2.3 0-2.2.7-4.6 2-6.2 1.1-1.5 3.3.2 2.2 1.7-.9 1.1-1.6 3-1.3 5.6 1.7 1 3.8 1.1 6.3.2-.3-2.1.7-4.9 1.9-6.6 1-1.5 3.3.1 2.3 1.6-.9 1.2-1.5 2.9-1.4 4.4 2.2 1.8 5.4.7 5.8 0 .6-1.1 1.1-2.3 1.7-3.6.7-1.4 1.6-2.9 2.7-4.5 2.4-3.3 5.9-7 11.9-11.2 1.4-1 2.5-1.6.9-3.4-.7-.8-1.5-1.6-2.3-2.6-3.6-3.9-2-8 .1-10.6 1-1.3 2.3-2.5 3.4-3.4 1-.9 2.1-1.7 2.8-2.5 5.1-5 4.2-12.5-2.1-19.8-3.7-4.2-8.4-13.9M -8.6-21.3-2.7-2.3-2.5-8-4-8-2.1 0-.1 3.9.1 6 .8 7.3-6.6 7.8-8.8 5.3-1.3-1.5 2.1.3.6-6.6-.2-1.1-.8-3.4-1.3-3.4-3 0-1.3 3.8-1.6 6.7-.3 3.1-1.9 4.8-3.7 5.5-1.2 2.5-3.1 4.3-6.6 4.4zm2.8-3.9c-2.3-.4-4.2-1.8-3.9-3.4.1-.7 2.7.8 3.3-5.7.2-2.2-.2-3.9-.3-3.9-3.5-.6-2.2 4.2-5.4 5.3-4.5 1.6-7.2-2.7-7.2-5.8 2.6.1 2.9-1.8 2.1-3.3-.3-.7-.5-1.9-.5-1.9s-1.1.8-2.4.6c-3.7-.5-4.2-10.5-1.8-8.6 1.5 1.2 3 .5 4-.6-4.4-1.7-9.1-4.5-11.3-5.4-9.8-4.3-13.9-4.3-15.4-3.7-.5.2-1 .8-.8 2 1.2-.5 3-.4 3-.4 1.7.1 1.6 2.7-.2 2.6-4.2 0-5.1 2.8-5 4.3.1.M 8.2 1.5 1.5 1.4 1.2-2.4 3-3.2 3-3.2 1.6-.8 2.7 1.6 1.1 2.4-.8.4-2 1.4-1.8 2.8.1.6.4 1.1 1.3 1.3 1.1.2 2.5-.1 3.5-.8l1.2-.8s4.6 2.1 7.6 1.7l.8.9c1.6 1.7 3.2 4.2 4.7 6.7s3.1 5.3 4.9 8c3.7 5.5 7.1 8.8 10.4 8.8 1.7-.1 2.8-.6 3.6-1.3zm53.6-24.8c.5-1.2.8-2.5 1.3-3.7.5-1.1 1.2-2.4 2.5-3.3-2.3-1.7-8.8-4.2-12.9-.3-1.8 1.7-2.3 3.7-2.3 5.7 0 2.8 1.6 3.4 3.1 4.2-1.6 6.9-2.2 15 2.4 22 1.9 2.9 4.2 6.4 5.7 10.2s2.3 8.1.8 12.3c-2.1 5.7-7.9 9.4-15.9 8.5-.3 1.1-.7 2.2-1.2 3.2 3.8.5 7.3 0 8.9-.5 10.8-3.4 13.9-15.1 9.4-24.9-.9-1.8-2-3M .7-3-5.4-1.1-1.8-2.2-3.4-2.9-4.5-2.1-3.5-3.6-7.4-3.3-13.1.1-1.9.5-4.8 1.3-7.3 4.5 0 5.1-.7 6.1-3.1zm-125.7 152.7c11.8 0 21.5-1.3 29.9-3.1 8.5-1.8 15.6-4.2 22.2-6.3 12.9-4.2 24.6-7.8 39.8-4.2 2.7.7 2.7.7 3.2-1.3l6.2-27.6c.4-1.6.4-1.6-1.7-2.1-18.1-3.9-33-1.2-48.1 2.6-8 2-15.9 4.3-24.2 6.2-8.5 1.9-17.5 3.2-27.2 3.2-9.8 0-18.7-1.3-27.2-3.2-8.3-1.8-16.2-4.1-24.2-6.2-15.2-3.8-30.1-6.5-48.1-2.6-2 .5-2 .5-1.7 2.1l6.2 27.6c.4 2 .5 2 3.2 1.3 15.3-3.6 26.9 0 39.8 4.2 6.6 2.1 13.7 4.5 22.2 6.3 8.2 1.8 17.9 3.1 29.7 3.1zm-31.5-M 40.8c-19.5-11-32.7-31.8-32.7-55.7 0-21.4 10.5-40.3 26.7-51.9-1-.2-2.1-.6-3-1.2-1.8.7-4.1 1.4-6 1.4-4.9 5.1-10.7 20.6-19 23.7-1.3 2.8-3.2 5-5 6.4-3.6 2.8-10.5 9.7-10.5 16.3 11.2 0 12.5 7.1 12.5 11.1 0 10.4-15.1 13.6-15.1 16.3 0 3 11.4 10.5 13.7 10.5 4.5 0 6.6 2.6 7.3 3.5 2.3 2.9 3.2 10.2-2.1 11.5 11.2 1.9 21.9 5.3 33.2 8.1zm95.8-55.7c0 23.9-13.2 44.7-32.7 55.7 11.3-2.7 22-6.1 33.3-8.1-5.3-1.3-4.4-8.6-2.1-11.5.7-.9 2.9-3.5 7.3-3.5 2.3 0 13.7-7.5 13.7-10.5 0-2.7-15.1-5.9-15.1-16.3 0-3.9 1.3-11.1 12.5-11.1 0-6.6-6.9-13M .5-10.5-16.3-1.8-1.4-3.7-3.6-5-6.4-8.4-3.1-14.1-18.6-19-23.7-1.9 0-4.2-.7-6-1.4-.9.6-1.9 1-3 1.2 16.1 11.6 26.6 30.5 26.6 51.9zm-122.6 0c0 32 26.1 58 58.3 58s58.3-26 58.3-58-26.1-58-58.3-58-58.3 25.9-58.3 58zm98.6-75.5-1.6 5.1c2.8.6 6.4 1.7 11.1 3.8.6.2 1.1.5 1.7.8-.7-3.2-2.1-6.1-5-8.6-2.5 1.1-4.1.4-6.2-1.1zm-78.9 5.1-1.6-5.1c-2.1 1.5-3.8 2.2-6.1 1-2.9 2.5-4.3 5.4-5 8.6.6-.3 1.2-.6 1.7-.8 4.6-2 8.2-3.2 11-3.7zm74.1-19.5c-11-4.3-23-6.7-35.5-6.7s-24.5 2.4-35.5 6.7c-1.4 2.5-3.2 2.7-3.2 4.4 3.7 1.3 5.9 4.8 1.8 7.6l2.3 M 7.1c5 .2 5.4 3.6 4.8 6.3 1.8 1.1 2.8 4.4 2 6.8 8.4-4 17.9-6.3 27.8-6.3 10 0 19.4 2.3 27.8 6.3-.8-2.4.3-5.8 2-6.8-.6-2.7-.2-6.1 4.8-6.3l2.3-7.1c-4-2.8-1.9-6.3 1.8-7.6.1-1.7-1.8-1.9-3.2-4.4zm-71.1-4.2c11.1-4.2 23.1-6.4 35.7-6.4s24.6 2.3 35.7 6.4c1.3-1.4 3.8-1.8 5.5-1 .3-2.2 6.4-1.8 7.6-.1.6-.9 4.9-1.4 7.9 5.7 1.1-.3 2.1-.5 3.1-.6.6-.1 2.8-.2 3.4-.3 1.5-.2 2.1-2.1 3.8-2.8.3-.1 1.1-.3 2.3-.4-.2-.9-.6-2.3-.4-2.9.5-1.8 3.5-1.9 4.9-2.4 1.6-.5 3.5-1.1 2.5-2.7-1.9-3 6.5-.8 7.4.5.5.8-.4 2.3-.4 2.3s1.1-.1 2.2.1c2.8.4 4.9 1.3 M 3.8-2.2-.7-2.3 8.8.8 7.3 4.9-.4 1.2-1.8 2.1-1.8 2.1s.9.6 1.7 2c.7 1.3 3.3-.2 3.3-1.9 0-3.5 4.4 1.3 4.7 4.7.1 1.2-.1 3.1-1.2 4-.5.4-2 .6-2 .6s.7 1.1.6 3.1c-.1 1.8 3.1 1.3 4-.7.8-1.6 3.5 3.7 2.5 7.3-.3 1.1-1.8 2.6-2.7 2.9-1 .2-2.4-.3-2.4.1.1.8.1 1.2 0 2.3-.2 2.5 2.3 2.9 4.2 1 1.5-1.4 2.4 8.6-1.6 9.2-2.4.4-2.7-.8-2.8-.4s-.1.8-.6 1.7c-1.3 2.7 2.1 2.5 3.8 1.6 1.5-.8.9 8.5-4.1 8.1-1-.1-1.6-1.1-2.5-1.1-.8 0-.9 8.2 2.3 8.2 4.7 0-.5 5.3-4.9 5 .5 6.1 4.2 14.3 7.9 18.5 4 4.6 6.3 9.8 6.1 14.6 7 .7 11.6-2.5 13.2-6.9 2.5-6.9-2.4M -14.5-6.2-20.2-5.2-7.8-4.3-16.6-3.1-21.9-1.9-1.3-2.8-3.4-2.8-5.6 0-2.4.5-5.1 3-7.5 6.3-5.9 15.9-.9 17.4 1.4.5.7.3 1.8-.8 2.4-4.3 2.3-1.7 10.7-9.9 10.7-.5 1.6-.7 3.3-.8 5-.2 5.2 1.1 8.6 3 11.7 1.4 2.2 4.3 6.4 6 10.2 5 10.7 1.7 24.3-10.9 28.3-2.1.7-6.6 1.3-11.3.4-.3.3-.6.7-.9 1-.4.4-.9.8-1.4 1.3-1 2.9-.8 6.3 2.3 9.9 5.3 6.1 7.8 7.7 1.5 12.2-12.2 8.7-13.1 15.3-14.8 17.9 2.6.4 5.2.9 7.9 1.5 1.3.3 4 1 3.1 4.9l-6.9 30.7c-1 4.5-4.4 3.4-6 3-29.7-7.8-44 13.3-92.5 13.3s-62.8-21.1-92.5-13.3c-1.6.4-5 1.5-6-3l-6.9-30.7c-.9-3.9 M 1.8-4.6 3.1-4.9 2.7-.6 5.3-1.1 7.9-1.5-1.7-2.6-2.6-9.2-14.8-17.9-6.3-4.5-3.8-6.1 1.5-12.2 3.1-3.6 3.3-7 2.3-9.9-.5-.4-1-.9-1.4-1.3-.3-.3-.6-.7-.9-1-4.7.8-9.2.2-11.3-.4-12.6-4-15.9-17.6-10.9-28.3 1.8-3.8 4.7-7.9 6.1-10.2 1.9-3.1 3.2-6.5 3-11.7-.1-1.7-.3-3.4-.8-5-8.2 0-5.6-8.4-9.9-10.7-1.1-.6-1.3-1.6-.8-2.4 1.5-2.3 11.1-7.3 17.4-1.4 2.5 2.3 3 5.1 3 7.5 0 2.3-.9 4.4-2.8 5.6 1.1 5.4 2 14.1-3.1 21.9-3.8 5.8-8.8 13.4-6.2 20.2 1.6 4.4 6.2 7.6 13.2 6.9-.2-4.8 2-9.9 6.1-14.6 3.7-4.2 7.3-12.4 7.9-18.5-4.4.3-9.6-5-4.9-5 3.2 0M 3.1-8.2 2.3-8.2s-1.5 1-2.5 1.1c-5.1.4-5.7-8.9-4.1-8.1 1.7.9 5.1 1.1 3.8-1.6-.8-.9-.8-1.3-.9-1.7-.1-.5-.4.8-2.8.4-4-.7-3.1-10.6-1.6-9.2 1.9 1.8 4.4 1.5 4.2-1-.1-1.1-.1-1.4 0-2.3 0-.4-1.4.1-2.4-.1s-2.4-1.7-2.7-2.9c-1-3.5 1.7-8.9 2.5-7.3.9 1.9 4 2.4 4 .7-.1-2 .6-3.1.6-3.1s-1.5-.2-2-.6c-1.1-.9-1.3-2.8-1.2-4 .3-3.4 4.7-8.2 4.7-4.7 0 1.7 2.6 3.2 3.3 1.9.7-1.4 1.7-2 1.7-2s-1.4-.9-1.8-2.1c-1.5-4.1 8-7.2 7.3-4.9-1.1 3.5 1 2.6 3.8 2.2 1.1-.2 2.2-.1 2.2-.1s-.8-1.5-.4-2.3c.8-1.4 9.2-3.6 7.4-.5-1 1.6.9 2.2 2.5 2.7 1.4.5 4.4.6 M 4.9 2.4.2.6-.2 2.1-.4 2.9 1.2.1 2 .3 2.3.4 1.7.7 2.3 2.6 3.8 2.8.5.1 2.7.2 3.4.3 1 .1 2 .3 3.1.6 3-7.1 7.3-6.6 7.9-5.7 1.2-1.8 7.3-2.2 7.6.1 1.5-.7 4-.3 5.3 1zm52.8 17.4 4.5 1.2 1.2-4.3c.3-1 .6-2.1 1-3.1h-.1c-.9 1-1.6 1.8-2.5 2.7zm6.2 9.2-3.7-1 1.1-4.3-8.2-2.2.7-2.5 9.9-8.7 4.8 1.3-2.8 10.2 2.2.6-.8 2.8-2.2-.6zm-19.6-6.1c2 .1 3.1-2.1 3.4-6.2.2-4.1-.7-6.4-2.7-6.5-1.8-.1-3.1 2-3.3 6.1-.3 4.3.8 6.5 2.6 6.6zm-.2 2.9c-4.6-.2-6.7-4.3-6.4-9.6.3-5.4 2.9-9.2 7.5-9 4.8.2 6.7 4.4 6.4 9.5-.3 5.6-2.7 9.3-7.5 9.1zm-16.7-14.7c-1.M 7.2-2.7 1.8-2.4 3.7.2 1.6 1.4 2.8 3.3 2.6 1.4-.2 2.2-.9 2.6-1.7.1-.2.1-.5.1-.9-.3-2.1-1.4-4.1-3.6-3.7zm-2.9 16.1-.4-3c.5 0 1-.1 1.9-.3 1.4-.3 2.7-.9 3.7-1.8 1.1-1 1.8-2.4 1.9-3.9h-.1c-.8 1.1-2 1.8-3.7 2-3.2.4-6.1-1.4-6.6-4.8-.5-3.5 2-6.8 6-7.4 4.6-.6 7.4 2.5 8 6.7.5 3.7-.3 6.6-2 8.6-1.5 1.8-3.8 3-6.6 3.4-.8.4-1.6.5-2.1.5zm-6.4 1.8-4.3-13.8h-.1l-2.8 2.6-1.5-2.6 3.9-3.5 3.1-.9 5.3 17.2zm-48.6-20.2c-.1 0-.9.7-1.3 1.5.5-.1 1.7-.5 2.8-.9-.4-.2-.9-.6-1.5-.6zm4.1 1.4s-5.6 2.2-6.6 1.3c-1.2-1.1 1.3-4 2.3-4 2.6-.1 4.3 2.7 4.M 3 2.7zm133.9 0s1.7-2.7 4.2-2.7c1 0 3.5 2.9 2.3 4-1 .8-6.5-1.3-6.5-1.3zm4-1.4c-.6 0-1.1.3-1.6.7 1.1.4 2.3.7 2.8.9-.2-.9-1-1.6-1.2-1.6zm-1.4 164.3v-10.5c0-1.9-.1-3.4-.1-4.8h3.9l.2 2.3h.1c.6-1 2.3-2.6 5-2.6 3 0 5.8 1.9 5.8 6.8v8.9h-4.5v-8.3c0-2.2-.8-3.7-2.9-3.7-1.6 0-2.5 1.1-2.9 2.1-.1.3-.2.8-.2 1.2v8.8h-4.4zm-153.9.3-.7-21.1 4.5-.2.6 17.3 9.2-.3.1 3.7zm30.6-3.3-10.3-2.4c-.4 2.2 1.5 3.7 3.9 4.3 1.8.4 3.1.5 4.6.3l-.1 3.1c-1.7.3-3.6.2-5.9-.3-5.2-1.2-7.5-4.9-6.4-9.5.9-3.7 4.3-7.4 9.6-6.2 5.2 1.2 6 5.7 5.2 9-.2.8-.4 1.4-.M 6 1.7zm-9.6-5.4 6.4 1.5c.3-1 .2-3.3-2.3-3.9-2.3-.6-3.7 1.1-4.1 2.4zm14.4-2.4 4.6 1.7-.3 7.8c0 1.4-.2 2.6-.3 3.8h.1c.7-1 1.4-2 2.2-3.1l4.8-6.2 4.5 1.6-11 12.3-4.3-1.5zm29.6 17.7-10.4-2c-.3 2.2 1.6 3.7 4 4.2 1.8.3 3.2.4 4.6.2v3.1c-1.7.3-3.6.3-5.9-.1-5.2-1-7.7-4.6-6.8-9.3.7-3.7 4-7.6 9.4-6.5 5.2 1 6.2 5.5 5.5 8.8 0 .6-.2 1.3-.4 1.6zm-9.9-5.1 6.5 1.3c.2-1.1.1-3.4-2.4-3.8-2.3-.5-3.6 1.2-4.1 2.5zm14.3 12.2.9-10.2c.2-2.3.3-3.7.3-5.1l3.9.3-.1 3h.1c1-2.2 3-3.1 4.7-3 .4 0 .6.1 1 .2l-.4 4.2c-.4-.1-.8-.2-1.3-.3-2-.2-3.3.8-3.7 M 2.4-.1.3-.1.7-.2 1l-.7 7.8zm18.8-21.9.5 13.6h.1c.4-.6.8-1.3 1.2-1.8l3.5-4.9 5.5-.2-5.7 6.4 7.2 8.9-5.6.2-4.6-6.3-1.3 1.6.2 4.9-4.5.2-.8-22.3zm28.2 3.3 2 10.3c.4 1.9.7 3.5 1 4.7l-3.8.7-.7-2.3h-.1c-.4 1.1-1.6 3.1-4.5 3.6-2.9.6-5.9-.7-6.8-5.6l-1.7-8.7 4.4-.9 1.6 8c.5 2.4 1.6 3.7 3.5 3.3 1.5-.3 2.2-1.5 2.4-2.5.1-.3.1-.7 0-1.1l-1.7-8.9zm7 12.4-.1-3.3c1 .3 3 .4 4.4 0 1.6-.5 2.1-1.2 1.8-2-.3-.9-.9-1.1-2.9-1.2-3.4 0-5.1-1.3-5.6-3.1-.8-2.7 1-5.4 4.7-6.5 1.8-.5 3.5-.5 4.5-.3l.1 3.2c-.8-.2-2.3-.3-3.6.1-1.2.4-1.8 1.1-1.6 1.9s1M .1 1 3.2 1.1c3.1.1 4.8 1.1 5.5 3.3.8 2.7-.8 5.3-5.1 6.6-2.1.4-4 .5-5.3.2zm26.9-13.3-10.4 2c.6 2.2 2.9 2.8 5.3 2.3 1.8-.3 3.1-.8 4.3-1.5l1.2 2.8c-1.4.9-3.2 1.7-5.5 2.1-5.2 1-8.9-1.4-9.8-6.1-.7-3.7.9-8.5 6.3-9.6 5.2-1 7.8 2.8 8.4 6.1.2.8.2 1.5.2 1.9zm-11-1.1 6.5-1.3c-.2-1.1-1.2-3.2-3.7-2.7-2.4.6-2.9 2.7-2.8 4zm-58.8-114.9h7.5c.8 0 1.5-.7 1.5-1.5s-.7-1.5-1.5-1.5h-7.5zm0 7.2h7.7c.9 0 1.7-.8 1.7-1.7s-.8-1.7-1.7-1.7h-7.7zm12-5.5c1 1 1.6 2.4 1.6 3.9 0 3-2.4 5.4-5.4 5.4h-12.5v-17.8h12.3c2.9 0 5.2 2.3 5.2 5.2 0 1.3-.5 2.4-1M .2 3.3zm2.9 30.6h-4.6l-1.4-3h-10l-1.4 3h-4.6l9-17.8h4.2zm-11.1-13.3-3.2 6.5h6.3zm6.1 17.1h5.1l-9.1 11.6v6.2h-4.3v-6.2l-9.1-11.6h5.1l6.1 8.1zm23.9 0v3.8h-12v3h11.5v3.8h-11.5v3.4h12v3.8h-16.2v-17.8zm13.5 11.1h-3.2v6.8h-4.3v-17.8h10.9c3.1 0 5.5 2.5 5.5 5.5 0 2.5-1.7 4.6-4 5.3l5.3 7h-5.1zm3-7.3h-6.2v3.4h6.2c.9 0 1.7-.8 1.7-1.7s-.8-1.6-1.7-1.7zm-55.7 14.1h-4.6l-1.4-3h-10l-1.4 3h-4.6l9-17.8h4.2zm-11.1-13.3-3.2 6.5h6.3zm-27.1 2.2h7.5c.8 0 1.5-.7 1.5-1.5s-.7-1.5-1.5-1.5h-7.5zm0 7.3h7.7c.9 0 1.7-.8 1.7-1.7s-.8-1.7-1.7-1.7h-M 7.7zm12-5.5c1 1 1.6 2.4 1.6 3.9 0 3-2.4 5.4-5.4 5.4h-12.5v-17.9h12.3c2.9 0 5.2 2.3 5.2 5.2 0 1.3-.4 2.5-1.2 3.4zm43.5 13.1v3.8h-12v3h11.5v3.8h-11.5v3.4h12v3.8h-16.2v-17.8zm-3 27.6c0-.9-.8-1.7-1.7-1.7h-7.3v3.4h7.3c1 0 1.7-.7 1.7-1.7zm-13.2 12.3v-17.8h12c3.1 0 5.5 2.5 5.5 5.5 0 2.3-1.4 4.3-3.5 5.1l5.4 7.2h-5.1l-5.1-6.8h-4.9v6.8z"/></clipPath><clipPath id="k"><path d="m-302.1-40h1666.1v16750h-1666.1z"/></clipPath><g clip-path="url(#a)"><g clip-path="url(#b)" enable-background="new"><g clip-path="url(#c)"><g clip-path=M "url(#d)"><path clip-path="url(#e)" d="m-22.2-22.2h327.9v266.2h-327.9z" fill="#fff"/></g></g></g></g><g clip-path="url(#f)"><path clip-path="url(#g)" d="m16.8-9.1h249.9v240.2h-249.9z" fill="#f3e305"/></g><g clip-path="url(#h)"><path clip-path="url(#i)" d="m-11.7-10.8h306.9v194.5h-306.9z" fill="#e22726"/></g><g clip-path="url(#j)"><path clip-path="url(#k)" d="m-13-13h309.5v248h-309.5z" fill="#1b181c"/></g></svg>h! " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.6-c067 79.157747, 2015/03/30-23:40:42 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:dc="http://purl.orgM xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:tiff="http://ns.adobe.com/tiff/1.0/" xmlns:exif="http://ns.adobe.com/exif/1.0/"> <xmpMM:DocumentID>adobe:docid:photoshop:22f08e99-ab4b-11ed-a616-fe33a7197b7f</xmpMM:DocumentID> <xmpMM:InstanceID>xmp.iid:c9395e57-b77f-7d47-a3f0-881887f7cfa6</xmpMM:InstanceID> <xmpMM:OriginalDocumentID>DB49D0439357658641337A71F3BC6F0A</xmpMM:OM <xmpMM:History> <rdf:Seq> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:f65e8e8d-8b7e-9e4e-a57d-5f8285b8b9b1</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/jpeg to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:M <stEvt:instanceID>xmp.iid:9c7579d8-bada-be4c-9e41-fb0d6fc17452</stEvt:instanceID> <stEvt:when>2023-02-13T02:03:16+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:80602eee-3e3b-da41-9973-0fM e676b25a32</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from image/png to application/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from image/png to application/vnd.adobe.photoshop</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:e60d0d80-c111-e748-a84e-c9db7d43d079</stEvt:instanceID> <stEvt:when>2023-02-13T02:14:29+08:00</stEvt:when> <M stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:f6a7584c-26b8-6a4d-b06d-604bd10e84f8</stEvt:instanceID> <stEvt:when>2023-02-13T11:04:31+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>converted</stEvt:action> <stEvt:parameters>from application/vnd.adobe.photoshop to image/png</stEvt:parameters> </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>derived</stEvt:action> <stEvt:parameters>converted from application/vnd.adobe.photoshop to image/png</stEvt:parM </rdf:li> <rdf:li rdf:parseType="Resource"> <stEvt:action>saved</stEvt:action> <stEvt:instanceID>xmp.iid:c9395e57-b77f-7d47-a3f0-881887f7cfa6</stEvt:instanceID> <stEvt:when>2023-02-13T11:04:31+08:00</stEvt:when> <stEvt:softwareAgent>Adobe Photoshop CC 2015 (Windows)</stEvt:softwareAgent> <stEvt:changed>/</stEvt:changed> </rdf:li> </rdf:Seq> </xmpMM:HistM <xmpMM:DerivedFrom rdf:parseType="Resource"> <stRef:instanceID>xmp.iid:f6a7584c-26b8-6a4d-b06d-604bd10e84f8</stRef:instanceID> <stRef:documentID>adobe:docid:photoshop:9f9f6bf8-ab00-11ed-bc9c-fe399e645a46</stRef:documentID> <stRef:originalDocumentID>DB49D0439357658641337A71F3BC6F0A</stRef:originalDocumentID> </xmpMM:DerivedFrom> <dc:format>image/png</dc:format> <photoshop:ColorMode>3</photoshop:ColorMode> <xmp:CreateDate>2023-02-12M T23:06:35+08:00</xmp:CreateDate> <xmp:ModifyDate>2023-02-13T11:04:31+08:00</xmp:ModifyDate> <xmp:MetadataDate>2023-02-13T11:04:31+08:00</xmp:MetadataDate> <xmp:CreatorTool>Adobe Photoshop CC 2015 (Windows)</xmp:CreatorTool> <tiff:ImageWidth>3000</tiff:ImageWidth> <tiff:ImageLength>3000</tiff:ImageLength> <tiff:BitsPerSample> <rdf:Seq> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> <rdf:li>8</rdf:li> </tiff:BitsPerSample> <tiff:PhotometricInterpretation>2</tiff:PhotometricInterpretation> <tiff:Orientation>1</tiff:Orientation> <tiff:SamplesPerPixel>3</tiff:SamplesPerPixel> <tiff:XResolution>720000/10000</tiff:XResolution> <tiff:YResolution>720000/10000</tiff:YResolution> <tiff:ResolutionUnit>2</tiff:ResolutionUnit> <exif:ExifVersion>0231</exif:ExifVersion> <exif:ColorSpace>65535</exif:ColorSpace> <exif:PixelXDimensiM on>1024</exif:PixelXDimension> <exif:PixelYDimension>1024</exif:PixelYDimension> </rdf:Description> M M M M M M M M M M M M M M M M M M M !22222222222222222222222222222222222222222222222222 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:84527BBCAB2611EDA521CF81E9EC8728" xmpMM:InstanceID="xmp.iid:84527BBBAB2611EDA521CF81E9EC8728" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5ce69c4e-f070-724c-b24b-00d4e028c41a" stRef:documentID="adobe:docid:photoshop:514bc959-0535-4541-a09f-c06b6d2c983c"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD LEAD Technologies Inc. V1.01 %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcM <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 6.0-c002 79.164488, 2020/07/10-22:06:53 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmpMM:OriginalDocumentID="xmp.diM d:e0d18448-e896-5e43-a0da-1b9382b0ded8" xmpMM:DocumentID="xmp.did:4606BAAEAA1311ED8503C4E02B9FC041" xmpMM:InstanceID="xmp.iid:4606BAADAA1311ED8503C4E02B9FC041" xmp:CreatorTool="Adobe Photoshop 22.0 (Windows)"> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:5b588711-b116-814c-91d5-351258d52ed1" stRef:documentID="adobe:docid:photoshop:a1abe87c-c128-284f-beb5-9705e8f093f5"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> <?xpacket end="r"?> &2.&&&&.>55555>DAAAAAADDDDDDDDDDDDDDDDDDDDDDDDDDDDDM &6& &6D6++6DDDB5BDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD no copyright, use freely <svg version="1.1" baseProfile="tiny" id="Ebene_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0" y="0" width="488.068" height="566" viewBox="0 0 488.068 566" xml:space="preserve"><path fill="#D49F45" d="M488.018,0H0.05L0,416.076c0,25.574,6.869,45.36,20.417,58.809c13.44,13.344,33.132,19.649,58.502,20.361 c73.123,2.045,119.199,18.247,155.328,58.827L244.034,566l9.786-11.928c36.129-40.58,82.205-56.782,155.328-58.827 c25.37-0.712,45.063-7.018,58.503-20.361c13.548-13.448,20.417-33.23M 4,20.417-58.809L488.018,0z"/><path fill="#003A80" d="M409.148,482.332c-76.364,2.456-128.693,19.76-165.114,61.657c-36.421-41.897-88.75-59.201-165.114-61.657 c-43.856-1.384-66.259-21.733-66.259-66.256l0.029-226.202h462.689l0.028,226.202C475.407,460.598,453.004,480.948,409.148,482.332z"/><polygon fill="#DA001A" points="12.71,12.66 475.358,12.66 475.378,177.211 12.689,177.211"/><polygon fill="#D49F45" points="298.872,222.32 298.872,449.331 443.618,449.331 443.618,377.131 378.916,377.131 378.916,222.32"/><polygon fill="M #FFF" points="369.067,232.168 369.067,386.976 433.773,386.976 433.773,439.483 308.719,439.483 308.719,232.168"/><path fill="#D49F45" d="M35.463,335.824c0,65.632,53.392,119.024,119.018,119.024c65.632,0,119.024-53.393,119.024-119.024 c0-65.629-53.392-119.018-119.024-119.018C88.855,216.806,35.463,270.195,35.463,335.824z"/><path fill="#FFF" d="M45.901,335.824c0-59.872,48.708-108.579,108.58-108.579c59.875,0,108.585,48.707,108.585,108.579 c0,59.873-48.71,108.586-108.585,108.586C94.608,444.41,45.901,395.697,45.901,335.824M z"/><path fill="#D49F45" d="M217.665,268.335c-6.685,2.774-9.906-2.149-10.835-5.531c-3.975,3.975-1.782,8.881-0.205,10.259 c-1.3,0.669-6.729,3.776-6.977,10.426c5.491,1.553,10.66-0.97,12.246-2.1c0.348,1.793,2.798,4.837,8.043,3.823 c-2.708-2.874-3.972-8.031-0.12-10.184l1.01-0.523c5.657-2.436,9.01,1.805,9.918,3.832c1.866,4.173,0.251,9.173-3.607,11.147 l-25.303,13.069c-12.981,6.554-11.696,18.749-8.893,24.333l11.629,23.037c2.173,4.591-1.081,7.756-3.402,8.819 c-3.715,1.7-8.195,0.23-9.956-3.213l-15.633-30.56c0.87,0.701,3.21M 8,1.554,5.286,0.616c-6.863-11.124,5.3-10.691,1.317-20.759 c0.891,1.187,3.776,1.919,5.184,1.405c-6.127-13.765,7.733-13.627,0.692-24.518c0.748,0.616,3.688,0.43,4.933-0.613 c-8.583-8.557-0.855-14.339-11.308-17.832c1.519,0.064,3.44-1.53,3.823-3.344c-7.167,0.497-10.581-8.75-20.861-7.444 c-4.206,0.534-7.912,1.688-11.673,2.874c-2.158,0.684-3.791-0.108-5.774,0.882c-0.753,0.756-1.591,3.122-1.591,3.122 c-2.678,0.575-7.059,1.808-8.265,3.102c-0.368,1.361-0.003,2.652,0.517,3.686c0,0,0.628,0.222,0.78,0.987 c0.75,3.767,1.974,7.05M 9,4.147,9.015l6.355-1.58c0,0,5.038,2.792,6.659,6.98c0.943,2.438,0.54,3.963-2.436,4.007 c-2.55,0.044-7.544-1.046-9.533-1.364c-0.838,2.149-1.229,6.276,0.646,7.687c1.02,0.763,6.367,0.494,7.999,0.371 c-0.412,5.826-4.611,9.381-11.807,7.041c-20.625-6.693-33.86-8.63-41.366-25.393c0.275-1.171,1.714-12.643-6.559-15.566 c1.031,3.221,1.898,6.98,0.993,10.11c-1.361-5.333-5.359-8.84-11.638-8.212c3.56,2.523,5.768,5.687,5.797,8.919 c-2.646-1.948-7.494-2.582-11.086-1.046c17.084,7.722,11.27,20.885,3.727,22.091c3.113,2.575,8.148,1.87M 5,11.191,0l10.233,13.092 c-1.907,0.4-3.796,1.913-4.498,3.192c2.068-0.117,5.354,0.222,6.726,1.563c0.768,2.076,1.784,5.771,0.417,11.124 c4.007-2.088,5.625-4.985,6.194-7.587l15.055,8.813c-7.599,3.998-30.309,15.423-41.915,10.078 c-1.764-0.814-13.186-5.718-19.479,0.681c4.264-0.143,8.405,1.601,9.153,3.31c-4.398,0.484-9.711,2.403-11.051,7.315 c1.659-1.069,7.208-1.46,10.07-0.97c-2.5,1.983-4.489,5.54-4.2,10.125c0,0,9.176-8.486,16.708-6.302 c3.507,1.016,1.802,7.155,1.113,8.63c5.683-0.821,7.129-6.448,7.146-6.904l17.525-0.73c1M .174,0.57,1.673,3.07,0.59,5.067 c3-0.835,4.331-2.61,5.082-5.44c3.68,0.443,5.721,2.949,6.148,6.688c2.549-2.634,2.208-6.711,1.156-8.797l19.091-4.608l6.629,7.316 c0,0-34.158,21.349-45.79,20.793c1.805,4.115,10.172,3.654,14.039,2.199c-1.186,2.144-0.339,5.245-0.339,5.245 s2.576,0.17,5.242-3.215c0,0,5.12,10.23,4.296,12.032c-2.398,5.266-19.109,6.398-19.109,6.398 c-3.04-2.418-11.401-5.239-16.057-1.702c3.572,0.154,6.446,2.876,6.907,4.57c-1.957,0.015-8.791,0.832-10.342,7.176 c3.835-1.747,8.473-1.747,9.892-0.987c-2.172,1.551-4M .856,5.154-4.162,9.626c4.93-5.21,11.778-7.556,16.332-6.542 c2.666,0.593,2.813,4.588,2.039,7.436c3.796-0.999,5.978-4.915,6.784-6.98l18.276-5.694c0,0,0.59,1.627,0.555,4.231 c2.284-0.263,4.538-3.078,4.708-5.102c0,0,3.429,5.21,8.82,4.299c-3.13-5.283-7.441-18.887-7.421-22.38 c0.026-4.41,13.338-7.032,15.572-7.698l6.445,9.413c0,0-6.554,3.206-7.681,7.409c5.747-2.538,10.376-2.284,11.845-1.922 c1.259,1.329,2.515,3.691,3.037,6.486c1.25-0.801,2.874-3.163,3.043-5.581c14.608,4.632,14.631,6.872,11.071,21.617 c-6.635-0.651-17.213-M 0.984-19.503,5.791c4.01-1.106,8.618-0.391,11.112,0.569c-3.107,1.055-8.683,4.294-7.348,10.684 c0,0,5.397-6.04,11.606-4.971c-3.327,2.047-7.479,6.34-3.832,11.699c3.297-6.793,11.004-7.474,14.231-6.825l4.574-9.903 c1.86-4.027,6.98-3.519,7.546,1.601c4.839-5.949-0.599-12.456-2.152-13.224l4.179-8.98c1.34,0.131,4.81,1.011,6.849-1.399 c-2.132-0.648-4.007-2.041-4.836-3.516c2.132,0.148,7.803,1.021,10.49-2.685c-9.112-1.825-30.35-14.78-31.95-22.759 c4.159,3.376,10.187,4.349,15.408,2.013c3.37-1.511,5.923-4.136,7.246-7.43c3.773-7.M 795,13.735-1.464,15.289-15.891 c-3.983,5.651-12.774,1.893-14.506,8.91c-3.531-15.537,18.896-5.391,19.05-28.856c-5.531,9.596-25.32,6.174-23.694,18.311 c-8.475-25.063,29.505-8.828,27.426-41.356c-7.412,14.696-36.862,10.806-34.076,28.183l-1.612-3.195 c-2.226-4.585-1.711-10.96,5.201-14.704l25.983-13.394l0,0c7.079-3.63,10.067-12.354,6.764-20.148 C235.074,270.782,227.714,263.616,217.665,268.335z M149.051,261.89c0,0-0.619-2.015,1.91-2.512c2.827-0.555,5.52,1.136,7.821,1.927 C157.337,263.058,151.768,264.106,149.051,261.89z M1M 49.166,277.056c-11.174,5.029-20.505,4.722-29.073-0.062 C121.953,283.048,138.185,290.974,149.166,277.056z"/><path fill="#FFF" d="M170.989,153.298c-4.252,4.118-9.436,6.422-16.322,6.422c-6.887,0-12.158-2.304-16.41-6.422 c-6.119-5.928-5.949-13.253-5.949-23.381c0-10.128-0.169-17.453,5.949-23.381c4.252-4.118,9.523-6.425,16.41-6.425 c6.886,0,12.07,2.308,16.322,6.425c6.121,5.928,6.037,13.253,6.037,23.381C177.025,140.045,177.11,147.37,170.989,153.298z M162.233,113.451c-1.7-1.898-4.337-3.131-7.567-3.131s-5.952,1.232-7.652,3.M 131c-2.298,2.471-2.891,5.187-2.891,16.466 s0.593,13.995,2.891,16.465c1.7,1.893,4.422,3.128,7.652,3.128s5.867-1.235,7.567-3.128c2.295-2.471,2.973-5.187,2.973-16.465 S164.529,115.922,162.233,113.451z"/><polygon fill="#FFF" points="77.809,149.017 52.477,149.017 52.477,101.238 51.849,100.607 41.291,100.607 40.66,101.238 40.66,158.596 41.291,159.227 77.797,159.227 78.428,158.596 78.428,149.636"/><polygon fill="#FFF" points="123.286,100.607 111.4,100.607 100.261,124.233 88.953,100.607 76.749,100.607 76.336,101.019 94.309M ,135.186 94.309,158.596 94.94,159.227 105.413,159.227 106.043,158.596 106.043,135.186 123.908,101.229"/><polygon fill="#FFF" points="229.275,100.607 228.647,101.238 228.647,136.502 204.673,100.607 194.761,100.607 194.13,101.238 194.13,158.596 194.761,159.227 205.316,159.227 205.947,158.596 205.947,123.247 229.924,159.227 239.833,159.227 240.464,158.596 240.464,101.238 239.833,100.607"/><path fill="#FFF" d="M348.418,101.238l-0.631-0.631H339.3l-0.613,0.61l-21.614,57.548l0.464,0.461h11.688l3.656-10.374h21.509 l3.572,1M 0.374h11.696l0.458-0.456L348.418,101.238z M336.199,139.221l7.651-21.325l7.395,21.325H336.199z"/><polygon fill="#FFF" points="381.565,100.607 380.931,101.232 380.931,158.596 381.565,159.227 392.12,159.227 392.75,158.596 392.75,101.238 392.12,100.607"/><polygon fill="#FFF" points="294.751,100.607 294.118,101.238 294.118,136.502 270.144,100.607 260.232,100.607 259.601,101.238 259.601,158.596 260.232,159.227 270.787,159.227 271.417,158.596 271.417,123.247 295.394,159.227 305.306,159.227 305.937,158.596 305.937,101.238 M 305.306,100.607"/><path fill="#FFF" d="M446.061,129.505c-2.553-2.307-6.037-3.788-11.563-4.529l-7.141-0.987c-2.465-0.327-4.422-1.235-5.613-2.304 c-1.273-1.154-1.784-2.719-1.784-4.203c0-4.03,3.058-7.406,9.354-7.406c3.843,0,8.229,0.485,11.962,3.674l0.87-0.047l6.612-6.331 v-0.806c-5.088-4.562-11.01-6.455-19.105-6.455c-13.096,0-21.086,7.328-21.086,17.786c0,4.939,1.445,8.727,4.334,11.524 c2.722,2.555,6.548,4.118,11.734,4.859l7.313,0.987c2.804,0.415,4.165,0.987,5.356,2.056c1.273,1.156,1.869,2.885,1.869,4.941 c0,4.693-3.74M 1,7.246-10.712,7.246c-5.403,0-10.397-1.166-14.177-4.559l-0.888,0.047l-6.746,6.536v0.879 c5.853,5.499,12.692,7.307,21.641,7.307c12.666,0,22.444-6.422,22.444-17.783C450.737,136.75,449.291,132.469,446.061,129.505z"/><path fill="#FFF" d="M74.149,82.424c-4.045,4.045-8.98,6.308-15.537,6.308c-6.554,0-11.571-2.263-15.616-6.308 c-5.829-5.826-5.666-13.028-5.666-22.978c0-9.953-0.164-17.155,5.666-22.984c4.045-4.042,9.062-6.311,15.616-6.311 c6.557,0,11.492,2.269,15.537,6.311c5.826,5.829,5.744,13.031,5.744,22.984C79.894,69.396,7M 9.976,76.598,74.149,82.424z M65.814,43.261c-1.618-1.863-4.127-3.078-7.202-3.078s-5.663,1.215-7.284,3.078c-2.185,2.43-2.748,5.099-2.748,16.186 c0,11.08,0.563,13.752,2.748,16.179c1.621,1.863,4.208,3.075,7.284,3.075s5.584-1.212,7.202-3.075 c2.187-2.427,2.833-5.099,2.833-16.179C68.647,48.36,68.001,45.691,65.814,43.261z"/><path fill="#FFF" d="M347.425,84.323l-4.492-4.489c3.642-5.342,3.563-11.731,3.563-20.388c0-9.953,0.078-17.155-5.748-22.984 c-4.045-4.042-8.983-6.311-15.536-6.311c-6.554,0-11.571,2.269-15.616,6.311c-5.82M 6,5.829-5.663,13.031-5.663,22.984 c0,9.95-0.163,17.152,5.663,22.978c4.045,4.045,9.063,6.308,15.616,6.308c4.532,0,8.416-1.048,11.652-3.154l4.652,4.652h0.894 l5.015-5.017V84.323z M334.196,71.093l-4.291-4.287l-5.986,5.908l5.018,4.938c-1.055,0.724-2.346,1.048-3.724,1.048 c-3.072,0-5.663-1.212-7.281-3.075c-2.188-2.427-2.754-5.099-2.754-16.179c0-11.086,0.566-13.755,2.754-16.186 c1.618-1.863,4.209-3.078,7.281-3.078c3.075,0,5.584,1.215,7.201,3.078c2.185,2.43,2.833,5.099,2.833,16.186 C335.247,65.27,335.083,68.587,334.196,71M .093z"/><polygon fill="#FFF" points="124.378,78.216 101.385,78.216 101.385,31.27 100.754,30.639 90.77,30.639 90.139,31.27 90.139,87.617 90.77,88.248 124.378,88.248 125.009,87.617 125.009,78.844"/><polygon fill="#FFF" points="163.001,30.639 151.737,30.639 141.136,53.859 130.374,30.639 119.098,30.639 118.473,31.264 135.473,64.621 135.473,87.617 136.101,88.248 146.007,88.248 146.638,87.617 146.638,64.621 163.638,31.264"/><polygon fill="#FFF" points="211.887,30.639 196.919,61.788 181.868,30.639 171.409,30.639 170.781,3M 1.267 170.781,87.623 171.412,88.248 181.395,88.248 182.028,87.623 182.028,54.668 193.114,76.516 200.722,76.516 211.726,54.668 211.726,87.617 212.357,88.248 222.339,88.248 222.973,87.623 222.973,31.27 222.345,30.639"/><polygon fill="#FFF" points="293.56,30.639 283.572,30.639 282.944,31.264 282.944,87.623 283.572,88.248 293.56,88.248 294.191,87.617 294.191,31.27"/><path fill="#FFF" d="M388.25,30.639l-0.628,0.628v36.836c0,6.635-3.966,10.598-10.035,10.598c-6.068,0-9.953-3.963-9.953-10.598 V31.27l-0.631-0.631h-9.984l-0.M 631,0.631v37.236c0,12.219,9.386,20.227,21.199,20.227c11.816,0,21.203-8.008,21.203-20.227V31.27 l-0.631-0.631H388.25z"/><polygon fill="#FFF" points="420.32,78.216 420.32,64.218 442.427,64.218 443.058,63.587 443.058,54.814 442.427,54.184 420.32,54.184 420.32,40.673 446.394,40.673 447.025,40.04 447.025,31.27 446.394,30.639 409.707,30.639 409.076,31.27 409.076,87.617 409.707,88.248 446.394,88.248 447.025,87.617 447.025,78.844 446.394,78.216"/><path fill="#FFF" d="M256.093,30.639h-21.707l-0.625,0.625v56.353l0.628,0.631hL 9.988l0.63-0.631V68.575h11.086 c11.896,0,19.016-9.176,19.016-18.971C275.109,39.815,267.989,30.639,256.093,30.639z M255.524,58.462h-10.517V40.673h10.517 c5.1,0,8.335,4.241,8.335,8.931C263.859,54.3,260.624,58.462,255.524,58.462z"/></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! (((((((((((((((((((((((((((((((((((((((((((((((((( JP)JP)JP)JP)JP)JP)JP)JP* <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! <svg xmlns="http://www.w3.org/2000/svg" xml:space="preserve" style="background:#b0752b;font-family:monospace" viewBox="0 0 1080 1920"><style>svg{animation:a ease-in-out 9s infinite}@keyframes a{from{transform:translateY(0%)}50%{transform:translateY(1%)}to{transform:translateY(0%)}}path,g{transform-origin:50%}@media(min-aspect-ratio:5/3){path{transform:rotate(90deg)scale(1.5)}g g{transform:translate(15%,7%)scale(1.55)}}</style><g><path d="M942 1752V274l-30-101c-4-12-13-33-39-33H207c-25 0-35 22-38 33l-30 101v1483c0 M 18 19 22 42 22h718c30 0 43-12 43-27" fill="#b0752b"/><path d="M912 173v1370c0 28 2 57 7 85l23 124V274l-30-101zm-49 1385H221c-21 0-39 15-42 35l-26 151c-4 21 16 35 33 35h709c17 0 37-17 34-35l-27-153c-3-20-20-33-39-33zm-724 194 23-124c5-28 7-57 7-85V173l-30 101v1478zM873 140H208c-16 0-28 12-28 27v1348c0 17 14 31 31 31h659c17 0 31-14 31-31V167c0-15-13-27-28-27z" fill="#fed65c"/><g><text x="50%" y="49%" text-anchor="middle" style="fill:#b0752b;font-size:256px;pointer-events:none">1kB</text></g></g></svg>h! @j>=:ETH.ETH:0x6d4E732D256ac253b7c1a2c68c761F0bE09C391C:449226::0 Ehttp://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:GIMP="http://www.gimp.org/xmp/" xmlns:dc="http://purl.org/dc/M elements/1.1/" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" GIMP:API="2.0" GIMP:Version="2.10.30" GIMP:TimeStamp="1662302219386111" GIMP:Platform="Windows" dc:Format="image/png" xmp:CreatorTool="GIMP 2.10.30" xmp:ModifyDate="2022-09-04T16:36:57" xmpMM:OriginalDocumentID="xmp.did:1e17727f-4ada-4b6b-ab51-1cc984992e52" xmpMM:DocumentID="xmp.did:E69FC91B5FM CC11E2A84FA8352C2B3CDC" xmpMM:InstanceID="xmp.iid:8fe028ea-04b3-4d0a-8657-9f1112cc92cb"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:changed="/" stEvt:softwareAgent="Gimp 2.10 (Windows)" stEvt:when="2022-09-04T16:36:59" stEvt:instanceID="xmp.iid:52627a03-27d0-43bf-b6c1-9133043f8f39" stEvt:action="saved"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="7B6BB9F1CD2238597E6C339DC531F12B" stRef:documentID="7B6BB9F1CD2238597E6C339DC531F12B"/> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz &6&&&6I6666I\IIIII\o\\\\\\oooooooo <?xml version="1.0" encoding="utf-8"?> <!-- Generator: Adobe Illustrator 24.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 400 400" style="enable-background:new 0 0 400 400;" xml:space="preserve"> <style type="text/css"> .st0{fill:#C8102E;} .st1{fill:#FFFFFF;} <path class="st0" d="M200.5,350.9c-82.9,0-150.4-67.5-150.4-150.4c0-82.9,67.5-150.4M ,150.4-150.4s150.4,67.5,150.4,150.4 C350.9,283.4,283.4,350.9,200.5,350.9"/> <path class="st1" d="M200.5,344C121.4,344,57,279.6,57,200.5C57,121.4,121.4,57,200.5,57C279.6,57,344,121.4,344,200.5 C344,279.6,279.6,344,200.5,344"/> <path class="st0" d="M200.5,337C125.2,337,64,275.8,64,200.5C64,125.2,125.2,64,200.5,64C275.8,64,337,125.2,337,200.5 C337,275.8,275.8,337,200.5,337"/> <path class="st1" d="M293.8,200.5c0,51.5-41.7,93.3-93.3,93.3c-51.5,0-93.3-41.8-93.3-93.3s41.7-93.3,93.3-93.3 C252,107.2,293.8,M <path class="st0" d="M200.5,114c-28.6,0-53.9,13.7-69.7,35c2.3,0.7,6.7,1.9,12.1,3.5l0,0c8.5,2.5,36.8,10.8,42.1,12.5 c15.4,5,19.5,6.9,23.8,11.5c4.3,4.7,10.9,10,17.4,14.5c6.5,4.5,9.6,9.4,9.6,17.2c0,7.8-6,14.4-9.7,16.6c0,0,1.3-3.7-0.5-5.4 c-1.8-1.7-7.5-4.8-22-3.8c-14.5,1.1-34,8.1-47.2,15.2c0,0,6.3-9.9,15.7-14.4c0,0-7.8,0-51.3,19c13.4,30.8,44.1,52.4,79.8,52.4 c48,0,87-38.9,87-87C287.5,153,248.6,114,200.5,114 M200.5,268.8c-19,0-36.1-7.8-48.4-20.4c35.1-18.1,57-13.4,57-9.9 c0,3.6-5.4,12-5.4M ,12c28.6-4,49.5-21.3,49.5-44.5c0-23.3-21.8-34.5-27.3-37.9c-5.9-3.7-3.1-8.7-22.6-16c-11.9-4.5-28.5-8.9-35-10.5 c9.6-5.2,20.6-8.2,32.3-8.2c37.4,0,67.8,30.4,67.8,67.8C268.3,238.4,238,268.8,200.5,268.8"/> <path class="st0" d="M199.8,178.4c0,0-5,0.4-10.1-2.1c-5.1-2.5-12.9-8.2-19.6-2c0,0,5.7-0.7,5.2,0.8c-0.5,1.5-1,10.2,6.7,13.5 C189.9,191.9,198.9,189.4,199.8,178.4"/> <path class="st1" d="M98.3,270l0.9,1.2l12.5-9.6l-0.9-1.2l2.8-2.2l4,5.2c3,3.9,2.7,6.8-0.3,9.1c-2.1,1.6-4,1.7-5.9,0.7 c0.8,2.6,0.1,4.3-2.4,6.2c-3M .3,2.5-6.6,1.5-9.4-2l-4.1-5.3L98.3,270z M102.6,275.6c1.1,1.4,2.6,1.7,4.4,0.3 c1.8-1.4,1.8-2.8,0.6-4.2l-0.8-1l-5,3.9L102.6,275.6z M110.1,269.4c1.1,1.4,2.5,1.5,4.1,0.3c1.6-1.2,1.8-2.6,0.6-4.1l-0.6-0.8 l-4.8,3.7L110.1,269.4z"/> <path class="st1" d="M113.2,288l0.9,0.8l16.4-11.5l3.3,2.9l-9.2,17.8l0.8,0.7l-2.3,2.6l-5.6-4.9l2.2-2.5l1.4,1.2l1.2-2.2l-3.3-2.9 l-2,1.5l1.4,1.2l-2.2,2.5l-5.4-4.7L113.2,288z M124,290.3l3.8-6.7l-6.2,4.6L124,290.3z"/> <path class="st1" d="M134.9,307.1l-0.8,1.5l-2.6-1.5l3.8-6.6l2.9,1.7cM -1.4,2.7-1.1,4.3,0.5,5.2c1.5,0.9,2.6,0.6,3.4-0.8 c1.9-3.3-5.4-8.3-1.9-14.1c1.9-3.3,5.2-3.9,7.9-2.3c1.6,0.9,2.5,2.1,2.3,3.6l0.8-1.5l2.6,1.5l-3.6,6.3l-3-1.7 c1.1-2.2,1.1-3.6-0.3-4.4c-1.4-0.8-2.4-0.4-3.1,0.7c-1.8,3.1,5.3,8.2,1.9,14c-2.1,3.6-5.4,3.9-8.4,2.2 C135.9,309.9,134.8,308.7,134.9,307.1"/> <polygon class="st1" points="155.2,315.6 156.6,316.1 161.5,301.1 160.1,300.6 161.1,297.3 167.8,299.4 166.8,302.7 165.5,302.3 163.3,309.3 169.3,303.5 168.5,303.2 169.5,299.9 175.6,301.9 174.5,305.3 173.1,304.8 16M 8.3,309.2 169,320.1 170.2,320.4 169.1,323.7 162.6,321.6 163.6,318.4 164.8,318.8 164.3,312.2 161.5,314.9 160.7,317.5 161.9,317.8 160.9,321 154.2,318.9 "/> <polygon class="st1" points="182.6,322.8 184.1,323 185.5,307.3 184,307.2 184.3,303.6 198,304.8 197.3,312 193.4,311.7 193.7,307.8 189.8,307.4 189.3,313.5 192.8,313.9 192.5,317.4 189,317.1 188.4,323.5 192.4,323.9 192.7,319.5 196.7,319.9 196.1,327.5 182.3,326.3 "/> <polygon class="st1" points="212.8,323.4 214.7,323.1 212.6,307.3 210.2,307.6 210.7,31M 1.5 207.4,312 206.4,304.8 222.1,302.7 223.1,309.9 219.8,310.3 219.3,306.4 216.9,306.7 219,322.6 220.9,322.3 221.3,325.7 213.2,326.8 "/> <path class="st1" d="M237.6,318.5l1.4-0.5l-5.6-14.7l-1.4,0.5l-1.3-3.3l6.2-2.3c4.6-1.8,7.3-0.6,8.6,2.9c0.9,2.4,0.5,4.3-1,5.8 c2.7-0.1,4.2,1.2,5.3,4.1c1.5,3.9-0.5,6.8-4.7,8.4l-6.3,2.4L237.6,318.5z M240.4,307c1.7-0.6,2.2-2,1.5-3.8 c-0.7-1.9-1.9-2.4-3.7-1.8l-0.9,0.3l2.1,5.6L240.4,307z M244.1,316c1.7-0.6,2.4-2,1.6-4.1c-0.8-2.1-2.1-2.5-3.9-1.8l-1.2,0.5 l2.3,5.9L244.1,316zM <path class="st1" d="M258.1,310l1-0.6l-6.1-19l3.8-2.3l14.3,14l0.9-0.6l1.8,2.9l-6.3,3.9l-1.8-2.8l1.6-1l-1.7-1.8l-3.8,2.3l0.8,2.4 l1.6-1l1.8,2.8l-6.1,3.7L258.1,310z M263.4,300.3l-5.3-5.6l2.5,7.3L263.4,300.3z"/> <polygon class="st1" points="279.7,295.4 280.8,294.4 270,282.9 268.9,283.9 266.5,281.3 272,276.2 274.4,278.8 273.2,279.9 284,291.5 286.7,289 283.7,285.9 286.6,283.1 291.8,288.7 282,297.9 "/> <polygon class="st1" points="295.7,279.3 296.5,278.1 283.9,268.8 283,269.9 280.2,267.8 284.6,261.8 287M .5,263.9 286.5,265.3 299.3,274.7 301.4,271.8 297.9,269.2 300.3,266 306.4,270.6 298.4,281.4 "/> <path class="st1" d="M96,172.9l0.4-1.2l-16.8-10.9l1.5-4.2l19.9,1.9l0.4-1l3.2,1.1l-2.4,7l-3.2-1.1l0.6-1.7l-2.5-0.3l-1.5,4.2 l2.1,1.3l0.6-1.8l3.2,1.1l-2.3,6.7L96,172.9z M94.1,162l-7.6-1L93,165L94.1,162z"/> <polygon class="st1" points="105.7,149 106.7,147.4 93,139.2 91.7,141.3 95.1,143.3 93.4,146.2 87.2,142.5 95.3,128.8 101.5,132.5 99.8,135.4 96.4,133.4 95.2,135.5 108.9,143.7 109.9,142 112.9,143.8 108.7,150.8M <polygon class="st1" points="116.9,132.2 117.9,131.1 106.4,120.4 105.4,121.4 102.8,119 107.9,113.5 110.5,116 109.4,117.2 121,128 123.5,125.4 120.3,122.4 123,119.5 128.6,124.7 119.5,134.5 "/> <path class="st1" d="M131.7,117.2l1-0.7l-7.3-18.6l3.6-2.6l15.1,13.1l0.9-0.6l2,2.8l-6,4.3l-1.9-2.7l1.5-1.1l-1.8-1.7l-3.6,2.5 l1,2.3l1.5-1.1l1.9,2.7l-5.8,4.1L131.7,117.2z M136.5,107.2l-5.6-5.3l3,7.1L136.5,107.2z"/> <polygon class="st1" points="152.2,103.8 153.5,103.3 147.6,88.7 146.2,89.2 144.9,85.9 150.3,83.7M 160.1,93.4 156.6,85 155.4,85.5 154,82.2 160.3,79.6 161.7,82.9 160.3,83.5 167.6,101.2 164,102.7 153.5,92.6 157.3,101.7 158.5,101.2 159.8,104.4 <polygon class="st1" points="177.6,95.1 179.5,94.8 176.7,79 174.3,79.4 175,83.3 171.7,83.9 170.4,76.8 186.1,74 187.3,81.1 184,81.7 183.3,77.8 180.9,78.2 183.7,94 185.6,93.7 186.2,97 178.2,98.5 "/> <path class="st1" d="M194.5,92.6l1.2,0l5.1-19.3l4.4,0.1l4.4,19.5l1.1,0l-0.1,3.4l-7.4-0.1l0.1-3.3l1.8,0l-0.4-2.5l-4.4-0.1 l-0.6,2.4l1.9,0l-0.1,3.3M l-7.1-0.1L194.5,92.6z M204.2,87.4l-1.4-7.6l-1.8,7.5L204.2,87.4z"/> <polygon class="st1" points="227.2,95.8 228.6,96.2 233.7,81.3 232.3,80.9 233.5,77.5 240.5,79.9 239.3,83.1 237.9,82.6 236,88.1 240.6,89.7 242.5,84.2 241,83.7 242.1,80.4 249.1,82.8 248,86.2 246.5,85.7 241.5,100.6 242.9,101.1 241.8,104.3 234.8,101.9 235.9,98.8 237.4,99.3 239.4,93.3 234.8,91.7 232.7,97.7 234.2,98.2 233.1,101.4 226.1,99 "/> <path class="st1" d="M250.3,104.6l1,0.6l14.3-14l3.8,2.3l-6.2,19l0.9,0.6l-1.8,2.9l-6.3-3.9l1.8-2.8l1.6,M l-1.8,1.8l1.6,1l-1.8,2.8l-6.1-3.8L250.3,104.6z M261.3,105.1l2.7-7.2l-5.4,5.5L261.3,105.1z"/> <polygon class="st1" points="280.2,105.7 279.2,104.7 281.7,102.2 286.7,107.1 284.3,109.6 283.3,108.6 277.2,116.9 288.5,108.9 291.1,111.5 283.3,123 291.5,116.7 290.6,115.8 293,113.3 297.7,118 295.2,120.5 294.2,119.5 278.3,130.9 275.5,128.1 283.6,116.2 271.8,124.5 269,121.7 "/> <polygon class="st1" points="287.3,136.2 288.1,137.4 301.4,129 300.6,127.8 303.6,125.8 307.4,131.8 304.4,133.6 303.M 297.5,136.5 305.8,135.9 305.4,135.1 308.3,133.3 311.7,138.7 308.7,140.6 307.9,139.3 301.4,139.6 295.1,148.4 295.7,149.5 292.8,151.3 289.1,145.5 291.9,143.7 292.6,144.8 296.5,139.3 292.6,139.7 290.3,141.1 291,142.2 288.2,144 284.4,138 "/> <path class="st1" d="M298.2,159.3l-1.6,0.6l-1.1-2.8l7.1-2.7l1.2,3.1c-2.8,1.2-3.5,2.7-2.9,4.4c0.6,1.6,1.7,2.1,3.1,1.5 c3.6-1.4,1-9.8,7.3-12.2c3.5-1.4,6.5,0.2,7.6,3.1c0.6,1.7,0.7,3.2-0.4,4.2l1.6-0.6l1.1,2.8l-6.8,2.6l-1.2-3.2 c2.2-1,3.1-2.1,2.5-3.7c-0.6-1.5-1.Ly7-1.8-2.8-1.4c-3.3,1.3-1,9.7-7.2,12.1c-3.9,1.5-6.7-0.4-7.9-3.6 C297.3,162.1,297.2,160.4,298.2,159.3"/> x264 - core 164 r3100 ed0f7a6 - H.264/MPEG-4 AVC codec - Copyleft 2003-2022 - http://www.videolan.org/x264.html - options: cabac=1 ref=2 deblock=1:0:0 analyse=0x1:0x111 me=hex subme=6 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=0 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=12 lookahead_threads=2 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramiM d=2 b_adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=1 keyint=240 keyint_min=24 scenecut=40 intra_refresh=0 rc_lookahead=30 rc=crf mbtree=1 crf=48.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 vbv_maxrate=20000 vbv_bufsize=25000 crf_max=0.0 nal_hrd=none filler=0 ip_ratio=1.40 aq=1:1.00 HandBrake 1.6.1 2023012300h! <?xml version="1.0" encoding="utf-8"?> <!-- Generator: Adobe Illustrator 24.0.1, SVG Export Plug-In . SVG Version: 6.00 Build 0) --> <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 400 400" style="enable-background:new 0 0 400 400;" xml:space="preserve"> <style type="text/css"> .st0{fill:#BB9753;} .st1{fill:#008348;} .st2{fill:#F9A980;} .st3{fill:#A73832;} .st4{fill:#FFFFFF;} th d="M344.7,200.7c0-38.5-15-74.7-42.3-101.9C279,75.3,248.8,60.8,216,57.4c-0.8-0.8-1.7-1.5-2.5-2c-11.5-7.5-21.1-1.9-27.8,1.3 c-0.4,0.2-1.1,0.4-1.7,0.9c-12.5,1.5-24.7,4.6-36.1,8.9c-1.3-2-2.9-3.9-4.7-5.7c-6.9-6.9-16.2-10.8-26.2-10.8 c-20.3,0-36.9,16.5-36.9,36.9c0,8.5,2.9,16.7,8.2,23.1c-20.1,24.7-32.2,56.3-32.2,90.8c0,38.5,15,74.7,42.3,101.9 c13.3,13.3,28.7,23.7,45.6,30.9c-1,7.6,0.3,12.7,1.7,14.9c-2.1,1.8-3,2.9-3.4,4.9c-3.4,4.6,4.8,10.4,8.2,13 c6.8,5.3,10.4,4.4,15.9,4.1c6.6-0.3,12.9-8,16.3-13.1c7.2-1,8.5,0M .1,8.7,1c2.2-0.3,5.4-0.9,9.6-2.7c9.7-4,6.8-8.9,5.9-9.8 c-0.3-0.2-0.4-0.6-0.7-1c22.8-0.9,44.8-7,64.3-18c0.7,0.8,1.5,1.7,2.1,2.7c2.1,3.1,3.2,13.3,3.7,18.4c0.4,5.3,1.3,8.8,3.9,17 c2.6,8.3,3.6,2.2,3.7,0c0.1-2.2,0.6-10.3,0.2-16.1c-0.3-5.8-0.4-14.1,0.7-17.7c1.1-3.6-0.9-4.5-1.5-5.1c-0.6-0.7,0-0.9-1.5-5.4 c-0.1-0.3-0.2-0.4-0.2-0.8c7.4-5,14.2-10.7,20.7-17.2C329.7,275.4,344.7,239.2,344.7,200.7"/> <path class="st0" d="M187,338.1c-1.7-1.5-4.4-3.4-4.8-3.7c-0.3-0.3-1.3,0.1-2.1,0.4c0,0,0.M 7,0.3,1.2,1c0.8,0.8,3,2.5,3.9,3.4 c0.9,0.8,0.6,1.8,0.3,2.5c-0.1,0.7,1-0.1,2.3-0.9C189.2,340,188.7,339.5,187,338.1z"/> <path class="st0" d="M181.3,343.7c-0.9,0.3-1.9,0-2.5-0.6c-0.7-0.7-4.4-3.8-5-4.5c-0.7-0.7-0.6-1.6,0-2c-1.2,0.1-2,0.1-2.9,0.1 c-0.8,0.1-2.1,0.1-1.1,1.1c0.9,0.9,5.9,5.6,6.8,6.5c0.9,0.9,1.8,0.9,2.7,0.7C180.2,344.9,182.3,343.4,181.3,343.7z"/> <path class="st0" d="M199.8,156.8c0.4-1.1,1.3-3.4,2-5.1c-1.6,0-3.8,0.2-5.1,0.2c-1.2,0-0.8,1.8-1,2.9c-0.2,1.3,2.1,0.2,1.8,1.9 C197.4,157.4,199.4,15M <path class="st0" d="M167.9,314.6c-0.3,0-1.1-0.1-1.5-0.3h-0.2l0,0l-0.8-0.1c0.4,0.3,0.7,1,0.1,1.3c-0.9,0.6-3.8,1-6.8,0.8 c-3-0.1-3.7-1.8-3.8-2.9c0-0.7,0.1-1.3,0.1-2.5s-0.3-2.1,0.3-2.6c0.7-0.4,0.6,0.7,1,0.7c1.9,0,8.5,0.7,10.1,0.9 c1.6,0.1,1.5-0.7,1.1-1.8c-0.1-0.3-0.4-0.2-0.2,0c-0.2,0.6-1.7,0.3-1.7,0.3s-2.9-0.2-4.8-0.3c-2-0.1-3.5-0.3-4.6-0.6 c-1.1-0.2-2.6-0.2-2.5,0.3c0.1,0.6,0.3,7.5,0.4,8.5c0,1,0.1,1.3,0.6,1.3c1.2,0,9.8,0.1,11.8,0.1c2,0,1.8-0.2,1.9-1.3 C168.6,315.5,168.3,314.6,16M <path class="st0" d="M177.7,98.3c0.6,0.7,1.2,1.2,2,1.8c1.3-1.5,2.6-2.7,3.9-3.9c0,0,0,0,0-0.1c0.8-0.8,1.7-1.7,2.7-2.7 c2.9-2.7,5.7-4.9,8.9-7c1.8-1.1,3.2-2.2,4.9-3.2c0-0.1,0-0.1,0-0.2c1.9-1.1,3.2-1.8,3.2-1.8s1.9-0.8,4.4-1.9 c2.8-1,6.1-1.9,10.4-2.8c0.3-1,0.3-3.4,0.1-4.2c-0.1-3.1-3.5-6.1-3.5-6.1c0.3-0.2-0.2-1.8-0.4-3.2c-3.9,1.1-8.9,3.2-13.3,5.4 c-0.7,0.3-0.7,0.3-2.3,1.2v-0.1c-0.8,0.3-1.7,0.9-2.3,1.2c-1.3,0.7-3.4,1.9-5.5,3.5c-3.1,2.1-6.9,4.9-10.4,8 c-2,1.7-5.5,5.9-5.5,5.9c-0.6,0.8-1.1,1.M 5-1.5,2.2c0.3,0.8,0.4,1.5,0.7,2.1C174.5,93.3,175.7,96.6,177.7,98.3z"/> <path class="st0" d="M193.5,151.9c-2.5-1.1-4.7-3.8-6.3-6.8c0,0,0.1-0.4-0.6-0.4s-3.1-0.2-7.3-1.7s-4.7-0.6-5.3,1.2 c-0.6,1.8-1,5-1.1,10.4c-0.1,5.4,2.2,8.7,3.7,8.2c0.7-0.3,2.5-1.1,4.5-2.1l5.5-2.3c2.3-0.8,5-2.3,5.9-2.9l1.5,0.1 C194.2,153.5,194.1,152.3,193.5,151.9z"/> <path class="st0" d="M225,143.2c-3.7-0.2-8,0.4-12.1,2.1l-2,0.6c-1.1,0.6-2.5,1.1-3.5,1.8c-5.7,3.5-5.9,6.5-4.6,7.5 c1.1,1,3.7,1.5,7.8,4.1l1.6,1.5l0.1,0.1c6.1,4.5,7.6,2M ,8.6-0.1c0.9-2.1,2.9-8.4,3.5-11.7C224.7,146.9,225.2,144.9,225,143.2z"/> <path class="st0" d="M185.1,176.4c-0.9-2-1.1-0.4-3.7,3.5c-1.2,2-7.7,9.2-8.2,9.7c-5.7,7-16.7,15.8-16.7,15.8 c-4.9,4.5-7.6,7.8-9.3,10.5l6.4,20.1c2.8,3.9,6.8,9.5,8.3,11.8c2.2,3.7,2.2,8.2,3.1,7.5s3-2.7,3.7-3.2c0.7-0.6,1.3-1.2,1-2.5 c-0.3-1.2-1.7-7.8-1.2-12.4c0.4-5.3,2.9-11,4.7-14.2s6.8-13.3,8.2-16c1.2-2.7,3.5-5.8,4-8.3s2.7-8.2,3.6-10.8 C189,186.3,187.5,181.8,185.1,176.4z"/> <path class="st0" d="M238.2,235.3c0-2.6-1.5-4.6-4.4-9.4c-2.9-4M .7-3.5-6.7-3.9-11.6c-0.3-3.1,0-7.2,0.3-11.1l-8.4-8.4l-0.2-7.4 l-0.3-1.6c-2.3-11.1,3-24.3,4.5-27.9c1.6-3.9,7.5-14.9,9.7-18.2c-1.1-0.6-4-2-5.7-2.9c-1.7-0.9-2.5-1.2-2.9-0.6c-0.4,0.6-1,1-1.8,2 c-1.6,2.2-0.2,1.9,0.2,1.9c0.4,0,2.3,2.5,2.7,3c0.3,0.6,0,1-0.8,2.8c-1.1,2.3-1.7,7.7-2.5,11c-2.7,9.7-6.8,8.8-8.8,7.5 c-1.9-1.2-2.5,0.7-4.4,3.4c-0.4,0.7-1.5,2.1-3,3.7l-1.7,2.6l-10.5,10.1c0,0-3.6,3.7-4.7,4.2c-1.5,2.5-2.7,5.5-4.5,10.8 c-2.5,7.5-8,17.5-10.4,21.4c-6,9.7-7,18.8-6.1,24.5c0.9,5.6,1.7,5.3,2.9,5.3c1.2,0,4.2,3.8,6M .1,6.1c2,2.3,2.8,1.3,3.8,0.6 c3.2-2.5,9.7-6.7,18.9-11.1c3.9-1.8,9.1-3.9,14.1-5.4l5.1-1.6c4.8-1.3,9.1-2.1,11.3-1.9C236.1,237.3,238.4,238.2,238.2,235.3z"/> <g id="Layer_2_1_"> <path class="st1" d="M166.4,335.3c5.4-0.2,12.9-1.9,16.2-3.4c0.4,0.1,1.1,0.6,2.3,1c0.4-3.6-1.8-11.1-3.1-14.4 c-0.9-2.2-1.7-3.8-2.7-6.1c-3-0.6-6.8-2.2-9.4-3.2c0,2.1,0.3,7.6,0.9,11.3c-1.1,0.1-2.7,0.2-4.6,0.2 C166.3,324.6,166.6,331.9,166.4,335.3"/> <path class="st1" d="M267.2,323.4c-1-1,1.2-4.1,2.2-9.8cM 1-5.8,1.1-15.4-3.1-21c-2-2.6-3.1-4.4-3.4-5.5 c-13.2,9.6-28.3,16-44.4,18.7c-0.2,0.3-0.3,0.7-0.6,0.9c-2.3,3-6.8,7.4-10.3,9.1c-3.4,1.8-7.3,3.1-9.4,3.8 c-0.4,3.6-1.1,11.5-0.1,14.2c0.3,1,4.5,3.5,5.9,6.1c0.2,0.3,0.3,0.6,0.3,0.8c22.7-0.7,44.2-6.8,62.9-17 C267.5,323.5,267.4,323.4,267.2,323.4"/> <path class="st1" d="M299.5,101.6c-21.9-21.9-49.9-35.8-80.1-39.8c2.5,4.8,2.8,10.4,3,13.9c4.4-1.9,7.6-2.9,9.5-5.8 c1.8-2.9,4.2-2.3,5.8-0.2s1.6,4.7-2.5,7.4c-4.1,2.6-7.2,3.8-8,4.2c-0.9,0.4-0.1,1.2,0.9,2.9c1,1.7,3.6,5M c0,0.1,0,0.2,0,0.3c16.3,5,31.4,14,43.8,26.5c20.1,20.1,31.2,46.9,31.2,75.3c0,16.3-3.7,32.1-10.5,46.4c1,0.4,2.1,3.7,2.6,7.9 c0.2,2.2,0.1,4.7-0.6,6.1c-0.7,1.6-5.9,9.5-8.6,11.8c-1,0.9-3.4,0.8-4.4-0.7c-1-1.5-1.1-0.7-1.9,0.1c-0.8,0.8-3.5,4.7-4.1,5.7 c-0.7,1-2.9,2-1.5,6c1.5,4,3.1,7,2.6,9.3c-0.6,2.2-0.8,2.9,2.2,5.4c3,2.5,2.9,5.7,1.6,7.6c-0.9,1.2-2.1,4.7-2.7,8 c35.5-25.5,58.8-67.1,58.8-114C340.7,163.3,326,128.1,299.5,101.6"/> <path class="st1" d="M138.7,304.1c-0.3-3.8-1-10.6,1.7-15.4c-5.4-3.7-M 10.4-7.9-15.2-12.6C105,255.9,94,229.1,94,200.7 c0-30.5,12.9-57.9,33.4-77.4c0.2-0.3,0.4-0.8,0.8-1.1c-3.5,1.1-7.2,1.7-11,1.7c-9.7,0-19-3.8-26-10.7 c-19.9,24.7-30.9,55.4-30.9,87.6c0,37.4,14.6,72.7,41,99c12.6,12.6,27.4,22.6,43.4,29.6c0.6-3,1.6-6.3,2.9-9.7 c1.2-3.2-0.7-10.7-3.8-14.6C142.3,304.5,140.1,304.2,138.7,304.1"/> <path class="st1" d="M175.8,62.9c-8.8,1.6-17.5,3.9-25.7,7.2c2.7,5.1,4,11,4,16.9c0,7.9-2.5,15.4-7,21.8c7.7-4.5,16.1-8,24.7-10.5 c0.6-0.6,1.1-1.1,1.8-1.6c-3.2-5.4-7.5-14-3.8-25.5C170.8,M 67.8,173.2,65.1,175.8,62.9"/> <path class="st2" d="M127.6,154.7c-1.5-0.4-2.6,1.2-3.2,2.6c-0.7,1.3-1.5,2.8,0.7,5.8c2.1,3,3.4,4.8,7.2,4.6 c1.8-0.1,3.4-1.5,3.9-2.2s0.7,0.6-0.2,1.9c-0.9,1.3-1.6,4.5,0.1,6.6c1.7,2.1,5.1,3.9,9.7,1.2c4.6-2.7,6.5-5.9,7.3-7.4s0.8-2.1,0-3 s-3.4-5.1-3.9-13.4c-0.3-5,0.6-8.3-2.5-10.1c-3.1-1.8-10.3-6-11.1-14.2c-0.3-3.1-0.1-7.9-3.2-5.4c-3.1,2.6-3.1,4.4-3.5,6.1 c-0.3,1.9,1.2,4.5,2.5,6.1c1.3,1.8,2.9,5.7,4.1,6.7c1.2,1,2,1.8,3,1.9c1,0.1,5,0.1,6,0.4c1,0.3,1.6,1.6-0.9,1.6s-6.1,0.7-7.9,0.9M c-1.7,0.2-3.2,0.3-3.9,3.7c-0.8,3.4-1.9,7.3-2,8.5c-0.1,1.2-0.8,1.9-0.8,2.6s1.3,3.9,4.4,0.7s4.2-6.5,4.8-8 c0.6-1.6,1.2-1.3,0.7,1.1c-0.6,2.5-0.7,8.6,0.4,10.7c1.2,2.3,3.8,4.7,7,3c0.7-0.3,1.8-0.9,2.7-0.8c0.9,0.1-0.2,1.7-1,2.3 c-0.8,0.7-3.4,3.5-7.8-0.6c-1.1-1-2.7-3.2-3-6c-0.1-0.9-1.3-1.2-1.9-0.4c-0.6,0.8-3.6,3.6-5.7,1.6c-2.1-2-3-3.1-1.8-7.4 C127.7,155.7,128.1,154.9,127.6,154.7"/> <path class="st2" d="M129.9,148.5c-0.4,1.5-0.9,3.4-1.1,3.9c-0.2,0.7-1.2,2.1-2.1,0.2c-0.9-1.9-0.9-3.4,0.6-4.8 .1-1.3,1.6-0.9C129.1,147.6,129.9,148.1,129.9,148.5"/> <path class="st2" d="M134.9,143.3c-0.9,0.4-2.9,0.4-3.6,2c-0.4,1-2.2-0.1-1.3-1.3c0.9-1.2,1.6-1.1,2.1-1.5 c0.6-0.3,0.8-1.3,1.9-0.8C135,142.4,135.2,143.2,134.9,143.3"/> <path class="st2" d="M195.1,123.1c-0.6,1.3-2.3,2.7-6.1,2.3c-1.9-0.2-3.9-0.3-4.1,1.2c-0.2,1.1-1.1,1-2.3,1 c-1.2-0.1-2.7-0.3-2.7,0.1c-0.1,0.4,5.4,3.8,7.3,4.6c1.8,0.9,4.6,2.8,6.7,2.6c2.9-0.3,5.4-1.8,9.7-6.3c1.8-1.8,3.2-2.8,1.6-3.6 c-1.1-0.4-2.3-0.7-3.8-0.7C199.6,124.3,196.5,124.1,195.M <path class="st2" d="M174.3,123.2c-1.6-0.1-1.7-1.1-0.7-2.8c1-1.7,1.9-3.2,3.2-4.2c0.2,0.7,0.7,1.7,1.3,2c-0.9,1-2,2.1-1.8,4.5 <path class="st2" d="M234.7,110.5c-2.3-4.2-6.3-2.1-8.2,1c-1.9,3.1-4,6.6-4.1,11.8c-1.3-0.4-2.7,0-3.4,1.1 c-0.3,0.6-5.3-0.1-6.8,0.3c-1.7,0.4-2.2-0.6-0.4-2.9s8-10.8,7.6-17.1c-0.1-1.9,0.1-2.2,0.4-3.7c0.3-1.8,0.6-1.8-1.8-3.1 c-1.5-0.8-1.6-3.1-1.8-4.9c-0.3-1.9-0.7-1.9-2.8-1.5c-1.3,0.2-4-1.5-5.3-3.4c-3.1,0.3-6,2.2-8.9,4.2S186,103.3,183.4,105 3.2,3.9,2.3,8.5c-0.2,1,0,1.3,0.7,0.7c0.7-0.7,3.8-3.9,3.7-6.7c-0.1-2.7-1.3-4.2-1.6-4.6c-0.2-0.3,0.9-1.7,2.1,1.1 c1.2,2.8,0.9,6.7-2.8,11.1c-3.7,4.4-6.6,4.2-8.2,5c-1.6,0.8-3.1,2-1.7,4.4s4.2,1.5,5.4,0.7c1.1-0.8,2.7-1.7,6.1-1.3 c3.6,0.3,4.7-1.9,2.3-4.4c-0.8-0.8-2.8-2.5-0.3-2.5c1.5,0,3.2,3.2,4.2,4.1c1,0.9,3.2,1.2,6.1,1.5c3,0.2,7.6,1.3,7.6,4.2 c0,1.8-1,2.3-2.2,0.9c-0.4-0.6-1.2,0.3-1.8,0.9c-1.9,1.9-6.8,7-10.2,7.9c-3.5,0.9-4.7-0.1-9.3-2.5c-4.6-2.5-8.8-4.9-10.1-5.7 c-1.2-0.8-3.8-2.6-2.6,1c1.2,3.6,4.2,7.3,10.3M ,9.3c6,2,6.8,2.7,8.3,3.4c1.3,0.7,0.6,1.3-1.2,1.1c-1.6-0.2-3.2-1.6-1.9,1.5 c1.3,3,3.4,6.3,9.5,5.4c6.1-0.8,6.3-2,10.2-8.5c0.7-1.1,1.3-0.3,0.9,2.6c3-1.5,4.7-1.9,6.5-2.3c1.8-0.4,6.4-2,9.5-7.7 c1.6-2.9,2.5-3.9,2.1-6.8c-0.1-1.1,1.6-3.4,3.2-4.9C232.5,120.6,236.9,114.7,234.7,110.5z M207.9,116.1c0.6,0.1,0.6,0.1,0.4,0.1 c-1.9,0-4.7-0.6-6.8-2c-2.1-1.5-2.7-2.1-2.5-4.1c0.2-1.2,0.3-1.9,0.3-2.5c0.1-0.3,0.1-0.6,0.1-0.9c0.2-1,0.1-1.7-0.2-1.9 c-0.2-0.2-0.3-0.3-0.7-0.3c-0.3,0-1,0.3-1.8,0.9c-1.1-0.9-2.3-1.8-3.1-2.6c-0.M 7-0.6-1.1-1-1.3-1.1c-0.2-0.2-0.4-0.3-0.6-0.7 c0-0.2,0.1-0.4,0.3-0.8c0.2-0.2,0.3-0.2,0.7-0.2h0.1h0.1c0.2,0,0.6,0,0.8-0.3c0.2-0.3,0.3-0.8,0.2-1.5c0,0,0.1-0.1,0.6-0.1 c0.1,0,0.3,0,0.3,0c0.2,0,0.3,0,0.3,0c0.3,0,0.4,0,0.6-0.1c0.3-0.1,0.3-0.3,0.3-0.6c0.1-0.3,0.1-0.3,0.4-0.3c0.2,0,0.4,0,0.9,0.1 c0.1,0,0.1,0,0.2,0c0.3,0,0.6-0.3,0.7-0.4l0.1-0.1c0.1-0.2,0.3-0.3,0.6-0.3c0.1,0,0.2,0,0.3,0c0.3,0.1,0.6,0.1,0.8,0.2 c0.3,0.1,0.6,0.2,0.9,0.2c0.7,0,0.9-0.4,1-0.9c0.2-0.8,0.3-1,0.7-1c0.3,0,0.7,0.2,1.1,0.4c0.4,0.3,0.9,0M c0.4,0,0.9-0.3,1-0.9c0,0,0-0.1,0.2-0.1c0.3,0,0.9,0.2,1.6,0.6l0.3,0.2c1.1,0.6,3.2,1.8,5.7,4.7c0.6,0.7,0.8,1.1,0.7,1.2 c0,0-0.1,0-0.2,0c-0.3,0.1-1,0.2-1.1,1.1c-0.1,0.4-0.2,0.9-0.3,0.9c0,0-0.1-0.1-0.2-0.3c-0.2-0.3-0.3-0.6-0.7-0.6 c-0.1,0-0.1,0-0.2,0c0,0-0.1-0.1-0.1-0.3c-0.1-0.2-0.2-0.6-0.7-0.6c-0.2,0-0.3,0.1-0.4,0.2c0,0,0,0-0.1,0 c-0.1-0.2-0.2-0.6-0.7-0.6c-0.1,0-0.2,0-0.3,0h-0.1c0,0,0-0.1-0.1-0.2c-0.1-0.2-0.2-0.3-0.4-0.3s-0.3,0.1-0.4,0.1 c-0.2,0.1-0.3,0.1-0.4,0.1c-0.1,0-0.1,0-0.1-0.1c-0.M 2-0.3-0.3-0.3-0.4-0.3c-0.2,0-0.3,0.1-0.6,0.2c-0.1,0.1-0.3,0.2-0.3,0.2 s-0.1,0-0.2-0.1c-0.1-0.1-0.3-0.3-0.4-0.3c-0.3,0-0.3,0.2-0.6,0.3l-0.1,0.1c-0.1,0.2-0.2,0.2-0.3,0.2c0,0-0.1,0-0.2,0 c-0.1-0.1-0.3-0.1-0.3-0.1c-0.3,0-0.6,0.3-0.7,0.3c-0.1,0.2-0.1,0.2-0.1,0.2s-0.1,0-0.2-0.1c-0.1-0.1-0.3-0.1-0.3-0.1 c-0.4,0-0.7,0.3-0.8,0.7c-0.1,0.3-0.2,0.3-0.3,0.3h-0.1c-0.2,0-0.3-0.1-0.4-0.1c-0.6,0-0.7,0.6-0.8,1.1c0,0.1,0,0.2-0.1,0.3 c-0.2,0.9-0.6,4.7-0.4,5.6c0.1,0.9,1.2,0.9,1.7,0.9c0.9,0,1.9-0.2,3.4-0.3c2.7-0.3,7.8-1.M 9,10.4-4c0.7-0.6,1.1-0.6,1.3-0.6 s0.2,0,0.3,0.1c0,0.1-0.3,0.9-1,1.3c-0.1,0.1-0.1,0.1-0.2,0.2c-0.8,0.7-2.7,2.5-6.6,3.1c-3.7,0.7-7,1.3-8.3,1.3 c-0.2,0-0.2,0-0.3,0s-0.1,0-0.2,0c-0.2,0-0.3,0.1-0.3,0.3c-0.1,0.2,0,0.4,0.3,0.7c0.3,0.3,0.9,0.4,1.3,0.4c0.2,0,0.3,0,0.4,0 c0.1,0,0.6,0.3,0.9,0.7c0.8,0.8,2,1.8,3.6,1.8c2,0,4.8-2.1,5.7-2.8c0.3-0.3,1.2-0.8,1.8-0.9c-0.1,0.1-0.2,0.3-0.3,0.4l-0.1,0.2 C211.7,114.1,209.8,116.1,207.9,116.1z M231.8,113.7c-1.2,0.9-2,1.2-2.1,2.8c-0.1,1.6-0.3,4.2-1,4.5c-0.8,0.3-0.7-1.5-0.9-0M c-0.3,0.8-1.2,0.4-1.6-0.3c-0.1-0.3-2.9-0.3-0.7-3.5c2-2.9,3.6-4.5,5-5.1C232,110.5,234.6,111.8,231.8,113.7z"/> <path class="st2" d="M286.4,246.2c-0.4-1.3,0.3-3.5,3.2-1.9c2.8,1.6,4.9,2.9,2.9,8.9c-2,6.1-3.5,9.7-4.2,12.3s-3.8,5.8-2.8,1.5 c1-4.4,1.6-9.6,1.1-12.3c-0.8-4.9,0.8-4.7,0.3-6.8C286.7,247.2,286.6,246.6,286.4,246.2"/> <path class="st2" d="M297,251.4c0.8,2.5,1.7,7.9,0.3,10.2c-1.3,2.2-5.5,8.3-7,9.9c-1.6,1.6-2.8,0.9-1.8-0.8c1-1.7,2.3-3.9,2.3-4.7 c0-0.8-0.1-1.7,1.2-4.2c1.3-2.5,3.7-11.1,3.9-11.8C29M 6.2,249.3,296.8,250.8,297,251.4"/> <path class="st2" d="M268.2,272c-0.7-2-1-4.9-2.1-6.6c0.9-2.5,3.9-8.9,8.8-11.1c0.6-0.2,0.9-0.8,0.7-1.2c-0.2-0.4,0.7-0.8,1.1,0.8 c0.4,1.6,1.2,6,1.2,6c0.2,1-0.2,1.8-0.4,3.1c-0.2,1.3-0.8,4.4-0.4,5.9c0.3,1.6,0.9,2.7,3.9,2c1.6-0.3,1.5-0.8,1.9-2.1 c0.4-1.3,1.7-5.1,2.1-7.3c0.4-2.1,0.1-7.3-0.3-8.6c-0.4-1.3,0.2-5.9-0.2-6.8c-0.3-0.9-0.6-2.2-3.4-3.1c-2.8-0.9-3.6-1.1-5.4,0.8 c-1.9,1.9-2.5,2.7-3.5,3.6c-0.9,0.9-3.1,0.1-1.2-1.7c1.9-1.8,3.7-3.6,4.2-4.1l-0.6-1.5h-1c-3,3-7,4.8-9.7,5.4M c-1,0.2-2.9,0.3-1.6,2.1c0.3,0.4,0.4,1.7,1.2,1.2c0.8-0.4,2-2.5,3.1-1.6c1.1,0.9-0.2,3-1.6,4c-1.3,1-2.8,2-3.8,2.5 c-1,0.6-1.6,1.1-1.5,2.9s0.2,5-0.8,7.5c-1,2.5-0.4,3.1,0.4,4.7c0.9,1.7,2.3,3.1,2.8,5.8c0.4,2.7,0.7,3.4,2.5,3.1 c1.8-0.2,2.5-1,3.1-2.1L268.2,272z"/> <path class="st1" d="M203.5,78.5c1.6,0.2,3.2,0.1,3.6-1c0.3-1.1,0.1-1.8-0.4-1.9c-0.4-0.2-0.8-0.2-0.4-1.1c0.2-1,1-0.9,0.9-2.5 c-0.1-1.6-1.2-1.7-2.3-1.2c-1.1,0.3-1.5,0.9-2.5,2.1c-1,1.3-0.6-0.9-0.3-1.2s0.6-2.9-0.8-3.4c-0.8,0.3-1.6,0.8-2.3,1.1 c-0.2,0.4-0.3,1.1-0.7,1.7c-0.6,1.5-1.2,0.3-1.8-0.3l0,0c-1.5,0.8-2.8,1.6-3.8,2.2c-0.1,0.1-0.2,0.2-0.3,0.2 c0.1,0.9,1.1,2,1.8,2.5c0.8,0.4,0.3,1.5-0.6,1.5c-0.9,0-2-0.6-3.1,0.8c-1.1,1.3-0.3,2.6,0.7,2.6c1.1,0,1.9,0.3,2.3,1.7 c0.3,1.2,0.7,1.8,2.1,1.9c1.5,0.1,2.3-1,2.7-1.7c0.3-0.7,0.9-1.7,1.6-1.3c0.9,0.3,0.8,1.2,0.4,2.3c1.1-0.6,2.1-1.1,3.2-1.8 c-0.2-1-0.8-1.8-1.1-2.2C201.8,78.6,202,78.4,203.5,78.5"/> <path class="st1" d="M215.9,62.3c-0.4,0.1-1.1,0.3-1.7,0.3c0.3,1.2,0.8,2.9,0.4,3.2c-0.3,0.3-1.7,0.4-2.6,0.8 c-1,0.3-3.4,2.5-2.1,4.1c1.2,1.7,1.7,2.6,1.8,3.4c0.2,0.9,2.2,1.8,3.6,0.2c1.3-1.7,2.5-3.5,2.8-2.3c0.3,1,0.2,3.4,0,4.7 c0.3-0.1,0.6-0.1,0.9-0.2C219.7,70.2,218.1,65.8,215.9,62.3"/> <path class="st1" d="M185.3,92.4c-0.8-0.6-1-1.6-0.1-1.8c1-0.3,2.2-0.4,4.6-1.6c2.3-1,1.1-2.7,0.1-3.2c-1.1-0.4-1.1-1.5-1.1-2.5 c0.1-1.1-0.2-2.6-2.2-1.8c-2,0.8-1.3,2.8-1.9,3.5c-0.6,0.7-1,0.4-0.9-0.6c0.1-1-0.8-1.7-1.2-1.9c-0.3-0.2-1.2-0.3-1.9-0.3 c-2.1,1.9-4,3.9-5.5,5.9c0.3,0.7,1.1,1.5,1.6,1.6c0.6,0.2,1.3,0.6,1.3,1.7c0,1-2.1,1-M 3.6,1.1c1,2.7,2,4.6,3.4,6.1 c0.3-0.1,0.8-0.2,1.2-0.4c1.8-0.8,2.3-3.4,2.5-4.1c0.3-0.8,1-0.6,1.6,0.3c0.3,0.7,0.4,1.3,0.4,2c1-1,1.9-1.9,2.9-2.8 C186.2,93,185.8,92.7,185.3,92.4"/> <path class="st1" d="M214.9,158.9c0.3-0.1-0.6-3.9,0.2-4.1c0.7-0.2,1.1,2.1,2.6,1.9c1.6-0.3,1.9-1.8,1.8-3.6 c-0.2-1.8,0.8-0.8,1.6-2s-0.9-2.9-2.8-1.8c-1.9,1.1-1.6-0.3-0.6-1c1-0.7,0.3-2.8-1.8-2.1c-1.6,0.4-2.3-0.4-3-0.9 c-0.6,0.2-1.1,0.4-1.7,0.7c-0.1,0.3,0,1,0.1,1.6c0.2,0.7,0.4,2.5-0.7,1.8c-1.1-0.7-2.5-1.1-2.8,0.2c-0.3,1.2,0.3,1M s-2.1,1-1.1,2.5c1,1.7,2.3,0.8,3.2,0.1c1-0.6,1.8,0.1,1.6,1c-0.3,0.7-0.8,2.8-0.9,4.2c0.4,0.3,0.9,0.6,1.3,1 C212.8,160,213.8,159.1,214.9,158.9"/> <path class="st1" d="M184.5,155c0.9-0.2,2.5,1.6,3.9,0.4c1.5-1-0.6-2-0.3-2.8c0.2-0.8,1-2.5-0.1-3.2c-1-0.8-2-0.1-3.1,1.1 c-1.1,1.1-0.7-1.1-0.1-2c0.8-1.2,0-2-1.2-2.3c-1.2-0.2-1.7,1.6-2.5,0.8c-1.3-1.2-3.4-0.8-2.9,1c0.4,1.8,1.1,2.3,0,2.5 c-1.1,0.2-2-2.5-3.2-0.3c-1.2,2.2,0.8,2.9,0.6,4.6c-0.2,1.7,0.4,3.5,1.6,3.6c1,0.2,2-1,2.6-1.7s1.9-1.1,1.8,0.1 0.1,0.9-0.2,2.7-0.2,3.8c2-1,4.2-2,5.4-2.5c0.1,0,0.1,0,0.2-0.1c-0.6-0.2-1.3-0.6-2.1-1.1C183.6,156.2,183.6,155.3,184.5,155"/> <path class="st1" d="M159.9,205.7c2.5-0.8,2.7,1.2,2.3,2.9s-0.3,5.3-0.2,7l4.2,0.2c-0.2-1.1,0-4.4,0.1-6.3c0.1-1.9,2-4.8,2.7-1.9 s3.6,3,5.6,1.8c2-1.2,3.5-3.9,5.6-7.7c2.1-3.8-0.7-4.8-2.3-4.6s-3.4,0.4,0.4-2.7c3.5-2.9-2.5-4.4-5.1-4.9 c-4.5,4.7-9.9,10.1-14.9,14.2c-0.6,0.6-1.2,1.1-1.8,1.6C157,205.8,158.1,206.3,159.9,205.7"/> <path class="st1" d="M155.5,233.8c2.1-0.7,3.5,3.9,6.6,1.2c3.1-2M .7,0.9-4.9,0.8-7.2s2.5-3.1,1.7-5.9c-1.1-4.2-5.1-0.2-7.5,2.1 c-2.5,2.3-2.5,0.4-0.1-3.4c2.5-3.8-1.6-5-4-4c-2.2,0.9-4.1,0-5.4-1.1c-1,1.6-1.7,2.9-2.3,4.4c-2.1,4.4-0.7,4.5,0.9,4.5 c1.6,0,4.9,6.6,5.4,7.8c0.2,0.3,1.2,2.1,2.8,4.2C153.9,235.4,154.1,234.3,155.5,233.8"/> <path class="st1" d="M216.4,190c-2-0.4-4.7-0.8-4.9,3.4c-0.1,1.6,1.5,2.8,2.9,3.4c1.5,0.6,1.2,1.6-0.3,1c-1.6-0.6-2.8-0.9-3.9,2.3 c-1.1,3.2,0.9,3.7,1.9,3.9s1.8,0.4,1.6,1.8c-0.2,1.3-0.9,5.3,1.7,5.6c2.5,0.3,4.8-2.8,5.6-4.4s1.7-3.1,1.9-1.3 .8-0.1,2.7-1,4.7c-0.9,2-0.9,2.9,0.4,2.8c1.3-0.1,3.6,0,4.2-1.6s1.7-4.6,1.8-6.7c0.1-1.3,1.2-1.5,2.1-1.3 c0.3-2.2,0.6-4.5,0.9-6.4c-4.4,0.7-8.2-4.7-9.4-9.3C220.3,189.2,218.1,190.4,216.4,190"/> <path class="st1" d="M195.6,189.2c-0.8,1.3-3,5.1-2,6.4s2.1-1.2,3-0.3s2.9,1.9,2.9,1.2c0-0.7,0.2-2,0.6-3.8 c0.3-1.8,1.1-2.8,1.9-1.3s1.9,2.7,4.7,2c2.8-0.7,2.5-3.6,1.9-5.7c-0.6-2.1,1.5-3.1,2.5-3.7c1-0.6,3.6-2.6,1.7-4.4 c-1.9-1.8-3.6,0.8-5.3,1.1c-1.7,0.3-1-1.1,2.5-3.8c3-2.3,0.4-4.7-1.3-5.4c-4.8,4.8-13.3,12.6-15.2,14.4c-M 0.7,0.7-1.2,1.3-1.8,2.3 C195.9,186.2,196.3,187.8,195.6,189.2"/> <path class="st1" d="M223.1,234c1.5,1.3,4.9,3.2,7.4,1c2.5-2.2-0.6-4.7-0.9-6.5c-0.3-1.8,1.8-2.9,0.7-5.8c-1.9-5-4.8,1-6.5,2.7 s-1.3-1.1,0.1-2.7c0.8-0.8,4.2-2.9,2.2-5.3c-2-2.3-4.9-1-6.4,0c-1.5,1-2.5,2.2-4.8,1.6c-2.2-0.7-4.1-0.9-5.4,2.3 c-1.3,3.2,1.2,2.3,3.2,4.7c2.1,2.3,0.8,2.5-0.9,1.9c-1.7-0.6-2.5-2.7-4.9-2.3c-2.5,0.3-2.5,4.2-1.7,5.3c0.8,1,2.3,1.6,1.2,3.5 c-1.1,1.9,0.6,4.1,2.5,5c2,0.9,5-2.7,6.1-4.1c1.1-1.5,2.2-1.1,2,0c-0.2,1-0.7,3.5-0.8M ,5.6c1.8-0.6,3.4-1.1,5-1.5 c0-1.1-0.3-3.1-0.8-4.8C220.2,232,221.6,232.7,223.1,234"/> <path class="st1" d="M194.2,245.8c-2.7,0.8-3.1-0.4-4.9-1.1s-1.9,0.9-0.7,2.8c1.2,1.9,2.6,3.7,1.1,3.7s-2.6,0.2-2.8,1.3 c-0.2,1.1-2.6-0.2-3.1-2.5c-0.6-2.3-1.1-6.8-2.3-4.6c-1.2,2.2-2.3,5.9-5.4,4.2c-3.1-1.7-1-3.9-2.6-5.4c-1.6-1.6-3-3.6-1.5-6.4 s2.9-0.4,4.4-0.4s1.7-1.3,0.3-2.3c-1.3-1-3-5.8,3.1-5.4c2.3,0.1,4.9-0.7,6.8-2.1c2-1.5,7.3-0.7,5.1,3c-2.1,3.7-1.5,4.5-0.2,3.1 c1.2-1.3,2.8-3.8,5.1-3.1c2.3,0.7,1.3,2.5-0.1,4.5c-1.5,M 2-0.6,3.4,0.6,4.1C198.3,239.9,200.4,244.1,194.2,245.8"/> <path class="st1" d="M205.5,219.6c-2,0.1-4.5-0.4-4.5-0.4c-0.2,2.1-2.3,5.1-4.4,8.3c-0.2,0.3-1.5,0.3-2-0.1 c-0.6-0.4-2.1-1.2-0.9-2.5c1.2-1.3,3.2-4.1,2.9-5.4c-0.3-1.2-1.2-2.3-2.6-0.7c-1.3,1.7-3.5,5.1-5.8,5.3s-4.7-2-3.6-4.1 c1.1-2.1,1.5-3.2-0.1-5.1c-1.6-1.9-1-4.4,2.3-5.8c1-0.4,2.8,0,3.9,1c1.2,1,1.9,0,0.2-1c-1.7-1-3-2.2-3.2-4.5 c-0.2-2.1,1.1-4.4,3.9-3.1c2.9,1.2,4.7,0.2,5.9-0.8c1.2-1,6.5-2.2,5.7,2.3c-0.6,3.4-2.1,3.5-2.5,5.3c-0.4,1.8,0.9,0.7,1.7-0.7 c0.8-1.3,2.5-6.8,6.1-2.7c0.9,1,0.6,2.7-0.6,4.6c-1.1,1.9-0.2,3,0.4,3.9C209.6,214.3,211.1,219.3,205.5,219.6"/> <path class="st0" d="M198.2,70.9c0.2-0.6,0.3-1.1,0.6-1.7c-0.8,0.3-1.7,0.9-2.3,1.2C196.9,71.4,197.6,72.4,198.2,70.9"/> <path class="st3" d="M107.7,80.4c0.8,1.1,1.6,0.9,1.9,0.1c0.7-1.7,2-7,2-11.1c0-9.4,1.2-13.1,3.6-17.4 c-10.8,0.6-20.6,6.1-26.5,14.5C97.8,68.9,104.7,76.3,107.7,80.4z"/> <path class="st3" d="M106.8,85.7c1.1-1.5-0.2-2.3-0.8-3.1c-2.9-4.1-9.6-11.5M -18.7-13.9c-3.2,5.4-5.1,11.4-5.1,18.1 c0,3,0.3,5.8,1,8.4C100.3,96.7,105.8,87.1,106.8,85.7z"/> <path class="st3" d="M118.9,51.7c-2.5,3.9-3.9,6.9-4.9,17.2c-1,10.2-1.9,17.3-9.3,23.5c-5.7,4.6-16.9,5.9-20.5,5.7 c1.7,4.9,4.4,9.3,7.9,13c10.6-3.6,18.3-8.2,28.5-17.7s15.3-19.2,16.9-22.8c1-2.3,2.9-5.4,1.6-0.2c-1.3,5.1-6.1,16.1-16.1,25.5 c-9.8,9.4-18.8,14.2-29.2,16.9c6.1,5.6,14.4,9.1,23.5,9.1c0.3,0,0.4,0,0.8,0c2-12.6,5.1-16.8,11.3-22.1c6-5.4,14.6-8.2,21.9-5.1 c0.6-2.3,0.8-5,0.9-7.9C152.2,67.8,137.5,52.6,118.M <path class="st3" d="M133.2,100.5c-0.9,0.6-1.6,1-0.4,2c2,2,5,5.8,7.2,11c4.8-4,8.4-9.4,10.4-15.4 C148.6,95.7,142.7,94.6,133.2,100.5z"/> <path class="st3" d="M128.4,104.4c-5.3,4.7-7.3,11.7-8.4,17.2c6.3-0.4,12.2-2.7,17.1-6c-2-4.9-3.7-8.5-5.6-11 C130.4,103.3,130.3,102.8,128.4,104.4z"/> <path class="st3" d="M279.1,312.2c2-6.5,5.3-6.4,4.2-8.9s-2.8-4.4-4.1-5.8c-1.3-1.5-0.3-4.9-0.3-6.4c-0.1-2.7-2.2-3.1-2.5-6.1 s-0.4-5.4,1.8-8.5c2.2-3-0.8-2.9-1.8-4.8c-1-1.9-1.6-4.5-0.7-8.3c0.4-2,0.2-2.5-0.3-2M .8c-0.6-0.2-2.9-0.7-2.9-0.7l-3.5,6.8 c0.6,1.3,0.8,3.4,0.8,4.7l-0.9,5.7c-0.8,1.3-2.1,3.5-2.1,5.4c0,1.9-1.9,3.9-1.7,4.8c0.2,0.9,2.7,3.2,4.1,5.7 c1.5,2.5,3.2,6.1,3.2,12.3s-2,14.5-2.2,15.5c-0.2,1.1-0.8,2,0.9,3.6c1.7,1.6,4.4,4.5,5.4,11.1c1,6.6,1.7,10.1,2.1,10.4 c0.4,0.3,0.3,0.9,0.3,2.1c0,1.2,1.1,8.3,1.9,9.6s0.7-7.5,0.6-10.2c-0.1-2.5,0.1-14.8,0.6-16.7c0.4-1.8,0.9-3.8-0.7-6 C279.8,322.5,277.1,318.6,279.1,312.2z"/> <path class="st4" d="M157.5,127.4c-2.9,0.6-2.8,1.1,0.M 3,0.8c1,0,15-2.1,16.8-2.5c1.8-0.3,2.2,0.9,2.7,0.6c0.6-0.2-0.2-0.2-0.6-2.5 l-2.6,0.3C171,124.9,160.4,126.8,157.5,127.4z"/> <path class="st4" d="M274.1,127.1c-12-12-26.4-20.7-42-25.6c-0.1,1.6-0.2,3-0.2,3.6c3.1,1.6,6.6,4.9,5.3,11.2 c-0.6,2.6-2.7,5-2.9,6c-0.3,1.7-3.9,4.6-4.9,6.8s-1.2,4-1,5c1.8,1.7,5.8,3.9,8,4.7c1.7,0.6,1.7,1,1,2c-0.2,0.2-0.6,0.4-0.6,0.7 c-2.7,3.7-7,13-8.9,18.8c-2,5.8-6.6,19.7-3.2,28.7c3.2,9.1,9.6,3.4,11.1-0.1c1.5-3.5,3.7-9.4,4.4-11c0.7-1.6,1-2.5,2.2,1.2 s3,12.5,3,13.3s-1.2,3-2.5,6.5cM -1.3,3.5-2.1,5.9-0.8,8c1.3,2.1,6.6,11.1,8.3,15c1,2.3,1.9,2.8,4.6,2.1c2.7-0.7,9.2-2.9,11.1-3.8 c1.9-0.9,1-2.5,0.4-4.4c-0.9-2.9-4.2-19-4.2-21.1s0.6-4.9-2.2-1.8c-1,1.1-2.3,0-2-1.6c0.3-1.6,3.7-23.4,3.9-25.9 c-1.9-4.1-7.5-17.1-8.9-19.6c-1.6-2.3-2.1-2.5-4.5-1.2s-7.5,3.1-9.5-1.3c-0.2-0.4-0.4-1.2-0.3-1.8c0.6,0.3,1,0.9,1.7,1.7 c1.2,1.5,4.5,0.6,6.5-0.4c2-1,4.6-1.3,6.6,1.1c2,2.5,5,7,6.5,11.2c1.5,4.2,3,7.6,3.5,8.3c0.4,0.7-1.6,13-2.1,17.8 c-0.6,4.9-1,7-1.1,7.8s3.1-2.8,3.2,1.5c0.1,3.4,1.7,14.2,3.5,22.2c0.4,2,1,3.M 9,1.5,5.4c1.3,0.2,2.5,2.9,3.2,7 c0.8,4.1,2.5,6.7,2.5,8.7c0.1,2,0.7,2.3,1.3,2.7c0.7,0.3,0.4,1.3-1.6,3.7c0.4,0.3,1.1,1,1.6,1.5c0.6-0.6,2.1-2.3,2.1-2.3 s6.1,2.5,7.5,2.9c1.3,0.4,2.9-2.8,6.8-1.1c1.1,0.4,2.3,2,3.2,3.5c6.1-13.3,9.7-28.3,9.7-43.9C304.6,173,293.7,146.7,274.1,127.1z" <path class="st4" d="M264,280.3c-1.6-0.8-2.6,0.3-3.4-5.8c-0.2-1.8-1.7-4.1-2.8-5.3c-1.1-1.1-1.2-3.2-0.7-5c0.9-2.8,1.1-5.4,1-7.5 c-0.1-2.2,0.3-5,3.5-6.4c-1.1-1.2-1.7-2.8-2-3.9c-4.6-1.6-5.5-1.7-6.4-3.9c-1.6-3.7-2.5-9.1-3-12.1cM -0.2-1.5-0.3-2.8-0.3-4 c-1.5-2.8-4.7-8.9-7.3-13.5c-1-1.8-1.8-3.2-2.3-4.2c-2.2-3.9,0-8.9,1.1-12c1.1-3,2-5.7,1-8.7c-1-3-1-3.7-1.2-4.9 c-0.2-1.2-1.2-2.8-2.5,1.5c-1.3,4.2-3.9,10.4-5.4,16.9c-0.9,3.7-1.3,7.6-1.1,11.5c0.2,2.9,0.8,5.8,2,8.4c2.9,6,6.4,11.6,5.9,14.9 c-0.4,3.4-1.1,3.5-1.2,4c-0.6,6.5-3.4,18.9-4.8,22.5c-1.5,3.6-7.2,16.4-8.3,21.9c-1,4.1-3.5,13.2-5.7,18.4 c16.7-3.2,32-10.3,44.8-20.5C265.1,281.7,265,280.8,264,280.3z"/> <path class="st4" d="M140.3,134.1c1.2,1.7,2.8,3.1,4.9,4.1c5.4,2.8,6.6,4.7,6.6M ,9.6c0,4.8,0.9,14.6,2.5,16.2c1-1,2.1-2.5,2.3-2.9 c1.6,2.9,4.7,8.3,9.7,11.6c0.1,0,0.1,0.1,0.1,0.2c0,0.1-0.1,0.1-0.1,0.2c-0.4,0.9-1.3,0.6-1.9,0.4c-1.2-0.3-5.4-4.8-6.8-7.3 s-1.7-2.2-2.2-0.4c-0.6,1.8-2.7,5.7-4.1,7.5c-1.5,1.9-5.3,6.8-6.3,7.9c-1,1.1,0,1.6,0.9,2.5c0.9,0.9,5.4,6.5,6.5,7.6 c1,1.2,2.1,3.5,4.8,1c2.7-2.5,5.9-6.8,7.4-11.5c1.3-4.1,1.6-6.5,2.5-6.7c0.1,0.1,0.2,0.1,0.3,0.2c1.7,0.4,12.5,2.1,12.7,4.4 c2.2-2.2,5.8-7.8,6.5-9.7c0.7-1.9,4.6-7.9,7.5-11.2c0-1.3,0-2.1,0.1-2.5c-0.8,0.7-2,2.3-3.8,3.1c-1.8,0.8-M c-1.6,0.8-4.4,1.7-5.4-6.5c-1.1-8.2,0-12.4,0.8-14.2c0.8-1.9,2.2-3.6,5-2.8c2.8,0.8,7.3,2.5,8.5,2.5c0.2-0.9,1-2.5-2-2.9 c-2.1-0.2-7.7-1.8-11-6.1c-1.2-1.8-2.1-3.9-2.2-6.7c-6.4,1-21,2.9-24.1,3.7c-3.2,0.8-6,1.5-7-5.9c-0.4-3.1-1.2-7.5,1-5.9 c1.8-1.3,4.2-2.9,8.6-2.2c0.8,0.1,1.8,0.8,2.1,1.5c0.2,1.1-0.2,2.8-0.8,4.6c-1,3-2.8,5.1,3.2,3.8c6.4-1.5,14.4-2.7,16.5-3.1 c0.3-2.1,2-5.5,4.1-7.9c2.1-2.5,2.5-4.5,2.6-5.3s-0.6-1-1.7,0c-1.2,1.1-4.9,3.4-8.3,2.5c-1.3-0.3-3-2.9-3.9-4.4 c0.8-1.6,2.6-4.1,4.8-6.M 8c-11.8,3.8-22.9,9.7-32.9,17.5c-0.1,1.2,0.1,4,0.9,7.3C137.2,128.7,138.2,131.6,140.3,134.1z"/> <path class="st4" d="M148,286.3c4.6-1.8,8.2-1.8,11.7,3c1,1.3,1.8,5.3,10.4,1.8c-4.6-5.4-7.4-11.8-9.7-20.6 c-3.9-13.7-12.9-29.3-9.6-36.4c-1.9-1.8-4.1-8.7-6.5-7.9c-1.6,0.4-3.8,0.6-2-4.7c0.8-2.3,2.1-5.3,4.7-8.6 c3.1-4.1,7.8-9.2,15.6-15.2c0.7-0.6,0.8-1,0.3-1.5c-0.8-0.8-1.6-1.7-2.3-2.1c-0.8-0.4-1.6-0.2-2.2,0.4c-0.7,0.7-1.8,1.5-2.5,1.9 c-0.7,0.4-6-4.8-8.8-8.6c-2.8-3.8-5.7-5-6.6-5.4c1.1-1.2,3.7-3.9,2.7-3.6c-1.7,0.6-M 4.7,1-7.5-2.2c-3.7-3.9-2.2-5.9-3-6.5 s-4.8,0.3-7.8-4.4c-3-4.7-4.2-6.7-1.8-10.1c1.2-1.7,1.7-2.5,1.3-4.6c-0.3-2.1,0-3.5,2.8-6.1c2.8-2.7,4.5-5.1,5.7-4.9 c1,0.2-1.8-3.4-3.6-6c-0.4-0.7-0.8-1.3-1.1-1.8c-0.4-1.1-1.1-2.9-1.2-4.9c-19.6,19.7-30.4,45.7-30.4,73.4s10.8,54,30.5,73.6 c4.7,4.7,9.6,8.7,14.8,12.4C144.1,284.2,146.7,285.2,148,286.3z"/> <path class="st4" d="M259.8,243.3c3.6-0.1,9.6-1.7,14-5.7c-1.2-1.5-3.4-8.4-3.9-11.3c-0.8-3.1-0.8-6.4-4-4.6 c-2,1.1-9.1,4.2-12,4.7c-3,0.4-2.2,1.2-1.7,3.5s2.2,8.9,3.1,11M .2C256.2,243.4,257.4,243.4,259.8,243.3z"/> <path class="st4" d="M211.1,162.5c-1.5-1-6.8-4.4-7.6-4.9c-0.9-0.7-1.2-0.7-1.6-0.1c-0.2,0.4-1,1.8-2.8,1.8c-1.8,0-3.2-0.6-4.4,1 c-1.1,1.6-7.3,8.9-8.6,13.6c1.3,2.8,3.1,7.8,4.5,11.3c4.4-3.7,18.2-17.2,20.8-19.8C212.5,164.4,212.6,163.5,211.1,162.5z"/> <path class="st4" d="M177.6,178.9c-1,0.2-5.1-1.5-9.1-2.2c-1.2-0.1-1.5-0.1-1.7,0.3c-0.9,3.5-2.5,9.5-5.4,14.1 c1.1,1.8,2,3.4,3.4,3.9c3.1-2.2,8.9-7.7,10.7-9.7c1.7-2,3.8-5,3.8-5.7C179.4,178.9,178.6,178.7,177.6,178.9z"/> <path class="st4" d="M235.9,70.8c-1.3-1.5-2.1-1.1-3.4,0.3c-3,3.6-8.9,6.7-19.1,9.3c-10.2,2.6-19.8,9.7-24,13.2 c-4.1,3.5-14.5,12-19.6,14c-1.3,0.6-4.1,2.5-0.6,2.9c2.7,0.3,4.6-1.2,10.4-5.4c5.8-4.2,10.3-7.3,14.8-11.6 c4.1-4,11.6-7.8,19.7-10.1s18.6-5.7,21.6-8.9C237.2,72.9,237.3,72.1,235.9,70.8z"/> <path class="st4" d="M184.5,109.2c0.6-0.3-0.1-2.7-2-2.3c-0.6,0.2,0.1-1.3-1-0.7c-0.9,0.4-1.2,1-2.2,4.2c-1,3.2-0.9,5.1-0.1,5.9 c0.6,0.6,1.5,0.6,1.9,0.6c0.3,0,0.7,0.1,0.6-0.9C181.5,115.1,181.5,111,184.5,109.2z"/> <path class="st4" d="M149.5,120.8c0-1.8-0.9-1.8-2.5-1.8c-1.9,0-3.9,0.7-5.4,1.3c0.2,0.7,0.1,3.5,0.4,5.3c1.1,5.7,3.1,4.9,4.5,4.7 c1.3-0.2,3.8-1.2,2.8-1.2c-1,0-1-0.7-0.9-2.3C148.6,125,149.4,122.5,149.5,120.8z"/> <path class="st4" d="M183.3,309c1.9-2.2,1.8-7.7,0.8-12c-0.9-4.2-7.5-5.9-13.4-3.5c-5.9,2.5-9.4,1.5-10.8,0.6c0,0-0.8-0.6-1.3-0.9 c-0.6-0.3-0.6,1-1.2,2.3s-0.8,5,0.2,7.2c2.6,0,6.1,1.1,8.3,2.1c2.1,0.9,9.6,4.4,12.9,5.4C180.3,310.8,181.7,311,183.3,309z"/> <path class="st4" d="M196.5,334.1c-0.2-0.8-0.M 6-5.5-0.6-6.8s0.3-4.7,0.4-5.8c0.1-1.1,0.4-2.1-1.5-2c-1.8,0.2-6.1-0.3-6.8-2.5 c-0.9-2.7-3.5-3.2-4.9-3.2c-2.6,0,0,2.8,0.8,4.9c0.9,2.2,4.1,14.8,2.7,14.9c-1.5,0.1,0,1.3,1.2,2.2c2.3,1.7,6,0.6,7,0.1 C195.9,335.5,196.7,335,196.5,334.1z"/> <path class="st4" d="M146.1,291.3c0.7-0.8,0.6-1.5,0.1-2.2c-0.4-0.8-0.8-1.3-1.3-1.6c-1.3-0.4-2.5,0.2-3.6,2.8 c-1.1,2.3-1.3,10.1-1,12.5c0.9-0.2,2.6,0.1,3.4,0.3C143.4,298.8,144.8,292.7,146.1,291.3z"/> <path class="st4" d="M166.9,367c-3.5,0.3-6-0.2-9.9-1.9c-3.8-1.7-9.1-6.5-M 11.8-9.6c-0.9-1-1.7,0.2-0.9,1.3c3.4,4.8,8.6,8.2,12,9.9 c3.4,1.8,8.5,1.8,10.7,1.5C169.1,367.9,169.7,366.7,166.9,367z"/> <path class="st4" d="M203.1,347.7c-2.2,1.1-6.5,3.1-10.4,4.1c0.4,2,0.6,2.9,0.6,3.5c2.5,0,7.2-1.8,11.1-4.1c0.9-0.6,1.2-1.2,0.9-2 C204.8,348.5,204.4,347.1,203.1,347.7z"/> <path class="st4" d="M179.9,337.3c-0.7,0-3.8,0.7-3.2,1.2c0.3,0.3,1.7,1.8,2.5,2.7c0.9,0,2.9-0.6,3.2-0.8c0.4-0.2,0.6-0.4,0.2-0.8 C182.2,339.1,180.7,337.7,179.9,337.3z"/> <path class="st4" d="M203.9,272.1c-1,0.1-8.3M ,0.1-13.4-0.6c-9.1-1.1-18.1-6.3-21-9.7c-0.4-0.6-3.1-0.3-0.9,1.5 c2.2,1.8,7.9,7,16.2,8.6c1.9,0.3,4.9,0.9,5.4,7.8c0.4,6.8-0.2,11.3-0.2,12c0,0.7-0.4,0.9-1,0.1c-0.6-0.8-2.5-3.4-3.5-3.9 s-1.7-0.4-2.5,0.2c-0.9,0.7-2.2,2-2.8,2.7l2.5,1.5c-0.9-0.7-0.8-1-0.3-1.7c0.4-0.7,0.9-1.1,1.3-1.3c0.4-0.2,1.1-0.3,1.9,0.8 c0.8,1.1,5,8.2,5.9,10.1s2,0.7,1.6-0.4c-0.4-1.1-1.3-3-1.7-3.6c1.2-3.8,2.5-9.6,2.5-13.3c0-3.7-0.9-7.5-1.6-8.9 c3,0.1,9.6,0,12.2-0.8C207,272.2,204.9,272,203.9,272.1z"/> <path class="st4" d="M150.1,321c-0M .3,0.8-1.5,3.9-1.8,6.1c-0.3,2.3-0.9,5.8,0,10.8s1.3,6.6,1.6,7.5l2.7-0.9 c-1.5-0.9-3.1-5-3.5-13.3c-0.1-2.8,1-7.5,1.9-9.7C151.9,319.3,150.4,320.2,150.1,321z"/> <polygon class="st4" points="299.9,144.2 304.1,141.1 297.5,131 300.9,128.6 308.3,139.5 312.6,136.4 304.9,125.7 308.3,123.3 316.3,134.6 320.7,131.6 308.7,114.7 289,128.8 "/> <polygon class="st4" points="311.7,169 318.2,166 313.7,156.3 328.8,150 326.1,144 304.8,153.3 "/> <polygon class="st4" points="315.6,179.2 316.3,185.1 330.6,183.5 331.2,M 189.7 337.6,189.2 335.8,168.4 329.3,168.9 329.9,177.5 <polygon class="st4" points="316.3,199.6 316.3,206.6 337.4,206.5 337.3,199.5 "/> <path class="st4" d="M326.3,216.7c-3.6-0.7-7.7-0.1-10.6,2.1c-2.6,2-3.9,3.9-4.6,7.6c-0.4,2.3-0.1,5.4,0.7,8l5.6-1.8 c-0.6-1.2-0.8-3.2-0.2-5.3c1.1-3.8,4.2-5.5,8-4.9c3.9,0.6,6.3,4.2,5.6,8.6c-0.3,1.8-1.1,3.2-3.1,4.5l3.5,4.1 c2.8-1.8,4.9-5.1,5.4-7.5c0.8-3.9-0.2-6.8-2-10.1C332.5,218.9,329.4,217.2,326.3,216.7z"/> <path class="st4" d="M322.3,246.1c-2.9-0.8-6.9,2M .5-8.9,4.4c-1.1,1.1-5,5-6.8,4.4c-1.7-0.6-1.1-3-0.6-4.7c0.8-2.3,2-4.4,3.9-5.6 l-3.5-1.6c-1.7,1.5-3.6,3.7-4.4,6c-0.9,2.6-1.2,5.8-0.9,7.7c0.4,2.5,1.3,4.1,4.2,3.9c2.2-0.2,7.8-3.9,11.1-6.8 c1.7-1.6,3-1.8,3.8-1.2c1.1,0.7,1.1,2.6,0.7,3.9c-0.6,1.7-1.3,4.2-2.7,5.3l4.7,3.2c1.9-1.9,3-4.9,3.5-7.6 C327.8,250.6,324.2,246.5,322.3,246.1z"/> <path class="st4" d="M275.8,118.3c1.9,1.3,4.8,2.2,7.5,2.7l0.6-5.8c-1.3,0-3.2-0.7-4.8-1.9c-3-2.6-3.2-6.7-1.2-9.4 c2.5-3.2,6.6-3.9,10.3-1.6c1.5,1,2,2.5,2.3,4.8l5.4-0.9c-0.3-3.2M -2.2-7-4-8.6c-2.8-2.5-6.1-3.1-9.7-2.6c-3.6,0.4-6.9,2.8-8.9,5.5 c-2,2.9-3.2,6.9-2.5,10.5C271.5,114.3,272.7,116.2,275.8,118.3z"/> <path class="st4" d="M80.3,227.6c0.2-1.6,0.1-4.6,1.8-4.8c1.7-0.3,2.8,1.2,3.1,2.9c0.4,2.5,1.1,4.2,0.2,6.4l4.5-0.4 c0.8-2.1,0.4-4.8,0-7.3c-0.6-2.7-1.5-4.7-3.5-6.5c-1.9-1.8-3.4-2.2-6.3-1.6c-1.8,0.3-4.8,3.5-4.9,9.7c0,1.1-0.3,3.5-1.3,3.5 c-1.3,0.1-2.3-1.6-2.6-2.8c-0.3-1.8,0.1-5.5,0.8-7h-4.7c-0.7,2.7-1,6.4-0.3,9.2c1.2,6.1,4.9,8,7.9,7.7 C78.2,236.1,79.8,232.8,80.3,227.6z"/> <polygon class="st4" points="71,202.1 87.5,201.9 87.5,196.7 71,196.9 70.8,189.8 65.5,190 65.7,209.7 71.1,209.6 "/> <polygon class="st4" points="101,149.8 88.2,142.6 88.3,142.4 105.2,142.1 109.2,136 88.3,123.9 85.1,128.7 99.5,137.6 79.9,138.2 77.2,143.4 97.8,155.4 "/> <path class="st4" d="M80.2,181.7c7.2,0,12.9-5.8,12.9-12.9c0-7.2-5.8-12.9-12.9-12.9c-7.2,0-12.9,5.8-12.9,12.9 C67.4,175.9,73.1,181.7,80.2,181.7z M80.2,162c3.7,0,6.7,3,6.7,6.7s-3,6.7-6.7,6.7s-6.7-3-6.7-6.7S76.5,162,80.2,162z"/> h class="st4" d="M101.4,253.6c0-7.2-5.8-12.9-12.9-12.9c-7.2,0-12.9,5.8-12.9,12.9c0,7.2,5.8,12.9,12.9,12.9 S101.4,260.6,101.4,253.6z M88.5,260.2c-3.7,0-6.7-3-6.7-6.7s3-6.7,6.7-6.7s6.7,3,6.7,6.7S92.2,260.2,88.5,260.2z"/> <path class="st4" d="M104,268.2c-1.9,1.8-2.9,5.9-1.1,8.7c-2-1-6.1-1.3-8,0.3c-4.7,4,1,9.8,5.6,14.4l6.5,6.4L124,284l-6.9-8 C114.8,272.8,108,264.6,104,268.2z M104.7,290.7c-1.8-2-6.8-6-4.7-8c2-1.9,7.2,4.2,7.7,5L104.7,290.7z M112.6,283.5l-0.4-0.6 c-1.5-1.8-6.1-6.8-4.2-8.6c1.8-1.8,6.4,4,7.6,L 5.6l0.6,0.7L112.6,283.5z"/> <path class="st4" d="M161.2,312.1c-1.8,0-3.5-0.8-4.4-0.2c-0.8,0.4-0.1,1.8,1,2.1c0.9,0.3,5.9,0,6.8,0l1.6,0.2 c0-2.1-0.7-2-1.1-2.3C164.7,311.7,162.9,312.1,161.2,312.1z"/> MjK=:BNB.BUSD-BD1:bnb1zjh98v5x6d8rnju5x4m79rg5p57n4j430wuj5t:627423422281:t:250N 7j5ion:35.QmSm46k2tboJu8i7bxJ5AsL3b1PUnVLtfbr9FaqBSNCVBo <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0125/4096 3,3,0,1,0 ~0.6770395366474986--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#767C89" width="100%" height="100%"/> <polyline fill="#F2F652" points="0,8 5,2 5,2 0,0 "/> <polyline fill="#F2F652" points="8,0 1,7 4,6 8,8 "/> <polyline fill="#52F6A8" points="8,8 2,2 3,3 0,8 "/> <polyline fill="#36EEE0" points="0,0 6,3 6,4 8,0 "/> FL:FK:69-K@A8=0-0&+.%(+#!# IO=@C3:=0zeb[G;BG7<A3"" u`^s]ZPgINdGXEA>A2C6291+$( ^z]ZuVcQNdOH@S>4-/25+0 xb_;2H]JEOCD3*@>N8@68I94 io\[jVSOCPjSM\LJ]I@I>> d_}\VoTn[SR_NCW?1*<-&9G;8<47*$4:12702/)/>2.*%&*)"$ jYKWq[VPiQnVQbLHXIF80AN@=R>99H64@06,'(# rOI?OD:NG^FRB;,7).'%'/$ `\]f[IXN\NNb\MqcKG;IC8HZW>KF=ZM9BJ5TG33$ G_|@Vs=Sm7GW5AO6?F03,@;"83 <?xml version="1.0" encoding="UTF-8"?> <svg version="1.0" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 8 8"> <!--puzzlords.com s1p0126/4096 0,0,0,1,1 ~0.13280852977186441--> <style type="text/css"> polyline{stroke:#000;stroke-width:0.15} <rect fill="#9296A0" width="100%" height="100%"/> <polyline fill="#52F6A8" points="0,8 1,7 4,7 0,0 "/> <polyline fill="#52F6A8" points="8,0 7,6 7,6 8,8 "/> <polyline fill="#52F6A8" points="8,8 6,7 6,7 0,8 "/> <polyline fill="#36EEE0" points="0,0 4,4 4,4 8,0 "/> YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>M https://token.thesaudisnft.com/4425</metadata:External_URL> <metadata:Name>The Saudis #4425</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Purple Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternaM l_URL>https://token.thesaudisnft.com/4403</metadata:External_URL> <metadata:Name>The Saudis #4403</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> ata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httM ps://token.thesaudisnft.com/4601</metadata:External_URL> <metadata:Name>The Saudis #4601</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>j iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httpM s://token.thesaudisnft.com/4477</metadata:External_URL> <metadata:Name>The Saudis #4477</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Clean Shaven</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red SM hemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokeM n.thesaudisnft.com/4372</metadata:External_URL> <metadata:Name>The Saudis #4372</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>MAX BIDDING</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> :External_URL>https://token.thesaudisnft.com/4508</metadata:External_URL> <metadata:Name>The Saudis #4508</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> adata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Laser Eyes</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:/M /token.thesaudisnft.com/4329</metadata:External_URL> <metadata:Name>The Saudis #4329</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> a:Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>htM tps://token.thesaudisnft.com/4498</metadata:External_URL> <metadata:Name>The Saudis #4498</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/4392</metadata:External_URL> <metadata:Name>The Saudis #4392</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Rosewood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/4466</metadata:External_URL> <metadata:Name>The Saudis #4466</metadata:Name> </metadata:Metadata> IjG=:BNB.BUSD-BD1:bnb10asyqcgqzvcvhrlnp35khsqn4fp4sntu85gww9:5513543975::0 DjB=:ETH.ETH:0x803901422046e348f5cc51B8720da97668fa6cBa:19194854:te:0 @j>=:BNB.BNB:bnb1g48rp2yed07tntr62k00shfewea34gq3a5fsqf:351887::0 Aj?=:BNB.BNB:bnb1dpeycxjeh00mxcv60l7gepzmwxyyfd70ywew90:7700567::0 Aj?=:ETH.ETH:0xF3598E7b3B3e7D85C148C8C09F4E2f2863d211DD:1090934::0 Aj?=:BNB.BNB:bnb1zjlxwvmcfkv4n8l3hr02kfcksq8yh2j7qad3jm:5863221::0 @j>=:ETH.ETH:0xEAe8ab87cd8Ece02b1177d08A49dC450dE87403D:998678::0 c/Foundry USA Pool #dropgold/ V]nadlQXh(D`&@V/<2,2004**) bi{prw\^e";QWRJ4:@0?7%+&!% '0 IjGREFUND:59F44B4ACD348AB3488E378AFB3FAF36DF87358C33E40B475B23CB503CA6F221 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> Aj?=:ETH.ETH:0xF3598E7b3B3e7D85C148C8C09F4E2f2863d211DD:2543608::0 FjDOUT:6F633408A2E734F4B2D35F331C39D050F70856020A9C99C9A6860706E0E696C8 FjDOUT:EBEEBF4E0FAF19680D0975776384D727A239E8A2E2301710AAFFE7DF0944ED93 FjDOUT:C36BC6DFEDB122EC65F9BF08C4119954CDAE94C6CAE11C8D7A5AA71F5B3EF7D1 FjDOUT:BE527DD40BE074DCD5D1D4AFAC80DED92BB10A3F0943ED1D33DFFD081D945B55 FjDOUT:AB8028E2C8A75BB4C0C386DA30940F4DE79810EB48A68720B970D207ED145B60 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 //33//@@@@@@@@@@@@@@@ #0+.'''.+550055@@?@@@@@@@@@@@@ CjA=:BNB.BNB:bnb1vdy57s8uqathzty2ugc94fzwpj709mppmkwmw7:110985680::0 26/04/2023 +- 1 month WW3 event LjJ=:BNB.BUSD-BD1:bnb1xdefl6yt06ue677jwr5weus5rgvq2mtvm5ax2m:1249714029023::0 MjK=:BNB.BUSD-BD1:bnb1pcwcx6phzcjmjqqhucwp37ttagzpuhdpdkcu7u:490337129201:te:0 Aj?=:BNB.BNB:bnb1acv0ckhcnxgzej0kjg76hdujesfz8yryhykgg5:52489:te:0 CjA=:ETH.ETH:0xb30E4d50a4c47Efd25bE1719118E1180597625b9:1179094:te:0 CjA=:ETH.ETH:0x6c845F1c438A1e5c014144E45D2AE1CC0A897d21:1455623:te:0 DjB=:BNB.BNB:bnb1np77tjd2nekqtvvf022kz4cq5g5xfyr7tvwez8:52922914:te:0 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "wizard staff"}]}M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "shield"}]}M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "quiver"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} jdTQKF@4==27A75C>-71%0+ vo}jbniafaXb\P[XUUOKOF:6632>50:2*:4!: ]a\VpmNNDIXMHVPCKC?D:<la7A@7JDM otg_WQNK?FXHDG:CK=9RM87,3L3'A=$=*$+*"4*!A; FjDOUT:34C347E27D5A615E841F0F382CE61B6AD73CE80AE7A95BF13EC7E1A97132B0B2 FjDOUT:6F1D4CF391FADD15700EDF7C995BF1083508640BFD844EBBB07D2C65C677F753 Bj@=:BNB.BNB:bnb1llnay0dcwmd3epmn4j897wlnt2h3j2g6ulcevt:21815828::0 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> CjA=:BNB.BNB:bnb15xvujv6lwuchfj0pjlt0adh7uk0pyukshykr06:103191422::0 @j>=:ETH.ETH:0xEAe8ab87cd8Ece02b1177d08A49dC450dE87403D:456205::0 Aj?=:ETH.ETH:0x50cb1865bE68058A000A9A6410D0c4689C3a1d94:1638629::0 DjB=:BNB.BNB:bnb1ytethq3tqpvfj88zphl7mjhr74jpczy9ts6sfy:24978879:te:0 Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" M xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T17:17:41-05:00" xmp:ModifyDate="2023-02-15T17:17:41-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:1194B8AC7DADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumenM tID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"M /> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:1094B8AC7DADED119E14AD87C869AC86" stEvt:when="2023-02-15T17:17:41-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:1194B8AC7DADED119E14AD87C869AC86" stEvt:whenM ="2023-02-15T17:17:41-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:1094B8AC7DADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8M ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 CjA=:ETH.ETH:0x79258d531a29aa356B6a15599d552e7232Aa8063:4948648:te:0 Adobe Photoshop CS6 (Windows) Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 cropWhenPrintingbool Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.comM /xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T17:10:11-05:00" xmp:ModifyDate="2023-02-15T17:10:11-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:BAFD546879ADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OM riginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEM vt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:B9FD546879ADED119E14AD87C869AC86" stEvt:when="2023-02-15T17:10:11-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:BAFD546879ADED119E14AD87C869ACM 86" stEvt:when="2023-02-15T17:10:11-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:B9FD546879ADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.M did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "blue fire"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="hM ttp://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T16:52:06-05:00" xmp:ModifyDate="2023-02-15T16:52:06-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:B6FD546879ADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photosM hop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:B5FD546879ADED119E1M 4AD87C869AC86" stEvt:when="2023-02-15T16:52:06-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:B6FD546879ADED119E14AD87C869AC86" stEvt:when="2023-02-15T16:52:06-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (WindowM s)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:B5FD546879ADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DM A31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "laser beams"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "frozen staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "poisoned daM {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "whale"}, {"trait_type": "Claws", "value": "diamond hands"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "undead staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "rainbow"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "lightning bolt"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": M {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "mage robes"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "dragon"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "robot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "noggles"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "zombie"}, {"trait_type": "Mane", "value": "blue fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "crown"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "rainbow"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "golden"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "poisoned dagger"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "midas touch"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "shield"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "axe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "orc"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "red"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "laser"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pauldrons"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "ghostly companion"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "fire"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "eagle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "blue"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "toxic green"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "wizard staff"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "dark blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "lamp"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "golden tribal tattoo"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "bloody"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "badger"}, {"trait_type": "Artifacts", "value": "parrot"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "tiger"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "blue"}, {"trait_type": "Headgear", "value": "undead"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "mohawk"}, {"trait_type": "Artifacts", "value": "pirate flag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "fire"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "black"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "dark wizard hat"}, {"trait_type": "Artifacts", "value": "broadsword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "moon"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "bull horns"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "armor"}, {"trait_type": "Mane", "value": "white"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "green"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "silver"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "BTC whitepaper"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "pickaxe"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "green"}, {"trait_type": "Body", "value": "white"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "unicorn"}, {"trait_type": "Artifacts", "value": "none"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "carrot"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "honey pot"}, {"trait_type": "Eyes", "value": "white"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "arrow wounds"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "purple"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "greenish"}, {"trait_type": "Claws", "value": "long claws"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "wizard hat"}, {"trait_type": "Artifacts", "value": "hobo bindle"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "tribal tattoo"}, {"trait_type": "Mane", "value": "blonde"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "golden"}, {"trait_type": "Headgear", "value": "skull"}, {"trait_type": "Artifacts", "value": "bag"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "brown"}, {"trait_type": "Mane", "value": "black"}, {"trait_type": "Claws", "value": "wrapped"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "none"}, {"trait_type": "Artifacts", "value": "sword"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "pink"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "red"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "cape"}]} {"name": "Honey Badgers", "description": "Honey Badgers is a generative 10k PFP collection inscribed on the Bitcoin Blockchain through Ordinals. It is an experiment to see if a native NFT community can emerge and thrive on the native Bitcoin ecosystem. The project doesn\u2019t have a roadmap and its solely purpose is to deliver high quality pixelated art and a fun place to hang out with friends. The collection is Bitcoin themed with the M honey badger meme being the center of it, but also has many other traits related to crypto and specifically the Bitcoin culture.", "creator": "Honey Badgers Team", "attributes": [{"trait_type": "Background", "value": "yellow"}, {"trait_type": "Body", "value": "blue"}, {"trait_type": "Mane", "value": "grey"}, {"trait_type": "Claws", "value": "regular"}, {"trait_type": "Eyes", "value": "regular"}, {"trait_type": "Headgear", "value": "thief hood"}, {"trait_type": "Artifacts", "value": "none"}]} (((((((((((((((((((((((((((((((((((((((((((((((((( IjGREFUND:25FB6F87D653EA09BD685233E43BC80FF3FE4353CD975DBAB9E24507FF1C2889 jjfig@wk)vF$n@#g<"65!$$ 37J14@-0-xG%pB$,.$L1 ]\Y39S/5R27Mag8890i?$:9$N. N.~N.AA)vF(mB&k@%B4#d<"=.!32 *' W5 T3}K*cB*zH)oC(R9&==%9- %" O-KJ+rD)qd(e[&d=$J5#_:"F1"b9!]6 4KNOGFDB%)>ea=/3;YW:RO:532JG/Q;*uj)Y='G7'j_&g\$aU$ 9TdVL;;=25;RP3OT0jG/HE-54,34)OA(M9&)+&[S"## IjGREFUND:376B8F2A0F638650C643D0B8D1A74713871818C666A3EF489A92207F38EAD597 IjGREFUND:703C6CACBC591551ECCA187CCAFF2EDFF338DA1CEC72C44A304275CC17BFB65A IjGREFUND:A832E1AD75AC88D9B5E9B21997119D4D2444A77FB251294D0EDB79EE616B6846 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>M Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokenM .thesaudisnft.com/4933</metadata:External_URL> <metadata:Name>The Saudis #4933</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>D iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> etadata:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/4985</metadata:External_URL> <metadata:Name>The Saudis #4985</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>m iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/4727</metadata:External_URL> <metadata:Name>The Saudis #4727</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>Z iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>WhiteM Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Purple Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_M URL>https://token.thesaudisnft.com/4881</metadata:External_URL> <metadata:Name>The Saudis #4881</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValuM e>Red Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Horn Rimmed Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httM ps://token.thesaudisnft.com/4801</metadata:External_URL> <metadata:Name>The Saudis #4801</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>a iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Shadow Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>BrownM Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Rimless Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.theM saudisnft.com/4733</metadata:External_URL> <metadata:Name>The Saudis #4733</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>-S iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>BrownM Shemagh & Crown</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>M https://token.thesaudisnft.com/4645</metadata:External_URL> <metadata:Name>The Saudis #4645</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>2( text/html;charset=utf-8 <title>Hello world</title> <p>This is my website. I hope you like it here!</p> <img src="http://www.rootnaturally.com/images/weblogo_small.jpg" alt="image"> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Crown</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Horn Rimmed Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_M URL>https://token.thesaudisnft.com/4926</metadata:External_URL> <metadata:Name>The Saudis #4926</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>J iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> rnal_URL>https://token.thesaudisnft.com/4976</metadata:External_URL> <metadata:Name>The Saudis #4976</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Bubble Gum</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_UM RL>https://token.thesaudisnft.com/4812</metadata:External_URL> <metadata:Name>The Saudis #4812</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown ShM emagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.theM saudisnft.com/4991</metadata:External_URL> <metadata:Name>The Saudis #4991</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>s iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Purple Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigar</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_UM RL>https://token.thesaudisnft.com/4849</metadata:External_URL> <metadata:Name>The Saudis #4849</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>S>Oo iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown SM hemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Horn Rimmed Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Miswak</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokenM .thesaudisnft.com/4953</metadata:External_URL> <metadata:Name>The Saudis #4953</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>M White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnM ft.com/4744</metadata:External_URL> <metadata:Name>The Saudis #4744</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>2 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> metadata:External_URL>https://token.thesaudisnft.com/4860</metadata:External_URL> <metadata:Name>The Saudis #4860</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>"m iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red ShemaM gh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnftM .com/4612</metadata:External_URL> <metadata:Name>The Saudis #4612</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>Sfa iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> metadata:Value>White Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Gold Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Pearwood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> etadata:External_URL>https://token.thesaudisnft.com/4935</metadata:External_URL> <metadata:Name>The Saudis #4935</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnfM t.com/4867</metadata:External_URL> <metadata:Name>The Saudis #4867</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>8, iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>Brown Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Small Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternalM _URL>https://token.thesaudisnft.com/4837</metadata:External_URL> <metadata:Name>The Saudis #4837</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> metadata:Value>Haram Police Cap</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thM esaudisnft.com/4930</metadata:External_URL> <metadata:Name>The Saudis #4930</metadata:Name> </metadata:Metadata> Adobe Photoshop CS6 (Windows) cropWhenPrintingbool http://ns.adobe.com/xap/1.0/ " id="W5M0MpCehiHzreSzNTczkc9d"?> <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="Adobe XMP Core 5.3-c011 66.145661, 2012/02/06-14:56:27 "> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:xmp="http://ns.adobe.com/xap/1.0/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:xmpMM="http://nM s.adobe.com/xap/1.0/mm/" xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#" xmlns:stRef="http://ns.adobe.com/xap/1.0/sType/ResourceRef#" xmlns:photoshop="http://ns.adobe.com/photoshop/1.0/" xmp:CreatorTool="Adobe Photoshop CS6 (Windows)" xmp:CreateDate="2023-02-14T13:58:51-05:00" xmp:MetadataDate="2023-02-15T17:25:53-05:00" xmp:ModifyDate="2023-02-15T17:25:53-05:00" dc:format="image/jpeg" xmpMM:InstanceID="xmp.iid:1494B8AC7DADED119E14AD87C869AC86" xmpMM:DocumentID="xmp.did:C659006197ACED11922AC4AC85209BM 44" xmpMM:OriginalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44" photoshop:ColorMode="3" photoshop:ICCProfile="sRGB IEC61966-2.1"> <xmpMM:History> <rdf:Seq> <rdf:li stEvt:action="created" stEvt:instanceID="xmp.iid:C659006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T13:58:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:CB59006197ACED11922AC4AC85209B44" stEvt:when="2023-02-14T14:17:51-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (WiM ndows)" stEvt:changed="/"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:1394B8AC7DADED119E14AD87C869AC86" stEvt:when="2023-02-15T17:25:53-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> <rdf:li stEvt:action="converted" stEvt:parameters="from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="derived" stEvt:parameters="converted from application/vnd.adobe.photoshop to image/jpeg"/> <rdf:li stEvt:action="saved" stEvt:instanceID="xmp.iid:1494B8AC7DADED119E1M 4AD87C869AC86" stEvt:when="2023-02-15T17:25:53-05:00" stEvt:softwareAgent="Adobe Photoshop CS6 (Windows)" stEvt:changed="/"/> </rdf:Seq> </xmpMM:History> <xmpMM:DerivedFrom stRef:instanceID="xmp.iid:1394B8AC7DADED119E14AD87C869AC86" stRef:documentID="xmp.did:C659006197ACED11922AC4AC85209B44" stRef:originalDocumentID="xmp.did:C659006197ACED11922AC4AC85209B44"/> <photoshop:DocumentAncestors> <rdf:Bag> <rdf:li>xmp.did:2AC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:2DC1A44CD8ABED11963EDC1456F9DA31</rdf:li> <M rdf:li>xmp.did:30C1A44CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:469DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:499DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4C9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:4F9DA68CD8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7B4687DED8ABED11963EDC1456F9DA31</rdf:li> <rdf:li>xmp.did:7E4687DED8ABED11963EDC1456F9DA31</rdf:li> </rdf:Bag> </photoshop:DocumentAncestors> </rdf:Description> </rdf:RDF> </x:xmpmeta> M M M M <?xpacket end="w"?> Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 FjDOUT:C249F1EBDB6FFD3F93F55E0C2A0D2F19ADDF4138AA44088B61BDF3B82F5D6B5D FjDOUT:DB1EC6742CF7E288E6167F2A5BC7FD7ECC7EBE4982C70B1624901971C5C3ECD3 FjDOUT:2D840B833C3A7E9A6EC5B624375A966C274F649909488E95E216A5A99C622344 FjDOUT:9BC39896F892E50FC192C8349BB19D9B7D9A5BA1F68F155C2F6FDE17F94053F1 text/plain;charset=utf-8 )And God created great whales. 4:'27%04#.0 5<)BL3>G09A+ FIf@C[=@X;=U?BCWgAUg?=H)6>)sM( mplbbgPQc<@^^_[aPQSYPs+KDHF7>8\C2.2/ ?j==:ETH.ETH:0x9AC38F2E060F058C57A0898a788aD2B0DcE862CA:13291::0 Aj?=:ETH.ETH:0xC37a52704607637A108645BCaFa8d978da86620E:5653631::0 @j>=:ETH.ETH:0x50cb1865bE68058A000A9A6410D0c4689C3a1d94:780871::0 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> JjH=:BNB.BUSD-BD1:bnb1amww8lz52yu8a6clp53nlhdpesrezthte9xjfu:12281657703::0 CjA=:ETH.ETH:0x187509d58A7465DFc1b5EA3736e7808A90e96c21:5653631:te:0 (((((((((((((((((((((((((((((((((((((((((((((((((( text/plain;charset=utf-8 text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #30e7ff; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ed1111", "#f8f7ff", "#f8f7ff", "#0012b5", "#0012b5", "#0012b5", "#0012b5", "#f8f7ff", "#f8f7ff", "#30e7ff", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; video.play(); .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = new Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, rM ow.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; ridElem = document.createElement('div'); gridElem.className = 'grid'; gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #E5B8F4; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#2D033B", "#C147E9", "#810CA8", "#E5B8F4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; video.plM .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = new Array(heigM ht).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); harByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'grid'; gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appenM node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = M+ if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #E5B8F4; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#2D033B", "#C147E9", "#810CA8", "#E5B8F4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; video.plM .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = new Array(heigM ht).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); harByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'grid'; gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appenM node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = M+ if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #E5B8F4; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#2D033B", "#C147E9", "#810CA8", "#E5B8F4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; video.plM .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = new Array(heigM ht).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); harByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'grid'; gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appenM node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = M+ if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #E5B8F4; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#2D033B", "#C147E9", "#810CA8", "#E5B8F4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); t = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = new Array(heM ight).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); tCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'grid'; gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appM node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #0081B4; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F4D9E7", "#EFA3C8", "#FAD3E7", "#FAD3E7", "#0081B4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #00EAD3; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#005F99", "#FF449F", "#FFF5B7", "#FFF5B7", "#00EAD3", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #450920; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#f9dbbd", "#ffa5ab", "#da627d", "#a53860", "#450920", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #121013; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#EB596E", "#FFE227", "#FFE227", "#4D375D", "#121013", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2f3e46; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#cad2c5", "#84a98c", "#52796f", "#354f52", "#2f3e46", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2f3e46; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#cad2c5", "#84a98c", "#52796f", "#354f52", "#2f3e46", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #00EAD3; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#005F99", "#FF449F", "#FFF5B7", "#FFF5B7", "#00EAD3", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2b2d42; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#8d99ae", "#edf2f4", "#ef233c", "#d80032", "#2b2d42", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #cfee9e; font-size: 16px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#587b7f", "#1e2019", "#394032", "#8dab7f", "#cfee9e", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #000000; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FFED00", "#16FF00", "#16FF00", "#0F6292", "#000000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #cfee9e; font-size: 16px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#587b7f", "#1e2019", "#394032", "#8dab7f", "#cfee9e", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #227C70; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#88A47C", "#227C70", "#E6E2C3", "#1C315E", "#227C70", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #227C70; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#88A47C", "#227C70", "#E6E2C3", "#1C315E", "#227C70", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { DjBs:ETH.ETH:bc1qaym638t9svz8jyjt7ehy3xn39gnttrky8z8a6e:29652216:ss:0 DjB=:BNB.BNB:bnb10uztpet3klxs7av9suh4vdtc2pqt96f3czku6p:1066404812::0 7j5ion:28.QmV4oTX5o8A2DvR4Uwsn7g7NXjPBJyVokNond8awzNCkhA l'&hxD*xC'U) -&g5'd75 `byabu^_o7'bJKa#(a7'`IIZPQOp< P1 TTcWW[7'Z7(TKKN!+K689qA(56%^9!l; c: \/*HKLA2+..0,S8)4(&.0 c/Foundry USA Pool #dropgold/ PjLM=:ETH.USDC-B48:0x2bC5e20bDA6362eDe948CaC21748801f379707F7:338580216098:xdf:50L m]YX{fTl\L1;I/8C.1099$*/ p_:G\HN[xeTAGQ,4>.59)06F>/#).;3()*$8.#5A ZWVYe[U4BTsaQdUF[N@SH:UF9PE8OE6LA5&. u^FN\xgX3AURQQo[IWMHaUDUK=<71.2 FjDOUT:01077387369ECC6FE7B852C8A2B8CDA236D5D330053551B8E43749693CD5CCE7 FjDOUT:E64CD918B7719BA61DEE667CE400CEDA83EC46B49766E12E76EDCD70502EEF0A IjGREFUND:40C0AA5BB9D79C17F210547B38B5930F736E8692018C0CF88D2E8CA6933003A4 Copyright (c) 1998 Hewlett-Packard Company IEC http://www.iec.ch IEC http://www.iec.ch .IEC 61966-2.1 Default RGB colour space - sRGB .IEC 61966-2.1 Default RGB colour space - sRGB ,Reference Viewing Condition in IEC61966-2.1 ,Reference Viewing Condition in IEC61966-2.1 IjGREFUND:619DC68ABB5102979B499A42461BB3916B14AEFA6CBA49952C1912595D45856B FjDOUT:B30D61622BC9145050AFA3F2110EE13B2CC30DE074CE321C918DFC700BF1906E Bj@=:BNB.BNB:bnb1zjlxwvmcfkv4n8l3hr02kfcksq8yh2j7qad3jm:17255978::0 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Brown Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> tadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/5212</metadata:External_URL> <metadata:Name>The Saudis #5212</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigar</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>httM ps://token.thesaudisnft.com/5305</metadata:External_URL> <metadata:Name>The Saudis #5305</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Stylish Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> ata:External_URL>https://token.thesaudisnft.com/5098</metadata:External_URL> <metadata:Name>The Saudis #5098</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValM ue>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>M https://token.thesaudisnft.com/4995</metadata:External_URL> <metadata:Name>The Saudis #4995</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>v iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>RM ed Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:M //token.thesaudisnft.com/5218</metadata:External_URL> <metadata:Name>The Saudis #5218</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>M iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>Brown Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.M thesaudisnft.com/5349</metadata:External_URL> <metadata:Name>The Saudis #5349</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Square Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://toM ken.thesaudisnft.com/5245</metadata:External_URL> <metadata:Name>The Saudis #5245</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Laser Eyes</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>hM ttps://token.thesaudisnft.com/5301</metadata:External_URL> <metadata:Name>The Saudis #5301</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>Q iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Laser Eyes</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternM al_URL>https://token.thesaudisnft.com/5041</metadata:External_URL> <metadata:Name>The Saudis #5041</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Red ShemM agh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Nerd Glasses</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/5323<M /metadata:External_URL> <metadata:Name>The Saudis #5323</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>bJh iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> Value>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesauM disnft.com/5197</metadata:External_URL> <metadata:Name>The Saudis #5197</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>\X/k iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Long</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValueM >White Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Gold Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> ternal_URL>https://token.thesaudisnft.com/5235</metadata:External_URL> <metadata:Name>The Saudis #5235</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> alue>White Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Classic Green Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>htM tps://token.thesaudisnft.com/5363</metadata:External_URL> <metadata:Name>The Saudis #5363</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>X iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Messy</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>Brown SheM magh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tokM en.thesaudisnft.com/5109</metadata:External_URL> <metadata:Name>The Saudis #5109</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Neat</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Short Grey Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>RM ed Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>VR</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.cM om/5049</metadata:External_URL> <metadata:Name>The Saudis #5049</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Medium 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Short Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>Red Shemagh & Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://tM oken.thesaudisnft.com/5186</metadata:External_URL> <metadata:Name>The Saudis #5186</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Normal Brown Beard & Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_TM <metadata:Value>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Reflective Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Miswak</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description>M <metadata:External_URL>https://token.thesaudisnft.com/5312</metadata:External_URL> <metadata:Name>The Saudis #5312</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>H iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White SM hemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesauM disnft.com/5006</metadata:External_URL> <metadata:Name>The Saudis #5006</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Messy Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> data:Value>White Shemagh</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Regular Pixel Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> rnal_URL>https://token.thesaudisnft.com/5368</metadata:External_URL> <metadata:Name>The Saudis #5368</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>] iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Sideburns</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> lue>Brown Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Green Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Pearwood Pipe</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URM L>https://token.thesaudisnft.com/5145</metadata:External_URL> <metadata:Name>The Saudis #5145</metadata:Name> </metadata:Metadata> IjG=:BNB.TWT-8C2:bnb16uugxmf4qu9m93v9y4f44prdqs3xhd9zp2u9f7:47107275661::0 @j>=:ETH.ETH:0x9AC38F2E060F058C57A0898a788aD2B0DcE862CA:732636::0 Aj?=:ETH.ETH:0x82E370bc51a689d07B2cE06CAd34F138c8Cd5336:1071353::0 zo{qgh[P\LC==3rA#G.#vA"L/"B+ a6 }v{wqhe\pbYm^V][SVLFRMAYF=T8,O7*B3*o=!h< `4 xzmeiielkaue[sgYg\Sq]QfUKcQEJ:2vL1L9. lZUSHqTGTOEaODNK@|S;IB:\B5}I)rC'23&[=$,- IjGREFUND:77B4316242CC038D605ABE057CB477E3C2C88EB5717E77F89DF4AFD4C7A92728 IjGREFUND:812E2B193521D89D7580B3D3CCBF228F8FCFEC44CC2530DBB654A4F4031A555E Aj?=:ETH.ETH:0x66788504401C05EF9116C6189cafeb0A8b2b9dEd:6500417::0 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White SheM magh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Shadowless Cigarette</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:ExternalM _URL>https://token.thesaudisnft.com/5376</metadata:External_URL> <metadata:Name>The Saudis #5376</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious Brown Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> :Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>Vape</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesM audisnft.com/5443</metadata:External_URL> <metadata:Name>The Saudis #5443</metadata:Name> </metadata:Metadata> <?xpacket end='r'?>L4 text/plain;charset=utf-8 YiTXtXML:com.adobe.xmp <x:xmpmeta xmlns:x="adobe:ns:meta/" x:xmptk="XMP Core 6.0.0"> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"> <rdf:Description rdf:about="" xmlns:tiff="http://ns.adobe.com/tiff/1.0/"> <tiff:Orientation>1</tiff:Orientation> </rdf:Description> CjA=:ETH.ETH:0x20348a0B961CF992f3795B36bE657fdF623Cf8Ca:139535041::0 text/plain;charset=utf-8 "Hands of Time: The Weight of Our Choices" The hands of time tick on and on, Each moment passing, never gone. Our lives are woven with threads of fate, And every choice we make alters our state. Like rivers flowing to the sea, Our paths are shaped by destiny. But every bend and every turn, Is a chance for us to grow and learn. The choices we make, both big and small, Have the power to shape it all. To lead us down the path of light, Or plunge us into endless night. Oh, the weight of choice is a heavy load, we must bear it down the road. For time will pass, and we And the choices we made will be long gone. So let us choose with daring and wit, And never falter or quit. s not the destination, But the journey and its transformation. The hands of time will always move, s up to us to choose and prove That with every choice we make in life, We shape our own future, with daring and strife. So let us choose with wisdom and care, For the hands of time will always be there. And wiLcth each choice we make, we That we hold our own fate, in our hands and mind. DjB=:BNB.BNB:bnb1acv0ckhcnxgzej0kjg76hdujesfz8yryhykgg5:14867605:te:0 DjB=:BNB.BNB:bnb12xd9xc7sx9vy9z4r5r4veddpdgrvqx236z2sv6:37115728:te:0 DjB=:ETH.ETH:0x46dEa66077f50f33201715EE10440E07B5657307:15714267:te:0 JjH=:BNB.TWT-8C2:bnb16md6zpcvkxau25tjf7yekpphpz9kx74evrhfh9:3924718514:te:0 KjI=:BNB.BUSD-BD1:bnb16md6zpcvkxau25tjf7yekpphpz9kx74evrhfh9:4460517636:te:0 )j'1seycEv1xkbuab6s6yzJkcw15wjCaRYzwGqfom7 PLTE\af]bg0C$`fl_ej/B#.A" u[`eTW[RVZPTXNRVEHKDGI>@C7;=*((''%1 zflqBEG4943328I*#$$H* iadfW[^QTVADE-/1/.,,,,`6'# FjDOUT:071213888F06967728D18F5161168AB7E1F295F64840D0E87EADAA4EBA7DB2B3 text/plain;charset=utf-8 iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 1</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Bald</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Light Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:Value>White SM hemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>VR</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https://token.thesaudisnft.com/5M 495</metadata:External_URL> <metadata:Name>The Saudis #5495</metadata:Name> </metadata:Metadata> iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Light 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Buzz Cut</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Stylish Mustache</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> <metadata:ValM ue>Brown Shemagh & Stylish Gold Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>None</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URL>https:/M /token.thesaudisnft.com/5462</metadata:External_URL> <metadata:Name>The Saudis #5462</metadata:Name> </metadata:Metadata> <?xpacket end='r'?> V iTXtXML:com.adobe.xmp ' id='W5M0MpCehiHzreSzNTczkc9d'?> <x:xmpmeta xmlns:x='adobe:ns:meta/' x:xmptk='Image::ExifTool 12.56'> <rdf:RDF xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'> <rdf:Description rdf:about='' xmlns:metadata='https://thesaudisnft.com/metadata/1.0/'> <metadata:Metadata rdf:parseType='Resource'> <metadata:Attributes> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Head</metadaM <metadata:Value>Dark 2</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Hair</metadata:Trait_Type> <metadata:Value>Widow's Peak</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Facial Hair</metadata:Trait_Type> <metadata:Value>Luxurious White Beard</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Headwear</metadata:Trait_Type> metadata:Value>Red Shemagh & Agal</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Eyewear</metadata:Trait_Type> <metadata:Value>Big Round Shades</metadata:Value> <rdf:li rdf:parseType='Resource'> <metadata:Trait_Type>Mouthpiece</metadata:Trait_Type> <metadata:Value>None</metadata:Value> </metadata:Attributes> <metadata:Description>Max Bidding</metadata:Description> <metadata:External_URM L>https://token.thesaudisnft.com/5525</metadata:External_URL> <metadata:Name>The Saudis #5525</metadata:Name> </metadata:Metadata> text/plain;charset=utf-8 text/plain;charset=utf-8 Sunday 26th february. I could feel Mimi looking at me so I didn't look back, I just watched the waves. I watched as they jarred back and forth. Mimi, Mimi, Mimi; seated in silence, it's her guilt you know, it's her guilt that's riding her, that's why she can't speak. She can't even eat, because it was her, it was her who whispered 'lets kill Red'. At first I put it down to her twisted humour, but when I saw no smile, a chill entered me. Of course wM! e argued. I told her it was madness that things were not that bad, but she held that look in her eyes, and I knew. I told her if she ever harmed a hair on his head I would kill her, but Mimi just smiled. So that night we fought, and when the fighting ceased I sharpened the spear. (((((((((((((((((((((((((((((((((((((((((((((((((( text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #3B0000; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FF0000", "#FF95C5", "#FF95C5", "#FFF6CD", "#3B0000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2E0249; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F806CC", "#F806CC", "#A91079", "#570A57", "#2E0249", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #00EAD3; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#005F99", "#FF449F", "#FFF5B7", "#FFF5B7", "#00EAD3", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2ec4b6; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ff9f1c", "#ffbf69", "#ffffff", "#cbf3f0", "#2ec4b6", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #3B0000; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FF0000", "#FF95C5", "#FF95C5", "#FFF6CD", "#3B0000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #0081B4; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F4D9E7", "#EFA3C8", "#FAD3E7", "#FAD3E7", "#0081B4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #008bf8; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#04e762", "#f5b700", "#dc0073", "#89fc00", "#008bf8", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #073b4c; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ef476f", "#ffd166", "#06d6a0", "#118ab2", "#073b4c", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #252525; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#80FFDB", "#64DFDF", "#6930C3", "#6930C3", "#252525", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #008bf8; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#04e762", "#f5b700", "#dc0073", "#89fc00", "#008bf8", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #073b4c; font-size: 16px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ef476f", "#ffd166", "#06d6a0", "#118ab2", "#073b4c", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #3B0000; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FF0000", "#FF95C5", "#FF95C5", "#FFF6CD", "#3B0000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #121013; font-size: 16px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#EB596E", "#FFE227", "#FFE227", "#4D375D", "#121013", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2ec4b6; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ff9f1c", "#ffbf69", "#ffffff", "#cbf3f0", "#2ec4b6", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #252525; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#80FFDB", "#64DFDF", "#6930C3", "#6930C3", "#252525", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2E0249; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F806CC", "#F806CC", "#A91079", "#570A57", "#2E0249", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #22577a; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#38a3a5", "#57cc99", "#80ed99", "#c7f9cc", "#22577a", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #395144; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F0EBCE", "#AA8B56", "#4E6C50", "#395144", "#F0EBCE", "#395144", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 :M height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = streamM video.play(); .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; t res = new Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.classM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) =MA running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #395144; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F0EBCE", "#AA8B56", "#4E6C50", "#395144", "#F0EBCE", "#395144", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 :M height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = streamM video.play(); .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; t res = new Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.classM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) =MA running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #098940; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#C4DA53", "#FFEE16", "#FFC10E", "#3F9323", "#E1D7D5", "#098940", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 :M height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = streamM video.play(); .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; t res = new Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.classM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) =MA running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #098940; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#C4DA53", "#FFEE16", "#FFC10E", "#3F9323", "#E1D7D5", "#098940", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 :M height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = streamM video.play(); .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; t res = new Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.classM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); gridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) =MA running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #450920; font-size: 12px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#f9dbbd", "#ffa5ab", "#da627d", "#a53860", "#450920", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2ec4b6; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ff9f1c", "#ffbf69", "#ffffff", "#cbf3f0", "#2ec4b6", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #22577a; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#38a3a5", "#57cc99", "#80ed99", "#c7f9cc", "#22577a", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #22577a; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#38a3a5", "#57cc99", "#80ed99", "#c7f9cc", "#22577a", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #91171f; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#410b13", "#cd5d67", "#ba1f33", "#421820", "#91171f", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #073b4c; font-size: 14px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#ef476f", "#ffd166", "#06d6a0", "#118ab2", "#073b4c", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #008bf8; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#04e762", "#f5b700", "#dc0073", "#89fc00", "#008bf8", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #001524; font-size: 16px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#15616d", "#ffecd1", "#ff7d00", "#78290f", "#001524", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #000000; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FFED00", "#16FF00", "#16FF00", "#0F6292", "#000000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #121013; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#EB596E", "#FFE227", "#FFE227", "#4D375D", "#121013", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #227C70; font-size: 15px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#88A47C", "#227C70", "#E6E2C3", "#1C315E", "#227C70", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #3B0000; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#FF0000", "#FF95C5", "#FF95C5", "#FFF6CD", "#3B0000", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #0081B4; font-size: 18px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#F4D9E7", "#EFA3C8", "#FAD3E7", "#FAD3E7", "#0081B4", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #91171f; font-size: 13px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#410b13", "#cd5d67", "#ba1f33", "#421820", "#91171f", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #cfee9e; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#587b7f", "#1e2019", "#394032", "#8dab7f", "#cfee9e", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = newM Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'griM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); dElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => { text/html;charset=utf-8 a hyperportal inscribed on-chain enter at your own risk Conjured by el_ranye x @timshelxyz * Mathcastles Studios (0x113d & xaltgeist) * Aleksandr Kubarskii <meta charset="utf-8"> <meta name="viewport" content="width=device-width,user-scalable=no,initial-scale=1,maximum-scale=1,minimum-scale=1"> <meta http-equiv="X-UA-Compatible" content="ie=edge"> <title>CHAINSPACE.app</title> font-family: 'Noto Mathcastles Remix'; src: url(data:application/font-woff2;charset=utf-8;base64,d09GMgABAAAAAJY4AAwAAAABYBwAAJXZAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAP0ZGVE0cBmA/UGZFZIO8TACQAgqBynyBnT4LghoAATYCJAOEMAQgBZQvB4oQW3BHcUN0w7TOCb9uMgCga1ObW1XngGzuMLNymwimLXm9MziajbB6ouj6z/7//zMS5IihCbUHPL62blsMYUKlkUZmlNDpaXjV6pqVpwAArLeqootw8/KeDNDKuPtGH63RZN7KPFPoRuUolWpLS8u0KitVFYiqXgarref8hssLDW1Lad9g27ZHnXPM/cOs0nQ0wlrYZq5lraVVmi7vVjaqsnO1TrU9ygjttFah0jm2Slya1m952tITLT2Guu499uN/BBcBMQJeaw67OgVxOyG89jGGw2a0CH85JglM BJ4fUc+vPS/kNUhkhXuSA64B9d/T/xsRnCLzJIrBxGSNZOXktItuq3jvwDg849NRDD7K8wpHuFDMqKBgJISpmTOnAkBDBkB9RMSSSEQPBDIZ0GEhixpDBfDsIk3suWVFLNAEM/r/1+8cWBKqgckgg4Sb8Ci/a7bSKDEZiPnL3qL/9A83pv4OLGLwkL8kRQ6KQC1qoUIMqUnEmon/dvqjVJlpZ6Tqh4pgVCsETSBDRNvb8O63/X1vaArLL9rKtJApQY/r0MF9i+JqLSO8NADSEOmBgkS1LQ+9U/27ju2Z40hkKA1uO7fI47ZgFhUE8IIx/rb0/SWdoWWg7dsKGhNe81mlZst7ng/8v1d7u/P/4BcoeVd2ApaJKoWUQKolUuaJsa9ONbRBtkq6PZJwfjuMQIIgGGt0YoLl164AFG1sDY7CNjShZwYIaI6IMqqRKG5QwCp8yCgtfzLcSFXx9I/LDfzhVdZ3ZlOaEJyEAPO/vB3ouPPhABSCSTRWCrtOLn11mAf0sHeqM sZiw7yc5orHvgCqH6Drgnywo8xFkgkv47qX1ArpDa3T1c06uw1e8KePnAgPz0q6SUDIBcSVbvlRhwhqBmScjynzr91/bDTLfrMpcpgCCOTALbAZ5nbsGcC2r4iPGl0jy4kEH//X56m7lNXlI64S0I+Z2tETWCHKDRrXB1CgA+YJc4jCCmUO/TVGSAQxjwRC8C/n9fVdd3P0Dpf9LlU25QJrsjrc6gJJdWhynp770PGO+9T1gfn9TR/6AKCDeQdAFI6RiCdHwISYwJSvYh5dL6lvQPUseBmEbSjaQbpbTet8gptU3ecjyl1mHO5DGlD1O2LcuYaS1NmexhSQGDbrrZTj2W8EUDDIwDpPh//APVe5o06WMsWq35Vqlg48uA574Z72iutDcLR9nkvkjua9zE7RlZ47Kb25sHRFcgOeWUcxUK0EhQta1VFd6UqFo1Oyk2qIlovkd+8owEiRSs5PnuUUiEVliEUQiNtJ9RCGeQOCROQzQ80By6EJ49DHA4+7L1mu4IV9tM 9M8b7DqWaFeFdldIzv307+/UNld8HUyYwjhHgBLRmyBzKzgAhjTmMXY4cYhJQkGTm4d0F1PYjeFsgWG1R1FoLNDA9xLN/11L/A78VskrWumTyD2bn2GXzKgk1syQja+tl/djvx9cZYBClMjHJFAUBvft6fS8E2JxegnYPJ4UIkYStm6Ht/hX+rZjLq3x2hmByq6ifoNljbLbo0hU80cqJ7DdzOiUFIJUNFCjBc/C0luw2EADVoP6Hn/m3pwFfu1lY+42f2MgEIfeNctADuNXepXQ0SRSDijxwt9vriYV6Qo4TagABclw/JnrfzdebhmDJ/hdeZf8hEDq67oB2/aUZcHJfA2AJAgEAaOIj5qYDkILAEQcZADviYAZMeZTvxKRYrynpyXhuFwQh1gC4AJwf0BROU8gCl75W83NQI/sbxKvB1AY6n/WDu3iIV0OMMcmlvBxyrtss4/dQ1mwdWupy+DCaYc31N8NDPB2uo95mc314aK67S/3fU96hZQSyq2rHmOwit1hM MdWRMtl2zY6o0xEL73O8078Zi6s2J2Te7jxfj4FTxa1xPtoxP41HCx3OQcWeOy3g3J3/+SNYxRRFjuf2fJyQ/0+2fKoB/NMXg92ldNJltE8fTcRdYw/2CwjLUzRjPTKaumYV0Fry2iBdZLxf5rOgFxUJLGCrRoaS3JbeVurW0rtJFZf4q+1k5u8vrLT+5gugKU5tbunkgH/L3syCEnsDhOCM0gc+S0YMd7qVV5pmxNMIS+SnDPDLWRPSANo2I7I6UacGQte7h8dlWntk2lT1UXEaGXWhRieNtOaeyiJ64l5YRmklZDJ46WZq/Vy2QX7GgFyl0BXs+hvhkhpwPWQSiR0m+Jo2N/M5L03iGruvnKMKih/Cf/jg2zxPyQbjvNEWzCEu/uAlKompc5TEYkwb9FenoS2kCeRM21nBlXkWbyhgoCdlucfCNjnWuLLAcvm80AIgWOp/IdrIjsl3KCaeupoc0lkeWQieh0eiIw5qO7BMlyTeyLwqPOIKz0LgwslR9iEjT/JCM cxJhbcDkzg3l/UZnXlTSiMF+v01aWmSnLT/FpxWZem18mpRWH8NpW6tvow4Yo2CrsaDXrQd4VrQGomw3Y0PVvevkwBz3q4GtSSOQ/XepmXALewYGviNMEDh+9z9PmvMYusw9g+pyhgQv21vFHQiAPoglnG1QsCbCseUjDnmpOv/YRCmpvkZJQRlK4cm09kru60OvLPJEDw0eAEj6sBdg4Y6npZ7Us43sgr6Hzhfj0F5S3Y+UN3kojCChLJOr7mETUzZVPBTFDKzfIde4TMX0zr88WHvsV++TWEddITiOLzk18eBGWAcnAiM0YiEIituibXV4ACGBMA67xMjcpswyy9XWpovZ6eOguJ1XEh/1AcWlkZpcaWcq+lP3FYCkyF5ZhqDTtz8rREBWY8Tx+oGlWyj+5OwfxpUE3cJ+HOw+B2ToGcoiG0jQzOmzmO3+VuF9WBrvJBcjcwa8aHGU1KQDyOzDba2oWa6w8M40ourbtt1R9jH9XfymlEE7a5EdTqoZsbqRtIHfM rQRZ5H+FmXANw/4hX/wN58yRm/S+3wB/5VKTgOPMB6ZWYGnlLbDajRV4n7jy6W+UfmCpVbJjijAPuPCU1oeYsnC/8x6m40J4ZR4v3YiiqH7gT8jUwdloXCj/jrrpoTumPvPYj6rrL9J9wMWOmnXEkAapcVSsChC5+LuLv6jOGqV48bE4+Xbhq32t+w8plGvvPkXOZfh9eXWT0Iob/JAbrdsjdo3/NFLzjKgH5yJ7O4ME4SPbo3zOVkrfjw5Z1ID/TfUHqKyP0tqizFEWzBiuL3jy7U7prDrcXQU0p5s27uM6TGpzFM0ocJHrqgPkx5R9XWuZiTKHOJTq+T852Fhy6zPL7WZ+K7igrcE1yTOJct26INKPo9GuAC1C/QXSneR/fP/L0U+6rpMH7rbhTakZsN42qaFCHLeZB4A6wuyw/vSuNfyuUn5OdM7RaSdlxlLCV9K8pQYbPILy3QQj+toGBrvb1b+LTG3YqaaWK+2uEwSHMfHKngdZpabMDTami8/J8xNOn3HWM GopJ3b9ww5spqBs/pQq+b5n9ppxq5d3rz8Qr7oCwxltNZ68beybc/+T2Xf4N5d6/3lqC5kp5V2sVrOUBmv/GaRUTq0anReh75FifP2FaoJIMvvC/4SqZjqIc73EnrHYXNwd/MFMkTy59g8VD25LVE0cHq0QN/ozdO/mh7uLezhTdak4G8XhCSH2/4kNGPXitwQQRaLBFEZKUP+mak0vu7+OwKOdvVNtE2it44r1ejwxibPvCCXuifVIRX4u6K7QUtEDFiEWPUD6bP+xskO5f4iAbfWY/WGI7JjXJBj/KZSO+OWbgDBuaA1DEt8bHG3S6hDc/eBkd4IkLxFN8ya3Q7DMp61QXoDZ4QJKaUJtWrymr9n3qIQ4XORgr1pMmr0MJ7LcIx3hVySw4BqpkhbWB1+Hh5PdQxMch+x1/yZlSkjiyPpkX+oyDC0DxCm5O5CPcxMnER71i8v3ptTDT4oAWdgxqGVLpDdsNWNpELTJG75FIhYOmF90lluVYagHqZA5N7koTu9+BM FFOUM5L+kU7zUk4VS4SZXFo5yKUGupCwPKi/Bg6ml2ks43diA4uvWe9jjuvXQQ+HE0vUPQf4Ir5TwaD7C/iVxWEBmUzX/YRFsbQCpyWdFCu61bf3Sea47UWHvtACwg+XfOP+uw72Y4Rr2jmW97rl6af+vbKLghnzVAP6Hx/WXYeiWk/3t9pp35pKsbK3m4Xt9FbB2QLHQhWvOVKhayfy2oktdRHHj27hk8FWcFnyXAC4rhe/h5F2Lz6FUOoXi9uItKdUqRxNVDxhgUGoFbBuls+QNrMbpQm9Hs+7mIXRH/Sblo4pQInQQycw0UefHFYoPC6uzLf72SbnZjBOxzvR4pmkQQOWGLLIaKgkgDUgeH7D6jQnU0FiDbABbFEim5ugOmVvaprEZlNE5IOkxXtagUoUbslTWEKAhV3w3JwAFUXDz5Z0U9jL+69VS/DInbYVgag7HsBVJ4G8LU4DDZK2MfA/m8Yh1XPzSFHHRjjBhEkngRhuloWs+NNGEPIKnGTS5cLGZCyuM 63WkxbpikWXewkCo96eNBXZOBisLFhDPYPSuF+7ZXBEvYU6FCf6HwwvL/ekrG+terLGMUumTyg+Ty6ZI0x7VyinNYIVK2JCUuW77ZTcoehc667K4GLbWOwEBn1pz05yVAjDSzZMq23X6lytV46LlP/RmnrwNz9rml4F8ImVKbc1LZvUU0qt/iOhzC/H+5C/uFY/61RIsKvYYj/5mjeEB4Ag4owiLCIuIMZeYk7jMsrsMOzElukwN6nVCh12G5WQ6Eh8C1uBbVWl5tebXl1SUuN0lMWFToaPQTHiLhOnhKAh9bHBEE2xeMAADZOSruRgmRYLI5lsqx00EnlLtOq9mHfo3jGOnKjoq7UUIkmGye5dbLc9gpF91W57Vv8RMY6Myak/68BIiRZpZM2bbbr1S5Gg8996k/E+rrwJw9Nx58REjJc0Ppc/MRMC9wzUgmShW6FpGDVOOcWus6XPcUS2mTQL9tipGXhGuL+89hUuJoKw9EYkXlrRhHRuQg1Tin1poBRRcAfhMM cuEQwrgJwzpzgvkyUKnQtIgepxjmodR+uZJqdxU2g3zbFyEvCNeH+87ZYNMuBYETkEOBAKwNrsRZrsRZrkdbiXC3vanlXy7tyoJUocdlFxQX8JjhwiWBcArh3MhFUDoyIHKQa56DWDJZgJAd+Exy4RBCbGAmefMfe6Wc4f9HGmynDGlvsVeSca+6p98b32Lj2OrHiqJ/h/EUbb6YMa22zT4kLqtV65mO/J9BjwkxPvQ01Vrhk0yy0yia7HVPminsava1tQmLIVHeuBhkpWLxJ5mbU+LLKwHC/Csf0tbUymkwqPXgbxaQ+ut4gJajhVjHXbbyVRaj2MLi8R9gs0B+bYtHlFme3CBDA0SApt4JcHBqQcuQXo619L1B0AeAPwYHLBOM0gHOROeEkfb1jCZxTTuTmYarrKjLNzuLmPvpjUyy6bHF2fmXEbOECrhMOBAdaGViLtViLtViLtBbnyoHrhOVdOdBKNLhs5cJBf2yKRZdbnJ1n/B04CV13gHfKhQOtoMppCEYM qZw76Y1Msupxwdg+v+k/xtQ2JHnJggxzdlKh88HLHxsLgBSwW3e4rDzQpX2wW7DH1N7mwwdof4BXfLbxQ/5gR3Dr2Phpc7CMC+jAfPXt37Qo5FN2evHQOTF6D48NCCBMzQKyPZEJ38Ei2q1hPwtnBEPCHKJgEi65T//O4hiz/quhseYZ7zrCC0siPdSczCx2pu979TkWmoVKE1L3DoiZpvr8Ro6cYx6OuwEcXFoYmmfc7EvktbuIPoxbirihaFFkzGgybGoGXZrZMG+QpcvZcde553tcRx4QlpT5GCDfOXKtttMvhljV5MjY9QJGfHdTXFm9fRD2dThj+AOGx+6TvwqMf3HR+j58Vel1HvG0R183phBEPFBbeO30THvvAbeimINNBnO8ZnK/K3rtawhe28KD9RQzFbmlYbL+JlXxc/gGycUUYB97DCrch0feuEtNw/E5P/d1RS+1DB7xC3STcn0YwgVMHl2uwd6+R4lUWHe79HLVOsCkE33eKyuKPyH8Qz9204n9M PibGw5K7h4HtmKZODHoTuD+82xCDLLIx+GIfvJ9C7isjc8L5dwx74nN77ecTdUtjrWuzNaxd03OLDnZ98rxWr6CkKDg+vrHApxSGhVqH5R+ATnlx+/9JsQWkzUINBWNcnvWaCHAYhAEgejlOkqaBdH2D1z+mUM9sKrFzaHKVh59D0XU9VzepTILEfBzRYp5N90r8aBrFiwI5d0UJEQCEoJH54IeyydHQkhpzEB9KLcxKxrlW7xCB7fY83nRBu6Ru5c51jnf8V0Qn3tuBBsi/MZTFk7XaE7McE82PZ9Fesx91L5gQaPHnqgfcb34rxuEJjLli3F3OSKHEvRiTKYTDaW8fOr3DBBbr4FRfuXoSKkqCGzuwzKuzhIi5/4LC4rd9hGtzle/0ZbkcnlGdNZrb3rEafIyY498jzOpZpYMQ0FxwxfV/L1D/yNC2REZP2K5Fv4UYmiUFTqg91V53pItQWzqJge6GbMYb3/6xIxJSXlhnbkX9A0yIaRmpEFetFe5oc2W7qIopM Jz8xFiq8HQD2EzKT7K9XSFtqF7l+/32vB663EQTAPLR2TxBK1+aH76NRT2N3Qr8JwqatTlAlj40QemSU0lkghya4Dc/R1UHpl8bm35/H30/XiOtjODkNcgfET6ODLSjiGG70AIJp8AMcbFGglQrbI/tIw58pKS9ybeFHx3nIVLGMAWE7kbsH0Y2yR08tu75J6gv0aVDxD/fZfqd7tAuZHai5hxrgHK39x9Fs00U6IX7sq89utB48GiQf3I20iHIZ2xI6g37re/gj6hSGLtpRUboWV93F2pUHcDm6VmlqcfUhR4J9SCmWOud2/h3flAwWG7tTM+nk8OucirolOFqo7Dhg7+cxRxu5SR7wQNxk3rKRIugUt68FGYSVvurTUUg/yerrirU0lNMxGsinGAV4r1uySZcqVr4hSemE/qhMkkWmgDUv2wc5GySXUfZMf2py0wF7Ekkwzdtsby802M1yZakP9Fz3+buj+RbGDnSe68sjRxU/PdM4GpOpylBNOGyTk8OoDNdwM 7J/cLHU+S8LvWaiotnm6F7OCVOowCOz586MRVLYXEkQANv3LUoxBz6ha6W2VH1O52Wu64FyG/J1e4LjL8TzWus+lgfXtpidfWsHSe6iA7N5uMi0Q39m8mR3Ouz/bVk/CX7eHxhv33L8URrrsR5JsfZZGH8jlrga1F1LZNG5WGe5HNZS5vIwiCMqxlWguAbDWD6eP2jvOKqbO0IC9QKbBQVAuj2eSVARy23oS67j5OUz5tCFQ6HdlQNzrXYMTmAVZiP5UMrcJNTBnWbQdLN3aNqo3tIqNuy/0OfEBlKoPO76+wmLnnYB/jV4a++ci1Ax/h4sBDDuk5OMDkjTF7njOOhuThmP573Rekrfbe05T+9eF3x8cMr+Qh1n32TrjUQXVWId8GOx6z5WF9w7Z8lVd1bFmWyiUN1aYwzMuy/AIXXYTX+1OMbt990411NN1R22KUfDw7GyD0EUTBC5rgE35eKw5+ZmEtIV3uxod/rv4vSV+E5Ge5shjxvPuEQVjQZRBqIqODuhzM E6fByYc4GiRuzCYMxnSImUaedECGMjpcE+opMDOfS3aGSXabOFFrtZbSqDtkuyGsDb7WjbrefnbNkeLimmaBv3MMCySsDL4STQaNQNMdiyHXh+wXGxRKbQ2x1QGRgRKfdCNwyOlqhe05gcL1NVvQr2WjFY7dl5twRNjvBGBjREWsELsBYlUWGcNB3feYe33evyC7u4UEW122gD0zodDiS06sPO9v3s23Pn6nL4cx4WIzTGNBCiu3OMtqboWf2YHPLbxLzguLx/sqKfkVjn9YD+9GAAxwOk+Joc/Zja+sv4qaIxZypVIf2g6mhzAnQ8/0jBvEHmdfLgPJnQ4ZSGaQKB6NSCJsIw5H6IEJ5KPVcG+nKj60s5Y8bgy74vitL1cwssZsddRO9APQdfHQ+MnSrPKPx0xL8h/AVcYd0bQmfnZ/kouJdlKAXr+wCPj4XFblm1X8XvoQbc+HT8Vy82JBSP1/imnYTPjGvj12EKJ5R4y8QJEJCXMvmJMcTmlLJ/VFYC7BjfahM KQ15P8rh1K3cF6nbfy3wsdOFP6mo6U/yj0CpOqS0HnkumWqItZRe1mH+zcYbkP5fpYQDZeJ1711JLJsV5H22ikn3UviPPgCd3Fua4eOAu4746/V0yJOH+xATgLlKOB+MvgXZ6afQSdWc+K/W92y78wq036Sk/7e0Y8RaxXW3HjGf5DcRvwDV58q7gUsEdmCiQgHeN3cC9jVevjBc2L/PoVq5lfA7cIdX2EKhXd4WmoytRW5P3J+JLcfMxTWOzipr7qvUkHS/99L0trd7YOpbqOYOlA+vRq/NSrqj591cbe6Yq5amh37mF078aKAlb27Hr0O3UbexT4pCeE6JXPaRXiRz/IKYf+99w75G04wnmak6pZQVkEqxFxk4DeZt8L+nJwTbhhF8IAQCdAdgAcAGQGq5xJw+JRefKQ+QVZmNxwcNF1mUsojn4FurXyyTSz+1AqbAQvw6zYxxB7kRZXlSWQeN8gGeu8s7yea8ISuF2Mh2wmzuMOOEqfQumrEwWNmGNwzvgKtZM M8nsPprRYgCebEbY739M3CVd1xphlh3Pq6Y6FM8x42Yo96NcEckOkWafInb5O2JGbSBp7XOnd9AyohMpot8PzTAK9cr+/iJFDIoWDZZNQYw/djhXPs//vT+ltv12Yk/yssYRxNk1KUkMpG7/ZG/fwNa8kTJJsvOhZ38dfkNzzKJdVSWrhzS5nNGvPs//7p/S134kXymmfPpYimUBKEiMZG7+lI8Zcvz+P3PC9rRAu+LFrESkSy/AcW6gO6WakVrypEldISF3SE1Rq0rbaoJsImqSGySolzAE97ffFN9wD93i5hlLXoPhpd3fUxC28pE3pAIbDqHrxtam3JoFJZF9xE+/S5HR0mJaQ1Q+ngTQvPq9sWOLMWI5IwKZdYO05dvc5L0UM4xSe+qyr4lE8XVGVg1+qnmqL21w75Sw4wQBXR+hZJQlIAtKp+Kcv3StlnZKTR4mi+dV8E2NPqYVt6lfFgzaiQlOEsp9NmeA8jID9bHc/pbB+DQVmgQmEw26ZE5gSxdZPGFUM yUEtDNongJNvGQeKzbkYuc8d9uwLP6CNiM9p4+tO1Tt/sP4AZ4uuHLopTSPncZJEIQbKt1wvx0m4ZTodujbAvUq+gArX1EYuuZ6ygxFEA58IK4WBjWhCjkQipx/VmJf0nfJbSYdroVvuP8Xtcuhmk4VBSv9CdMfZxPjxpM0bskNJ1aX8R/SI1L0YRMMXnqtSR9/eQyCEFVgWpOJg8IHxoU6NuwARRP4+aiuq0veMHZCiXG4wmSBhJgtVGbFFiv8idVR06bq11T+XTg8oS84ItGwTZ1t4pJF+IZhKkBWk3SBrUbH9H09HkYuWj9TUWfVFQksX1wnz7Drry5ncL9VtFSsxTlfMl4U4LPqI+voKFVtrhdvvTSf38gg3CoGtOPG9pBnwVOk92TwIed1UDvg3ekz3t8107FmsDwLWwcbEz8nYevfJjJfwBD6wA8s/dZ7Z3pT/7//XUovrH48QcwKXX8vEOUkg+MQsybONixHP4afSkmxWcJ1qxZf/fxYidTsuys5x0ALdM lx+qxP/SUuN9XBms0qpsa7mIFS0IEnE/uKVwYUE3tCCXHramSTbIH6Rh49XcLdYz7yhWsPNM3WaFgLUQH7jI+7bf4eUZVi6/ojB4GINHMzVT/Jmce+r+WuEbUHoObcxhX3p/7FisIxgauTvwyzk9htCOUdOVfw31HylczC8gqLnEO3AmcghmSD9P1FL3W7SS1n+Gsw52JIOrvc+J+haH0KZh1eKbhdWOjluY0vGTyKmlZ5VM5ThTTUDlmyaVQZMosVPaUOJXoS2NWC9YR1BeamDmTlzkvY7KTLLN8EeQQO6SbWKq7NRYYaFWkSaaCi2KDoUoodsI8FkuaRpNZvyBuEjtDNC2DHplHMXqIzUhm6E/xhFfGcIPXPIbqGTcmN8KNdnlH3vmH5LqM7m/3yw0zgxpTIUQ3aUUfV4oDzRafKJ4Uo2K0SNCmu89XIIVCzipcWvHY1XGmrNNIUVBZFlJqHksHTllqsBzdZlWD5RkmF5KkkVQx3MrciNbkjchRRifNS7w3cj5M neFpL/PyG0wm9g6GNp19nOYY+VsYdobwvSu5j8j95SjU6TqhFx5aJjKka/5BEqUaoF2VVfDoTg3XKagK9T6WMjRPYp8oUWloL2ZmhFMkMK3aTfDJhPYM3lZWrUzjT8sB6hlJqFvYyNEeLffnQPtsZEGtlR9CF+0luEt1lqgUN9s9jfalMVFE9obcg5tGeW7sctU6KhPIL8PNOQH1RtVm1oVWlIXWPBzYHtZHtUDLWeyM6JVxdmJAm9FqWb2zwVKNlHVnoGZHpqUaoZzVGpjOVWGaVbktZKDkPcfhOeDGcxM3yqSkaYblncwY7kVXTjsq6KENj5Cb52gcsc1gzWXeE8jHkLm86x3OFqVqVmErmyqxEZJArJyOe2uK5wtA6SQ90Tkuh5qlBbBbJTDsYcqzRMscew/IgmIjW9sDhxJtoznIOkrw4KugnfY672IsDXN5fnMgXRqzlcKd6ZS1HPSon+doulxOs9MoJ2zNUJ3ZmZ4rzbY53hPJt5OpLLAiQX8VZ0SR/EbcM UC+S7aGySE2jor4TlGLHsrGBSTSAT8FxnUpuaMazLfOJiOt+5E0ROVWg2HVhLYPeMiCOTtjslxWQTEbbe5S7PFEIli2hZnCn0lCkxRKelVIzy0Dv7IcbFbMwQFpPRxWFrOC3/XdzTOlH+NOr3RH5z19Y+L3E7Sbmv80ilraWKU4WhlpQ4MDlR6Gmx4kEDx2fjKscVTBpzGb01VkxonjCk3mAhIcuKy4oLc1PzGRZWKp4hGy6XTbAnVeiao0u/xJuMS01bsiOxVK458pNvYs81ueHxZWDL0sh3FJ2sQUT05FHPX8N6hoAfVHBB5BQYAVkzWBnFppiN5jGOx7H/PLMwneLq/cgS8qwWF7lmcZnil2c5fPZudDJnt7s/xjenjqaESa2e56SzXOIv17ycEc9qjb9f8ciYNw9+P+yEMhNvQOJ6i3L9IaFms6Kg7HsNLO6QE7joLU1VZvKWGOFg3laPCt6f/65w6qdoF6mJq5y1Y6tgrYBdGApl04BKLmRJ8HhKa6gslNUM ZMnOEh4tOYPEw4tpByZHGZKliMbyOSzKoI2XN4CwjDevofEoalsw00pcIRksmO0Jo4mOlLaVfYkPC06RgW8EmV0psGqg4loaqY5vSNllRIFVFyKWyLJssFWiKEHK5LqsleDZsWbZYU2BrUpXPbHGaMUzHOS7Hjmb0o5TjyxueZSRZrS4K4myc46e++xEnk3F2mtEN2zF+HsaPPXcj3j3dd5sK/MysbOawM0XOGRsFvMKoO0J8Ft1kqcCQqpCeKX2gXqqZbKrYri/X5OM7JBWYmq7KW5dYV2HpUpGwWVPRLOuSc4dZbW6TVudq9GoyckiNImOSuiiY51XKKf3iEMVdyNXWZc9JOM/RTTybESanKb7uxSh1VtAfDynuR4zG3ezpnEk6lehSZ3PiWS4RMYsCIhNVPpxCZOYEK9U7+fQBKxlkrMw7QnwCeXSBCkc3JOsqbF0VsmSwIbHMDXCjgs3FkiWXq2xoKNuGZFODYyiKdA2dTCMj5UkVkEpG4knnqRQaqQpMXSqM yakPKuoOGu70sJ/fJUfpoKbI1Kjtro4TQsLoj7ox5OCMrzll8euyZ/aJijJI+Hl1IurRV4yp0nD1aivP0eTM977roIyaT20wvm+hJnkQ7ur51MVMe1swoY3ET8TK5ihSDZv5rZZNuChRIVygLzANcNaBtCkhRYsWCWhWCc4Vcr2pkZuSSQllEjGqc2kTlqjs3mNpVjZkVM8eF2sc8GW/psq/KA+kX2NMSxUWq+XCZfG5RxHWmyOtz5H5k7TB7LFNooTKzMoeWqlk+cwQxNxIrGYyJTHLd4foUD7cp5zuCLmlrDPGVZbR3iIMK6k2PqPHmh2i+Rp+gvV3t1M6B/4rnyciO6ZQByAaZCXlUipLvqlJIkDEnpVQs1l1e2uG127DyEcuV27fgwj033yUHW3KywuN1tO5I6xjtkMaKAw1CmiWopkJSCy1Dz4TcdaUZyfDhUiuDyIxFRmE+kBf+nD3zz2TYwM7t1RrXGNsX6wtSn8iVlKaEUtAbmo5FRg6dFlyUXEFSyPJM NzN0JFNUMNaMs1A/bZ4tJc2z+qOBw5bVYfIGXn8bqf7CRfKyH8vtUyJDMsnwumhwZ5XfMrRjJKOZehh4I+nbH58jl4HJnQ155QL7yr25/gf/99X0Tp2//XuKkH4S9b55qdl2geoieD+lSGyRz0pTyj3Q2SpmQS8UDKTn5NI+UkytqSQUBydNST32kW9Whe8IINMyrM8/lNXz2xGALKfgybbg5abthpnsunTQxbZIKUhVCR8UTOisaylBJgsKM1QLaXJVLAUuqDeiJJlcVSF1IqJpKrhasT3ntHWy/5HTYGmDt1eZ1fvAJaa4/zmHPkfU6llddW24FUi1QjpQkH6Ty6UTWcJvBPpU5NHIVmmpR0GQ2iMdz+aAPGh8pmon88388eMq/ffNRhe/9O9x2wA7BLUokHB4yamX5fh7NoczmTOdFYYaYqoss7KUpFSMz7UyaUf1HSV2kmkdLVT6bFOZ+hlAm9dmCBT0gphhidbj3lH0e2mvmaURj9NTO1N6PboTJDDAOSkFM 3BXuKKa4OL912YMtGiA6cxGfhltRoOa7NXRH3Bn0Vg3WbwBW4yJaBG6024HbwsZrIVhqPwP4sOQZOsmTgJkcccA9g7nm4NNtx6NJNT0gBrTnxiDsBuC3a6EX7bWicjVRzm686G0WnDK4IJixvzvCjVchfhtoZoNYibjd/Le5VvLRhJIXmFjF3kZQ8+4f13H9vgFKIv7jiYOmy5qDKJFLYSFZJpCjBZZc4F26HpoII0aHmQOOpLdcmzITcFhAECVi5thG4t7GsTPXTi9wNGuEZWhYNxIIJ8g1eNrEvP1bwqoAiAhnKtgQ4HfVFL8HFiWUSC1kKaK7OjQ4s1weAeweritU0GzCrZB3wQvmr6+ynY1Y6uAMeK9Y1A7dPpX14Ws6daByKJStmyFXQF7oi9MM9QB/gXYX+31W89+DwKnIfpokLxAuRTOjHUGoyRu4AjmuzQWTosnF1eLjG/LVLcTHGZRJLiRZVqFdJtmQvoL5l/n9teErlnX1kbsCE3gjghbIfoq+nBCOM a3BARWMizFovsvUI5dmi2D2WfIsTFYRidCxiPk2jBzAZmV3c5djeSxQ+LjD0KfxWGetUkgkHz95Alp7flfyCQPJX5jwv+EFFMQaaTwf6TBKiUwVYuRlxkdaQCDkSWRG9o+u81//SKRSkl0/U1Rs8/B4bk5a5JPN1/mdxLvDdVCSeZjAlPkzm7Iuix1uOrC/YmD4jxdERXuPfAYr7giXm8jn5UzAelo5KKcdlQgmF86HdS1a3TwT9x/d7LJVE9TxRRdETGVL8leUf0XfIz7tfOvuy/XolnY8D6+JMX5SuUV5SflOnZjKwI2bWIpHos5adF5zL/7ev5a+Yx6e0dQ9dIenZlel36xiOUBLlNL30K5UnxfT0vopnvyfD/cyQP7GTbiBttduDO0MY2tN2B9lmPxd99OOvlsTsMXXdt3Cq6eDAHkdjoCgC3j40e+acfXZ5I4InKCwAQAjAVYDVAAUA5wGOAb4AkX5gYyhARZsi2X6XHj5qBw124PyHQb63NAGspWFqC1ArM QXNH0F5SEBlFTVjcr6yx7uqd/vadE7d1W0l/grbsZWbpt4E8KN839DFm4raU/w5/Sp5GXsKJ2SSbI0mVF4c2g6mCiuQ7KqpBW+lgHNRG4mwdpKVGWTfJDjQJIEyWscBt6iuO2gGd+ZQXzNOljRZHOQpZu61CTtRYaRG4fsnZb+rM4E7eVnyxpctv4IXD7KX78ELg7fa0yP6A5ExxVNLZomAnfjZWzprHdnAYYP8dr4MvpDWsihJGvDeQoPq3dssq574VKsC3zbPFumQhhllXSAhychO7QC3l2lHCLusIiM7U3xLFF9NhfynxbC2m4cRAYkVXBuayrAA9EfDeOkjPSSSm/l04WQXAW6AOXunY49Sl8Tjph/2Vmw1mRCyJ4/JsrjeBtMCpv7LV+Cqq1oeUOVa3M5AwpPm214WlcwZs0vDBGirVzaXfhzywSxLpfwuHn3hq8rAH6TWVKN7AXeSgITMhAAH18WrX90dOc/ExtPv8BKItdgN3hv/W7jz4txKHIAOFb2w+M +pwze5bTanG8Vtl5Rk3GrwrC+b8Uv7WrBb/q+PmmsTpx8O2Pv/tMPkZ0fNxBzf4eQgTVQUhjUxGI8fb9pKwD8C0urptZBU5eKtuxSgotqACwqlGoJN+5/nMKSdwWa3eruZCyvtevOrBGqjsf9xbab7O0/p5F2LjNZg3bMB1OW0tAX47BB7qFjWIlK5xAQnfVvbU8mP4tZxA30BhLvzLwL7mdqKsw1Mzcry9TVrmamahCr3SzVdG0Z+d+f+nmTSbCcNN2nv+ivIZOn0wV30w9ZU0ljC7VRU3pQvy0G9LI1Onxrd08nCfOy/ovBQX4X6lOba3/12/pZ/9wiy1xnArPZix1CgufJ+Oiz1656/PhFXBdMxHTAyvO/yeaRKd8mZL7chmbysNA02g5lGmUVmT8VMwiDFCn9MbwTMKRV/bRE9pYjjV1ijX4SkoZ1/ZPd4ffof+2mkPejvZlSp/dEvmn4xr6qqrHFilG+PhV+1iLq5M0KtqVhheUuTH+8ISrS4MI0i+g8QxlM RgzOMh+Ue7oqzfbwxyczfPDMuFZSnwKL7tIjzdNlB+9XGcunPTrGuv7yI1X+84Gdrb9VTbSawgP0AqRaVAuzAzFditlJIVOMi+sJ+jOdoxmrF07R2jWlQ1f9SbszDGRXP8UZeEpuyZkO+hncsbWNpvviAb10L4TvkN+RPgzWLKfQEDympupJS8/xwd2/5ynSsQLcYTp/eZVQUrMhMUw0aaa54ep4Rs7Kn2zE8MPQAhszBeGb/l5FX4KF8qJqVGHL+liiJu3KIWwh0hrrPemaXjMzY9Xr+n0D+v5ItZB5A7IxRYglzSQTSWTDswxnPl2gpdObP9Fsse65TIksKklQb7n+ZS60mwRbW6wFR/dn7FdaqdJ3QTLh7y54QX/W6ohlguqVnJrdhmdok5xdxHuaOeof5qeXfz1Nh3GEZHIeXT1jcXrJGD52Wy35NRcc09BlhYXgUwsMxJ4N5FqMwvuiiHz2mgb/j3+AYKsoCkH+hBk7qRoNfqBS34m7nA7ir3rIosxEPCPBM KRK+SlnI/M8F/NkjH+uj/Q/jFVEB7VI3qIWfJZgc6NoND4KTWzdx2tAD3Pt1qxdbbapmt5LiNGa0OxffyH7G4J4v5O/T0ugn365CVzUvUGEnHNvP7lCsy2eYwui6Bdnqw+cr3QztGjNPPe5cWW3ZIErjQuSNaQ99NaooyHal/udjS5fCMPmmMXh3Ad4ZSVpbJAUFZWZe1v5C1TNHXYvTfvV+zrQq5QRXsWBRaq/5vXceUqixk/PAwZRmd8ChGOARVgzIWmmWihPpMneTrthSqfNNEnF6KIVpVQlDBUt0jbZJzIO/tSSHlyNzEOLJpEHgAQH4V6FBcnz+VX5RimbqSNYVLK8B5WWatws5HYF8QFgpFQRaFTxb4qceoeqyN4KjKB4+56zMJfPbJzqHl68vY3YjKDqt8eBOObooqmFnqBjr0sio500hr5AYNvnARD5lFkQ++J8ZD3/RT1jVs8RL5azjzsnHMVobLR40xVyK+9Rh3tfwpVzP+lDf85XX4kptbu7y5x59M 1mA/uQ0Zp+YTXX+KP/BSZfgHD/hh6gyNEr7R7D094pz9UTzq83TuIEf5LciS14jNRcCroKSNiiqP8boqfT13M1OkcLzxU6NWEy0oVbFmFr0IWQiNVgWtIRRYyfnDeWUY7OV54pHBUFVVWyliql3Os5VonX1ekkPJtB9H08iFPBD0vd33Dxh+kNt/M8Q1f/x93PMX+21NeLZ+rz/LGiYupeq2jIkH//UXfhV2mjlwONDqH2DR54zbeflxqfERQZ6XB+oPQHlUWZK3g4pin/5Xl/y1X2zmKWVNG26/i86qDkDUPvucW2Misn+VdJ1KRcmQ5ERx7ogo1WJtztUCpVZz9uRP5aSfyEcEtRwQ/F0W1cdiZAqZgLWYkJAC3QNkBOnQXD5TF9LHhhK/rKX81XUjAK+ZB4N7Hyjbdm12UUElbPLihh114M/mHq3LWjZ+IZn/uQfzDwF5ZC0wk5V54JkjTZR4ViaypXMxGLp7IUS/+kcOpf0PlWGEyVrEVsUqxvmAhN0Le1ZfM TG/Eby851uvqE1FGKHhexyqmxcLlAxVCkRseIpHYi91ueK7SL+rfNoCfWwm4BpyQMubbAbGBFGkQF1dysms70Sie758kgG2xAtPZkkGUz8siIyK9gZ4GCoMwfrvKLK3ilOdI90v3SGp47d1qRLrjZ5zvfxy173pTLU77jiO++jrMf0FupKMadFYio0LzT2aKuYiOpwFGlZKG5dnAH97+Orq++usD9TX72Cd/KoPTWXlk6Za4N+d6X+JELWP8vKi833ua1X0LVz0ENl0qw76NasMijz3LP19HwzT/ewkOf/2e3v3yYLw9+u8LXVvn3kum37fh33JjkY52faeKlpZ7NXQevLPVNnjdx8JEbRAdXe0PyscH/W8L/t7vECT93g/ev6lcMqyen7H+I1Verp3I4dq+J/cvdVRS5FaFpmbl0jJ1/UPayPeL1a1g/sBN2P+CVP6HIP0fTv0t7XD7mW/4Xtz6LPud1md6J9M45S1Y0mhb3cxGP4reZvJZvPeu7+ybdq1OhlxwM eyt+WyQ+WuTCIymdihjRRKYU1lZJOLSGDlpx04x+QMoe+NyRihGMVYpQTXbioSFXIu0M5H8ZvTXqu09HCnE6uLzEwNUUJsITU6AiNNE7ljWPPBa1cvzKYqalIiG9SfpTmSuytn9Z4HLGX9GLC112cLNMCqKR52K0NarLkodJbGLBTwopXJsCbY/h7dA/qJq0Xu1i7Yo92hLio3IBG0zbIFMvYqh0HPIHJnuUpNmfsGS5O1oY7ghaUF30x6gJbRJGBjmIi5FBHSxEKufi3Fj/JwRFahxVU/55j+aZejiY8kegxoMcwDFwXOwZuD3EYsHfchbzbQKSwcUHsAi5Dxh8osx2fajEDdz/u3aGOR1UCZM31WLr/f1q8rftWKntZxM8RdsWOO9h+zIOY6EQjFdpueB3XXYM7009tVdzp+lr4BjRU1rLCMlslroSaCuRS0r+wnYodcgMkb5hJbOKWVo/sXetoUEKaXC2Ixmtf2NMDi/ytvfholaGBqBPVZ+Hm/JsyuE5jNKRM r/V4P+YGOBMrI/+WzPzD4ihZb1fO0GeN09DiMg0X2854p7s6CkNb70THhElZBbgf5Gcozv3R6DOFgb3el+UBWd9C0XeHIYQk2lxdI7Ox+dAPATh0E0heh+MvxYoH9mqdhWOUCcOdopxeTS0QfQrx8swtTeFHFPMfCmNaGMWrKILQpos4GN9j2ESUFN8CFeIkbk0o/aGCMEZ+6SjE/eQwV6vWKVfMMD7fTUXBsJyB+muQr5m2Mv2MGbgXXRdod7NIh+4uvpYkhw24dNh9gxe7o0uNyR8hXeRzYXCy88IEHqwk03+yjc7oDDQGAiIoVyvqzyzmqzFUPNPvYn1E7MlacDDBCsARTLIhyE3LZO0aXkD9Xe+KZqUKhqSYJV+2rURjDoeSnZmYyuRU/ox2cSeyJN9OHFbwmavAx9c/UJdzRJpiUPZWTejP1n+LVyG3R1aMISMUV96i3KUdTx1O3ij2UVMnUPBdQllxzHXNOtUde9X1EjJlx0I+3YImmWdiq7rbhAysL+pUM r1YEaxTouyDFUKJ7CbZmvwnwL0zvLP7S4xmRW/vchqaRfx5JNySqZWtKjhNny3a+SD0oWllwlJfaTZbu7Z5myfFql2/1k2YcYuhQsGz/M8b2h1EGWsXcfTZXxMiwQOhgiJtHdX2zT2KNhSXj1JT9p7DAFADEzRgMvCvrCLWHk5W9ysIIcFuhX3Ku2EmzPPKUeVhImzLLO/j4dKIl8fd5YVwiBVCUhoRdSWCi7uoFS2SNMNGaO0OFJTbIm2VqBuUa6PC6cxSTdkpyNCQetKPi6xJXKjP2cOzHtaCrWUlRO6ccM85nK0LQpEiIp/j0Od4JfYXN/ZyoJHmUTobSeQv+EOwucbHOyhc7CKdHDQO8NUjWrzjT67pTIkM5VmsIeqZWtlBtTIKVYyCeHXO+0oovjc1HJU4thbep6rhOWMykimywzay2svYUeu2NUO5UZ/JS+jPlwl2uHKTlJmI0UG8EYUizGvJ2Ts5jeKJ+dRaSt6exJl73dn8UeX2uiuxXWkJQ1DmyoTHZM QxWhxBp5VONzEoX9AhGjNe+k9el7mxCFcJTswIEvCYFmDd8kF2yVsLZZ1djQsGLaEJW3CgZXoI5cGuHlQEj4abplwsDCzF0mBhZwGgYWhNxAJurNB5Ghr1A0UqCp5oGNiJiJGEvbSjPLimepZBUnpRIrJUjPYIVUKDNtnEUE0c4NpqSeGuHaQkqdTrU+oIeJE0BekwIC5ZhMKZKZIZm5KFaKFQMHcKESGJJxEF0ptbjsTRMUSLlTySij996XK4vflA4rXzjMaeEQp/Z2sCvy6yjkCdoTyDcqnQ0hmBi6GlVl+t5HPGmUFaTF/CqSLyUhFKG3CgK6bhAMztoLd2feU+3wdhkPtwEBizQ23Ebk7vOfWGtlUtQjudc/n7P77cHgsYAoyAhO6KXQWKshUBWsqKo5BrhfQCjr10H3v7nCJNPoKflI+pOlRTP+Lo6+yaXhansEGMj1FaY/TzteVcIQVuNCzPfGkBo5oQd/5T0r9GE0fwKVZQQ3v+2IB/q+pWLygU07ua1BM lYX0WbVYgkv5Id3qrjzW75ozrztN1Wa/nJErtCvAkBQBwWmfDfqgOffqcLrhBJNc42PtEjV5+PK7i+Qz5B3FkScc1UZGAC4AJW5eRnZ4EHKN9zk6Mt1LCDtxrSwLuDOZ2q5u5jXiwEGspdoUfrkP7FaifPuw9s/fuIPd93ByGHkmkFC5vkMzB+1KSYll3lv37V2FX47V4IfL0+XPaKWIpKYxl7Gpe1Jllrz3jGh1M0VHoWHnKwMpVXz169H85+1iZipPm+O7hWrN3lN63M3eA/4zYq8kxgbYSwhQVlDVIFTiwZZPXSh43Xd/pup30H5FfsIaSXsRDuanhDAHWQkHcJXyky9ZNujG09kmJK2HDEKkjDaJboxVxVYgtQZW4j6Y3ruHmP8KpeVsZPKFaHdH53tDgP53WBOu1t/6irLzl6wt4a2ny05cyDVWo+nLlZC621SXKEqE5AsY0TMnzUc1fnFMVnCmIjDnLnUhs5BYkxxpOQxJofsgvanTapfaIVIzKVsg5bAFM RtgjgyuBpmzgLVaXYIaeEAWmBW8U4j7Gcven32T6fSmIH6/IycGU0J4wJKXNaqiL+HKX+n9b+E1NPaFrkTwNC/sFmxkeTuDGEdRo8z5ileXFUMIjTRJYlaUbF4LCOd/mIOMXb/f6WWZKkOZWFiX5PIceEitnjFbwYXCWu4P8fpB8oZvkcOSObT1JGVWGsH0l9+n3I8iKllDfHFsfuiHSdPltks6RIKFJ8kq+C15AuSwc2HMLBcl8SOkxLSAiFHOT2NmT7Arcu8dFt6DTHxBC9TuqdTuh370UHA6MlEh4OufH0L//y/ZQsVG6MxtAWJTRcy2DLRNVxiRLqfTtkd4KgVaZIKB3xnRxSwNJLBrs6DKkROkqZsrBSwM0VySUzA5X7q3x6Fr3VQnhmEFqJNKF4jw//x7IOcGSkrGUwE10b2jlRMIOvcLAditDFJyhCOyAf4IQD9MTxqUSVU2YLmN3OGXIbCWsg+yEQu/b1lkVYbYHxkj+/ncDpwEES/m+Fwowl9JQz1KwM YM+iNa8rLp3ZC+a9zMD/ZgpPWn0R7RBM7QhWPWq4BchVNUqOtaO8q5UnpfmwqtoZgAvUMIHc6Ybb2w1HXArpb5t8uRgiCMn8c59guCeAXFGV8E/FDRXTpCKPOYd83+EGDY2FyhynAGct/RoUWWeFGqXc/zooEsuwn99XC+y3OIJf3exML0SYf7s0SuTEfY1YUeutREhmyt0XgkLG6/KtdBDUVF2Rmzr2w+qXzFy0tR494ynGjOwdcg3hqyOE79z3g3qDvGrDhO92f98j9HeY0xANPYgAAOwJqIeCkBFxfAi4dgFsDuP2AuwCIVMXJMYFd/UyDu0LxngNiAiU6IzTAOahNyAidklzO6pdI4WHTIC2xjCIMQF9zBAAACDSAABAAKfI6h50c6AIJjKYlKfUQ30HGQAFlSfEo9tCOmPF2wQ49WguRy+DoJ3GC4yr5wQbObq8LdupYXwT5JdQH9GP2CbArlmWJYjl7La4eAS0159X78HUDtkD+IL7i9tpzrEnmJVQCkoGM Gwq6SzNBcUEIDHmmDmq/627jwIV0FbXxweCMmaHPmRq9FHPa9o4jOaTpZHUBeo8/gGNPX097GFGaLklC317o3Zn9Xz1IconrcPGZngsaxPWHNRhUO4ePcB/QMeuZZ+Vg4bLN74yDGaFWoFGhQbSGhmtQLNO4HaC1PtcjmxPs/ts0FX+vy1uQHsYd3nA/ZFDjwJmtyrng29/EurWsqZFATkVnJoERUGKHVbxUJ8ZPM5/jE2z6am1QOGO/6R0SX3xtx41hf9rC+e452hPK14nN8J9bXaDUA31jA+6UOcYx3TvQWjHnhKraPqrQjxAG9oUQ9G3ZUEibgkxXYiBpTw/MKumsRMeVBy8M9wkNlYpRPLFOJF6KEfjJkqDMOiDm5kycLPH4Q1p1QYulHoZ2NZxWchA4Zt4VlBbEBUp4X4r/MCR0UqVLkUgzP5/SXwrITSh7lQd/AcxJ9YRwil32WFMTKAyv/FROYDrvhIv1BT+jJ0x3kwc3cdNY9d6uBGK4tBn3Zs2q+5M+M hrwSpIRMZyFBBKUnI4cuACeq93L+dw6DfU3PL3TPhi+FGkNzeDiMKle/IaB5iOC6IDOH8FCN0ElgzJ38Rk1DJKyLnItyJiHhBk6LcfAJLD+Ynsz2uz77chJE7IeWHF5vw0XeD2ck8CSY4n1BwrNBsN+71hS9OtrgQ9Y97OPTMnfobDzGvtfjQ536wUEZj1pVjjkSDO7pA1Px1SAmMoJiXa4++wtIbCH1uIGlIw832w76zZt/xLdK5r7jwkYCVsAUKoASVP+ETDut1WPXEwvWZRrRYjCDmpgwFWr3wsuhy5its8P4TJeEcJqI5BZUVcjmIqVPlAC2FqdP4KgfIDbmpFfIWEJUUvirz9goanE7VFkBL0T1ZhBduW6ZVheSZn72IbHyoyTM+WMuAamumA/bZG9N9c3U9egbGYSIaU3AynSivUIMeK/gFSbBNqpiVx1lollMh3dThEJlZv7R3fMQXRsgMOYHiSDQZ1SDmOgxCY0/7SGd12xF82XMKor12LZmNMOk2Ct+M tGb244dIzHR7G0qO0YGxIoQQ0EYc0k7TmD28X0fAOXn5mTm75bMp7XES0fCkhOapWE26iYEtIUebflbbfufl585CfmnHNLK0icDH0LWVVA9A5EGPixbCJMR4rBRG8iYR4IQuL9jGGPsVQzF0Z3uaBAwgolHpCHOpBFyhRtkxSRQWblW2AQ5KxwkZJkwB3iVwDGLZPc8EA4z3NBRPwjDfHSvgicWu4pU/dhzgEg3ME/Z3fiRfCUCys0ySJQkAowOiBjb7rIQY6tggk3O+GCG7EpAKyFcH2D2lmrJ0QrwIRh2ypCCANRIjtFNa6G2MJUaQxSGHHQuKFeEz7Mvd0DSeQApRDWuveH4uIYiXvbNEvwUMk2mBjHNyJnkjQecrjU4fRMTqQkNaf4z4YtD0NpUqk/8/I/2/R3YGonKAONJN2q8Ix/1qP+fCN/CxeULbfWHTnI+65n+iqGLSQESRcknt/oEBPOU1r3uLeGYShq56iNT+0mUZnVFM79MrRElXCLSKnVvga1bsM fryIPRFKSvSPJv8XNEQ6MdierQpZ/J0uRRtBUrcoGAyAFVkEhehCBev03AR5J6M89dgqPe/QDZOzHuDuGUkX+7A523UiiZBb6VR9VYpeuS8InIvw/YUfIISFDNcxuIuiV+Vb+t8XQLXf1e8BCvHKKuCJIvpcEzgRSxegpevC2FOF23e3JzNrApp5vZpJWNp/dS6V2/SXQKi1mVJWGwfODczAeZsEOqBSvko4qExeleEtICe5elbmZRZeR8iwv7bJdi8iYa7Ezmf4Y6v41Iwo3ZhEK/fJRSVc1emHM7/6CyIGddeXmQO67HLPmF0sP3Xp2MsiH23YKIttdC5RCzg6JUxDuLp+0qt9uAZUXy4L/2DNu0Vm3tCMbpcRA9MxaKn6dL9Hj+pMgksjTw7H5l9px94E1HpseXgw31l8EsSS8QiyCmHaZvIJIDFGPKgF+WUuy78waCzNWLPsiazZud6cAdytta0RLAWhLUTMbyVvAtcYa8dae175hxTgeYgIOh82DWlyRFCqM lUCFLTS1qzJXN2aiJ7wDuCjY1yjcHUBPQDSGbQQHdz2a3hhgKaGD6MK7R2gB/vEPsmQqlzVzx8r+FwFuQKgyLD0p9+XHvIXGEFokNBPAd9V2pQUOQ0hbQp/Lq4hgdIRGz6+9EjRrHEceGb+Mfv0BDo/Qx/ZqgSOZgXzQRK8ncqjCJzxNdeoMfj5B/8wi35zWiIY0/+IyCn1yr6O4fLpoTmVpU1QckTqHzYizFrqGEjcSnockWqgqYH7rCKnPDAMsk+cFunmFPfFrWEGkxbCaYzM5qfnNjnEZAuKKOFp0SMABVj33g/wnoG3bMEBRQGCnpa2pUqw3ALaKjHXpnH7a3/ipMaRZacL4Mof8zqBqD3jmAfd134no4aIIwhQ3dBZmUwtpksn+R/fAKogROoPFzI7uxuHpjBZrbWKZm6LRO9qrqvuErPN2wiKQ9TcudPBy7Zwi8lzDgQ+1ZAWossIxroWH4qr7dHCzqNrWy4+OghmXj0bPeaewoOwDCZrgGHmzvM7aEkYcM F5KBtirRtkbYxVgF2YJ5Sjyob/ZnnzHMmh4GSsMylaVhhWkwE4jduRZ0VE6ADI3stv7a/Wh90NbIY+ovrBuGxeaqJZvEeBiXH2o4QP/FX+EIv/u53vRd2DOVTUWUdr6eJIBjsyjvOjiA/R2v4AEeaIgoR4xCD0o4QFkqHeoZDTUwwQwx5XN1hxLuQoJtfmGniO3eqLi0kzR1GzASXKwMpGrPNedWQGhFAwbDxwY/qD5AVWHih7uWLVpyiS0WcI+yI1dV2Eek8GsCzP3MK/HFemrdgXsVLTgnCuZtfK5Wqcx4dK2OaZ6e7OLPyfB6twt421/H7Ktnu8TqfVuVmIpdWrWHvahwYXa2nBQ56gh+rk5rmMA+3kKGnsa5zv1d4sXqQTJWGmG29fe7yHI9qEta2ed1KQ8y21V1e4d0WIVRq5e6WrOHSloIUE7plFEM4uBWOfK4X2Go/nq5vkJ/rT+RR69dtYz0H20zoN07jOW0bakfKdm3kzXYnWWWvu/jQHtP2VXOzCX3M 7S3YgnCv3QZjtllnm2VMF+HsXz+3yM7p6ZNXvquYK3Titmy/o9lu787zu9u5fmPZv1X6wRy/t8b17csvqbr76O/P7NXyWn/1D00k4yrRrq9/01cPPw8d190POc7867T9jCqbUb047mWV1D3Wu4q6jr9ajstaq9e40+nrxS+iZN7qHbJHcKrR1a1F4/en/Hmpe4fOZkujT+nJe+uq5ZkqRvOc/U3Uv/5jP7m62h6U9muBf/LxezWTyjSLs+uXO3anCPOSRGvrAH8/xrHXMtB9q8fIQsw4fr8PUPsH6ydA8FgT6FrF+83fp03J83TXH+U9Ne5qW7PGo2Q7e9yi3XLj23wrZ//eRkWhV2Pg2rIodnNyM2nN+6T4MRw/ubGT8jJ+/DwNRfz9/HTN/alP+1IL1O20hbx9yTUnZgY9Yp7w6Sl+rrSq2dxT/htKbrEXxABvSMD46d07hfA9iA9awsWXmafdX0ejLW5TYYUZrZFhP+Tw5LkrcRobXB8rxebuRrvUNb+EzG/FM gnVuemprhRHNa7j9LcWleVcPQl/P8awfVFtp/ou+jnvvf+L0sve0PvvUtflBnRtURlPlsPWS1cslo7ZT1+WoONkKo0dj+RKFFjUKLvYasPmOtZzi49A/YgXxWY3KvIotkafXgdvp+G1QwLK/IZy2yWeo3nOQEaoVg6+VWywBVr7FO8k5LfNy73WYCGz5LGziwYExecBZRL7J00EafR4BhvlNTNzjG5gNmo+JbaGJAHtvxgbQH90XjLXbJjU3ZbfPZlMNzeZTdhO7L2kzTZS570ih9g3Evlm3Q7ZlKS7f5mF6qhYvz3X5ybbzXQus9vy36bvt5CnX5AGogVepa1q62ikBVqMa11iih2kjTaoRkqlUqUteq/JtUCACBGmpe7sjpk19fKBf3m0JGJeV/iDW/uMHzZPT8p2vGGq8cneqT//1l4c5KDDSwFrbDoWXhTNslSbL6fTOBXPdhQJKMffWrn7xdNObRvYsornd4C7LBDzNwanj/akhlnKssKfDNTKNBkAa/MnAM 7fQacVhe89/VSxMNcXPGut1CLYc++KvXwgd/BXlbFgAjn7nObTBZ3yzoFHpsvxgrk3rJfb0Xrhg/2racyK1dApT46S/XfxFqC631mnppN5mLHZ0Yc4Ia9aIzjUTd3V8RRr+tSELGS7F1oR5NJu7+WahcvMgLo8HeISWKN2HJCO+TG4/at9M3P+g6qdGeEs/kbXadwD3aTWY/vSnBVRsj7g0lMXn0Qc0ucfZOTWAzeX9WDXY/VMnUVH96FeoV1OTYs+ZoI21JZ49zcbqG5kOyjcz3lF7XyEB/5Rbn059BQiFLxDH+Mk5GkDEpKu8PIjJsJM/PMTlNu3nRISy9Jry8+j7uGbc6EWAecbepw94OpJda4hpxx3BqMa8uIpw51Zrv2UynWWWBi97NqVwdalizO+QbI0WIsx5ZWZYONHnI6uXXobBfa2gqJsmHQg/8OJJSBcRmjscVUjYaRGkRqEKnBGtjHFvwzUvynaMjry/jcAp+Y37+p4/5DRMQ8sxr4Aql9cuGwZ18M iB/OLTlvfOmrdQslDuHvUx2djLs/99TiQ5HObMOFyPnaZ+rOLLTrttlv0VrwaZT5HeT/EtQ/Jdydincleu4rrmUPe7aX7XkDGcfXyz+oN7ToJufzrd5GgwWG92HBU53kHuXrWWK/dpI5O7y9tIyJ99n/zs4r/+Tupp23PMsy0PaEMmfHw+Z3enY45Fp/tQ8fygLJr2arYHqp1yq/i7TZV7NU6qhm2KfPEX2Y8pMpS6J4fOnOXYo0jbjDqI2MqoRbIU+U1fU4CzXedHTswdsNWzKUTV4apnHgBt/AVxq4ce2FQxlY2VkjeQppYXi+XEy/gFr7CxK0Qehi7YctmhG6YZWNU1myXo2T9n08cJ9QkUmthV3PtqnK2ghNU52qkPlVJqkBSBdIrFf8ESxe97nyspjeReitNpMaijtQhUo9IDSI1idRbhJGaS8TBXmHiVgs9M9W0N4G/jh12an9mMnh0/EkuvNCX9zR09yB1rR31bzOpMZyMhcgmbnHwFGSutSM0VzWGUrAM Q2djF4Cmpq19ziA8AzWQOJ605FPuDdoNUla45KvtzCfvJxletSd6q2bFO9N+sqtQ6e8t8qzzB+zoHlujoWUpf/Unzj3hO83dd7c8d2zytqOmn5de7kw/i9pxmrcZQVoaMn8bFQXa/ll+9ilVnwaH2mUBSj2UYSpSzRtG9tzj7MHTHef8DVEKGca+qMlwYw63CC5X0iik6v9v8/VZ+Jt9Y5ssrw7Y8nJbEwFmew7OcrSC8BOvnWG7QrnLJUi6V7aX28rzRZjPBwljygWtu84qI/6e0l17eK4pvn/zc/2W/+fh2p3BwNjxFU3gWrroiXdAu6WnTdadu1HL9Q92YlHTdYmScw8YgwIbmKZyWK+WYpRndGctT549lJUFvxS9cwEaA2ulix/tu73HcXpkbS6wz9Jp645D5uISJoYQfhBPJtu0io2qiSSd1zbFmZ2EzyZHNVjk8sXha4mHqBqm76YDezDVirvZZC+WFDhaV9JxyqU1265Pjsbc8+URzq3SwakNOOGbmQn+M ILqMnxUYb/B66cEp0crHseHT6ouNx+z0Xqeir6LZTjM41D2b0eh6938WNdl48c5vZM39hvtN8y5bXj3WHLpaMdGdf58k5FzatXlqeNbD0YW3JrVaVeokf8QsBRnRTBdv2UmcK+SEBLipB2fg5okwjR3J7vTRKz4kpwxyMS7KQtw4FFkQ/4GGefZAPNvuIaEhb5j6ZtkeHaGAm3HGL1w+VUhfT6JDwpxMPvcRss6Rzq65UXavJ43VaLe6iRq8Z8QiC4vGco7vR1A1ipnObzM/xaejHU+hFnr3XWpUX5owMzlyFEumm5s40nKVb23izZNVlWUbGutp5QabEZ/NaS4UoVQYTF05dkgUo84KW0DWcY3Cl7raWCEdxzXHaVyAJJSwjDI9JVhynCfEW0ITiMGE2M5pqun3dQdF4iZ/MyYlYRK5IJA2d5jl9i7JWWhiMUZg5SmGk+/q+p5LRvU6hHin61JmhfOSHv7qCziU0/N1w6wr815cxuMTrt2P1smzf2f96hZfukGdM 2Et6Xt3aS5Bxx4YbYNrPi2n8GpxkHTuHwpt/c//2GYVY+7NH9tnIAjwbGOE7QzxVrGvJaVF7J50y6JPV55vNondVSA5Vz5CNUHqCpS77ejPYarNd9Lu3aj3otI4QANk8CbLeoqZHGGBtJYrAe0Xn94LR49Vux/fSIoxtMt+P/ttyN/VzI45JIC+ioNVdMJxNnDnd88Xec2Lqpy52NW9M++KKF6jdvD5M9EzfZhMdrP4gGsrd7yZqJm53Crnw3fBl58R++yUeOO8bTVHuHi13iVaF/rBrdV3xbMXdaeHkj53e0L/8HWc/StR726j6Hiq6U+AYitqJqHcrLyyJuigMFIFMbS97jxAoDqktkdimy16MyfYiyfppa+2NB1JWWglE7Ez6dsetKJ7hawbjKmvz/b6eprDuyERP7fKIJzfFTm9ZhsUOo+kMmk38I1qHxnrlnBgaeYsqAU9rw5+IZvW3FADyV+8H2TbTJzuXSpna0F0opKch4t8z/kIfnisnTtC1Evikkz1JM bHVV5HsFXIhb6CZQm0zYlbvRqxH5mymv4mjI/3BrCzfSstH75i0FdHW/Tn6a8xd9xNmrLDMM75oIozExHFkRjZgpW242fg8PT0Gc6UIj8PPN8lIMYzEyqudj4OVaQtbE9nNnh/haqnNmIxojgd0DxGe3BFSSNa+0dc63DnlzAWm3M/IVOxrtV5XH+uvdd1V+ZlLhta17BhNXXa9PKeXvPl+4cCkx+a95qLpO1mPIPGHB9s/u2SJ2/v24vUewyuno5a/60Bgs5sPo5SnWeuUbGJPbstZ2C7pA4/QqiXXVmZdY7a7dGxiix9I3JPJBvQ2Ei9hZ2N8L02ZT7rijsYNHZA0WHL6yc0PwF65m/Dixl3urWym2hVjasrk0Z69pansUPKWQc+tfVNKaWPtdgETLv6ZD848fVfxCw4HHU6indXPCXOv5e7Hbf46v6Wzw7yX8+RMf7zdOH8fQ0PsOJzgzflsEdp7/dRtudQc47mNm20Hca6A0zHuDy4xn8YRX4y4WWq2jd2YjM dOUu5fq9//XopPnmcXhvEo8OmR3J1gn6XjgHoqhoa+asJAQwAaKd5RHcON5RY5MoaK2iry4xaHMtQUerK0by8CmXcEPLLkF3MS7ZRva2tZ5v9R+h+KN81o9/S1ZuE/Uk0gCl7F48Z5jx9AQ9PY1tDRy1v6s9vG8C1w22fOkDPtePTNW155+jQ55j5TUvCX8n8bwz/E86/yuYJNI3L/5aiH+qOg+yOsk+pRnopGtDTjMcJNC8Fz2RnkcfqsEDLfhj/MG0pum7bW0J3k+wPKw7aNlPJvh1NW6aKHqrCxyYu/3dd+b/8yRnSAz5aWboQJk/CtHK75flouuvCrlXITFwop5sO1+HB8pYLa+irRLwaiar2PSWxirY24cZepuB0GmDPGE5Ky4nsiYglvSpGB2ikzi1jVVBZHYRb/81Xoqg6ku5y1CPnl6OxIlb5mjZMCezJd/bTui50tqeuTPBDGUZuCww08fX4X2Kh8h2+nUnZqrb7amjLTdxwOY/+L6r/Cef+tunPdu+M rNL7VdnuPzz/C+UNtH6fQBw78OiJ/lsMaI181oieBvnH/f+F4SuYr+mjz0e67qDq1O5Hub/ONTozpaYs8TVHn0HxtYsodXFWe4P43VafrnwUCnjVpfhbo9hwFQUaxeHnyDrOvDz3WyJgPMTBNS+0ZBiVEE2BRqwpEV4jKsl6Roh0sWFPux2B/cUS7CpyasRrWbZ3BQkCN9so2nerPsiFkNwztsBdqiXEPbSPpenQyCc+mSfcOykUJnm4V+3bKsgNTn9egP06LT4dpr6bQ32B14n15zLMB27r82/rwsWrSueZ6jQ240O2v6rCNlNbYxI0BdE5ezVWRy03qUF9Ff2WYLB+mlA6/PoLR0+7lCDHaaQ0G6b30GpRQyK3H9Cipo15+zY2DGf+IoRq6W8wuW1ZkWVHyV8hyanbRsBLDSmZ/ahdnZlKTugncD6PqjBXy5Hrj1z/11zrJvh1c32CH0X8aLgqf4X2gfqZz6NdsR5W9C+oZi2j/9a+VTOb6GfBirEnpybr26d4M 2GApAEYGXNVc+kUsa2SbZq5Csi2kP0dDvCnBVlXcX0JlHdUjPs2n+z9B+9K2+ray+ZFRPi2eGY7bx2b8gJw0MPExzOmPfXEZlyZ/20jXKgViOuBiB0R5RG/2gG3539npiQDYWzBHzDvvTnLYR8Hd1cjhmg6xzesnPbaE3QrYfIFqjVmbYR7htEIti2ilumYROUVxcwaiE3go6QkiJ0JJp1JVVsVjOnOhVqKPOZgRDfPF6T9ZbydlBCBJY65o2R24ijRjKjKlRkJtb5DvNFuX2o3/ZiROqwKjKacEpiXQMw5BWAtNlamsFTnq7mFVoWBRWsSoPG2tt+b+LLubQ+Mw85qdp9ROU9UZfHitPyVPR/vr/orRP0Pwhi238wF9fwv83N9TWZhT9qaX2rOvz8V9ZNOUO8jO7retxbTRy1sMx7xN34j47dvXwUJF/pB4dV13fWTkqBdy/qnRUtuOkTi8idYjUJVKniUhdIjVGJlKj/rpARwV5k62bW25kuT6Lgbw8+SU8vAvM rLB/1w9bPTSPjtdgW5m9ex4w/NU+qLv3zmVkatK/+slx5e9kMrn6FGJv0RGitUEbnINqO+gxrKixrpKtpOWoo/BXkJvUtgmpyf0lpx2jdvzDtpOXHUzgaZjZVhwlaNMFNE6g29VtxT/mGnXgoNXvYqfgNrAxUZtn++HZ0ffa7GPQwNPPRiKNnMI/QHLHpoeayMSgst2kbmam9GpfnLHN4hdoGa9w6h/6aEtmsHPePldrThUASU8faWqtsDTb6qtL+hNYZLR/RFBvDWkNXNl9X4q4ZZcI7xn3aBSsVbSLfge3jZD1Am74bHbBy6QHfT00RWS8YPybfBRcVccEXeHdIrnnX+Fzjo9SY64J47tPxkEZxTMG2eZb4AsxtjLozrUZhhplFZosp7ajmngHvOxGrV3gy1DdeblzFm4mJpo/kTqoBO3rR1mNATacdMYa0MdnlxkgrbaU2q/tROYxX1/P5uxPrRlSZLjICMBilSXoasXqSELF3oqmEqwPtvUpHw+4QtOtcfkNM abeXAz+YAakolth3+PrRVQjpDDpYxbIZnVm2W+xM/w52UKdRYtie8PQI5K1oifOs0jgZkjB8x0b5Pj23haB4cftGH9n5UIhg3MRbdMmx7ap+5GxKDohGinQTtKVveZLTBzA2MRVENSs+xg6qtKm1lUg4Hqhdb17ORa8NokXuhgTt6hCN3fFcOBq63jjGPRA6mdos/J6zVam2+PzSvz8wPk2C2bOmcbJDtMVmzyZp6ZW+v2hizTZ0d1trOiGsM27bO6rS2MRLeGe7hsOT3cGYiWQrZGSbfceOGAfIV0aJCWff8IIYfYLIv6rNia78a6JKKal2nihc3EudN5TjejuAkQpyEOontjbIxFhHTKaICqmqytHNUWDWir7I9KnTHQiKo+uCYWWEOblU1n2gqcxXSzxX+v6gIa1fi0A2ACk9FN4x1R3lHur4Se5FxgDBUrUIMukPoWc+DF1YMQ3P+V9poaw5X5AiXB0UhB47deG9sGOtmXN06d2x0r3dPn9WvS9ypPNzuX+BM aPHpz7ONtObQjnnuetnvQekndvktc98DlTkciE9qXxwgzbWQPNbu5y9jsUartTmhfHrOE4e4qLo9bCkpbSCMEuIrsD5GJ6vqgeix+oEtxFLeWEjeRezWa7YZYb4QZWnrNyl16GECoGa8v0Ew92u3A2RHQ0dZD/T2bDhwyK9jwNipUTTNL5X+3f1/Ey402TQ66/pejzSl2gvEtrOlHWd8SDnkK2lJIWwxpy+GWkk2dw4z+wh6CxH7lS5Cvw+/fOe331uwDiMHCquDRRyE8xu+ht87/kZdytCmgXBPqug+Jz2jQp2QaNnTHAVeiiCWVScxh0eGD1urrp/xS/uTMtfkFgjVbzyKKEiWIkkWZovmiUlGjxXpsMGzUPdGQGOziOSzGi2PEceIkcbo4W7xCPCX+Q3xD/Fr80QHvQHSgO6gdxh0+OH11+ikJk7x3ZjoLZc2xl+N4Q5zjitNvzzXmq2Jgx7o9HIeY7fmHDzzu0/ok27SjTFuObct6g+3toHd85JLuRAv/CcFM e6Jma1aB6lWiXRjWkQfWf0f7X0HSNxkN/im+YafjmH1945TeZOHtz9trsxdnzs6dnj8went0xu312bHZ4duPshtl5sxmzobOmWe3MPzNLMwszMzOTM6UzAzM9Mx0zRTOFM+EzYTPGGd6dA3dKby24Ne8WY7p6Onw66OrLkfUjIUnhAXN8Wjx2AyBcdywW0Dgk4eKCXAvuQAcRGAlncC4UkEMSnBSp8EMu4jAPaahCVqu+UTphYBsUgFZcmwCM4r0MwCz+HwHsOv9d+xiAVQJpAG4JkgPwSrAmAL8E6wMISmQJICxRVABRiRICiEuUHMChRJkBHLto3vn8hZNipZw1auSq2WIyy/Xw0WeDOYYNMxg1yuhP95i89KoFT8UAI4SCgQsDx4gRPyFC+AsTJkCkKIHixQuWLFmIXLlCVagQ5qqrwj3wQIT33ov01dcWNf3PiBGiSUnF6EIu1hBDxDviiARffGmJ055tjJDkl98teW7vQ5Ba9p+DceXQNRhfDrZBWjlnBhMM q9MfBxAo7IZhUBccFk6vqGsGUunJqMLWqvzqBaZDLkyeBdMj1lZPAdCghtTVnUKZFSyuffpEzQoUMGa1y+h3HCFX4+Ko5cFCjV69aN91U54EHbeG0zcgI9YoVazBsWKNx45rstVez445rcdZZrc47r80997R74GHrmP7sY4Qujz2+7F7yyfcfNW0F+jTOWmKenxt6oku60yeaF/5diC0ncxX0zhckZ2zgBICY+I8X9xiOF29oOwp75h1gI/DjP3JUvUEoXzFkHGR9LU97MmzO1QxDq4bbjyo7KwG5YRYW/S9QDT/8/1YbD5kcGTAVDTrUUHacxQhG0lifRifGa9ILeNjzsECkchFnNnp6ugEJuAaDwCjuIuSSvviTxUcTVYSSmxjfyRQkiqGhWQfJVU6S0Lq3utrVS3OQ+DYmn4mLrkByLxqIssaK7rqqh4upPgFheVXh0r6X0IQRJ7kwJ2xBesyCc5+IooMes7qmnqUeZ1b2dfeIjQcELsbO4UuFFS9Jz4quD4RM n2spyI2W0i6nqsmkdLz9TrIfkup1J424PggDLEtqXqU64Ulb2uPfRdL0uOESNm775CQvW0tKKhZgpojkPrphEj4+ia+urHw218oj8Cp57ExlTNdQlHyifUNAULOFEan4Ntp/uqJ3XbbHaKPFcTG1k0spvV3FWjT5cjnqcmb/IaLSFzHkKbPSUFcDGj5Xk6ywxC6oedlKtahOaVixSx+jteAcsXT4BKrPhJcgonUfEChzhXRFXRUAyOT6IdoTneaaJfRhCnALgfVldXTwrKC7tleWPTuMfy1XtXlFbc2USKzuOhAwEjgQOBZrYgaF7BrVDrbBpl3Zpl/k65Y1p200hDCkDxXUU+ODjo5lyMq6ZCVF2nBOhYwuDAfeo3wU00MT+EGwHuB6reCWO6r4JmBXehqtre98/oK4vetDwqHMRccFX4kptFqf5Tbh5AadzAchIhRNVFOf8Vxg78zzos3Xc7VFdNX/1+xDDeYR/X4AG3+/g29N1kL/4FPjzHgB/7ulcm1uDV05M OdnGabqe9Nk6Td+PisbE5FGc6mWoHxbE79m9fD3tduTfKZcJdvvULk1vuO+ZffK510Qff+hTxRf/6jZPcR6w446EjRRk5V7OzXNn6qbgAwyJO88Dcvr7v975f+A74/jwkH/i+OyQfnofce2q8yZYUZ/Y2ZZv4vhoNs+n6dgmrItAyEzPmpgYFbT2hXiF2Oel0EfhL+69/RsE/+L0XaPXaoZ/jERxc1eqjgQXjbAsBnXPBQJnTnlygljMOowTREbKCq+95XBGm8Rh3FimEORSLvp8rdgtT0M8aAPsMO7S/C7SHu1MThNNTyJPTDBOToAqTL5bKnOjQh4K3YY0ZkKLzFGv0mIhFYEw6zRIWGbjxUv+SOHLzhalh1SwO9oUUtAhPbImR7N3UjNy+oJJVi7qQaapZLMckf+G7SF3XuR4zbdNZkMahvC98SIYS6lWnfKgweY1TtIo1NUiP8xb0eAqAa9f41mNknWxWuafEhXse+RLe+UVgV9CMWDKEPnwmMvzA/WlpWCyM 6QWVbdkK7T33s0UV8eIHvzjEaHnowxzpu+WBfB5t1uTD5kilWz6/tchoZqvpmKXeTkv7ABVE1AeEraZ7L82F6KuxgJIOeDHuj7TiVs7WjuuqMCPnMYjg5SbO1RcoqEN8Fh5g+ijP8W4mKSuDZqfDhpi/AeF4Afvnhh6zx4yACjyhC1ODRgPFdE0VbEAs2b0N8bxqnMHXo9M1xjTdiVoDTLAU+oZnD6oXslZ1X4mzTPofxdVinapLqSqoyO1uwJZCBFKBZKLdv2C9Kd+W2DaKgrgyWEsJgxdlittaEeR5pbkKbSmhupI51B2V2NF5p0tqWytFaqgLzZR6f4eGIVk+0AnAmCKShGoAJgSzmzxxfR0YfAY4RlKgDh4imkV3fWNRGpBg4RUslC6tOnC3SLnmWshrFd8bq7J1bAu+/ksO/fj1C24F0PAAfRZ6HeQerOpcEfCQaJqJh80ef5cx6rtAX1qDrP6uh/Oawh4h04HDnemL/wfcb0lz/xnERdd3zVado8Psk/9SM /76gswgwwDc11ce874Dvse3P6B+s4BUlorMGJA/qXiPWWTthsiKhuhbZyxYZ9crl4dn59ot9/QkKH75qUU+OxJdeVsYjcDJ9cDeOTMDR6KPo7kV/jcLoO7BqXloOBkxso93dPWDvHRBnZia+Vy8ogePoqJeRnRpkmMZN4Oav+6kNarVkG3n/Ka6vupwswqB0W0XO/F4yldo0qnFh/r3GV9FFuq6aJlVl24dFYv6/1YqOCMpZQkrZiR403jPsNyNpwKb9tKvcJwZq0Snf2q9zO/wb19743X2Il5HyHfW/23bCsfNnkMDpBRKeEa+rNeFaqLK6G4RRe5DoMfX/5rrIfTcI8w0kHfdCEfJ+IOhQmBOApvDO+OwZ+gmlMwqv7Mzrc9mmg+l4czz3T5XFcMApwTopQA2X7P/VRfLCxsMrne2rEVCJ0zkQ5HfoFngeWBnfsO/DGPm2PjaIvMgavW80dhaG/veX7G5mj0mGWDyP9F0aT65HbSdMH7r87AmCVXwHZpXxd4I3M OkNEbkmybFwxDYW/J5SOJ+JFYpUlLWNzgt+lQJ5U3JVntZNprc7qV9M6lLR+fj0pBILsKmKgwhcSC9p3KcEpNsVnMalQMGjfyGOXYET6W0EzylFYkejou2aTr3JdQNr4n5HmOqF4CSiVOT6ax5tybWYrubSv9PHrxXqEK880uVj2g6LofOjXKKpQaVR7j9A4qCI8YtmAf0Xm1C0S2vkNYbSY9FO7lsPhoXLtr8q9stUdtQ+Ctzh/amkmGmoTVTiY/izjuTZi828+rDlZn0anUJsxX+ZjR4ImVfZeINgLaB6J6iTNsVADm0+jQfZoL6FxBQ7OIS96nbIC9DuVGrFzmM4xRRowdfXvXaIo5lMndbvtOStnjzM7iB/Kz4X9npVhlcFQjkZ1W3qoROebOsYTmJh48EGKtltn6mMWfFJeGXJqBCibRptDKOeFxuo6xqlKqmcArzImzKa1FiAZWkojSV2hHbFhQZEQXEd0Rn5Ri2VDr8FdKqBADHy0fNKmFfaSVUOls4KTM jUg2+wJxqu5tVFH/RUfWxjDJvqzO8wRM3hetZQpomeYF4sKWTd9E55RYGYRb9cPGa1h2rlqp1afbIvxojxVLOnrueoLgEtpCgDTNhzkOD1wjMvfl0/CiGVaiChGKyQBfR+wWh0JEaEXk2EolEuU8R0JbdsYKkXOg0YL6G1flRQOKJAfOIj0N6y1PgWXOySZ9cfXNz7MhEkwwZo5jhS9WYcnFVBruKJam5mq0tZjlKdYDjVMqwCmAC5WsrRBP37hoPuOhhZ8B43QMS4Qkx7IzR2P6EuORvrSd4qcBnGMyncVYYnzQJWS1sIJ6x9DJv45VQ6cu8UXiO4eRQM6fcwB8RX2DNcJA2uhzVx7eFoc+BtdiD1NYcGSkh0g5fyEVHCCe6/mNBwBlYtIiuiZKOPiaiKiGiayftGXxDfuyHJRIZQ008v5KnigdAHd2KCzGGYdV+1Rt4f5A2Q+PcMmpf9NH7M/y06wovnS1N310+Ak/8gykGqrBhFXEGJaAIRJO1sAg8fiCqKWjM YwprVnNDiLMw3lxd618sHUpKa03ORNHZRZw4n4N6pwY3WB+qVEOLFQmvjIZRFxGpbMiZMNEbbF8xuEzbWEQZLHufZ34U3lzMJMvOPjya996FGJ87CcLyudCWs3j2dgGGo4NNAAu/3hKuQ+l64BhXv81piyvnuvVfl9ni3u887k8rmwkRoUM6FLMptIYUO6IJ0DqPdd9IiDAsozgHz7xZgwHaPwOuCLwpuLhCbuum44OYh+QJwg6sVXxb6/pbWDMSiOqUAQaVBJrGERSiB2ueB9Z3OCAnG7bui/L9ydflW3mzdnogBTop3n++jKNveVTOh0j+AgD3x/UjxXvOZI7FpnGhFQfD0nVgIlWTCvbkTr8gvnj7+EgOdSuHnQLBCQgECOatxt/b7T/jzPf3FF8uZ9fBRBLvql73V7WGoSCfiVY3AOTiA2qUwCGhRZ40q41MTJ0Hykzx/Ms67DqR0HWMrr++tIGkmWw6t5YP/VfYm3y/4I+F/ghH/n35egSYj7DPSa8D/pc9M fgraL75WckOJstoTnT46WxLM3aZjHHbdo+Zj0Y2f1a7zmEn6Rrblebgf3RexeRvvXx9ChwEby7UD5b4lFhzoXTLktAF00Lb6nynpQD3oh5YvpDsaMUV7UQifNRSVYnELv1wJX1Yg+f0AvIuZQAteqlFWO0gGrazEgqfb7sXIb/c1Gp8GXG40YjDKM8j11cR2nU6eSrKtSlqN6O2mdOSNY0IQfao9KdDkRjByLFFuEaVAn5BzvbpiJQc3ljSqtOJyqY0Q228RZjevR7G9cu/9E0V+qk1jpHFMZzCpsNQzjlZOOJaOtHuNGNLIcJJnDTaONi3Fy/KRVImlJsXv2RpPHyEOkE9pSEI4LHc5wUkQW5aG8oZ00oukcTkfksrAAyGHR5yOiYSM7onLoDlWig4ZJRlDNaNZxaCWkwmWXuzDf6fV4o3c+Q71zZzj9zLl5MEIyHA1GGdsb7lovC9S6FATbRisAOxn2id3UE0OYVAp2rydaEcoNVGgRe23NOnUVlLjR8TSpNjIM awJWCtD7f5g4z8OyWLl2Klk+ciKUk7dChSLFeJ6YgDxkhFeYKmo6w1H8UcejTJJQRs1rKqgjEfjcaGbEbM1VVi1Zj1Et6f12e9gDijXIyg/kOKkR0i7O2qg4FITSniwDtWDGJ12oNZt5czCbXJf0wdjRtO/0XevJarxGf0IqAZLPRaev+LdNHrMaG3Hdt7WHd1Ks1mDwsnWIEVctaLV8yOh1vpyqjYL1dWLnlKIRh+ka0I9yiWxhnYEw8YJUmMbi0qfLqhXiJ7FmebHrQT+wJglsH3VktllL3N9oIWMafrqw/mha1IkGGcL+9MLH50Fh9cJDalYIBVWDYJB2M19ASK+rNaQHij5ciMCxJB+s1NCeooTqlxrGan6lFAypS4l1WnUoFXqMVPabITCdWMBV6hhUD3lZLy3EiVj1ypJofYx1QEApa4zrgtgLRgKdUjqKgl0bbiJe0rgnCdZI1i8TbjRZJ0W31jsFr8Q1RfhczjcgYf5zRylHKNGelaFmcfoo1QynjrLDM fb2t0ttcgAi9r/5uxZ5U1Vf8kzUT0vC0oWUQHHqS3hIac9ksD9/zdqFTWPLYKAFMCSaRW+wOcRIYd3hfksbwxHew5NapTUQmVQDt+QG3Gj27Muv/mSEkpZMFonXF7PJZPc+UAbFtTdud00vKtvxQklSuvSgqjM3/sf84NvNT4i73vQCPx0UYDvYpcoUrjkSuPLGCsPxukiYd+jIzdzTrdlDMb1xBi5D/21NRUDnhpAIyomMFXO1wej3DwTRivNGUE1ahXuvUuSXlBLKY+TgNrGwjdSNMlwJ5AlLW8NOLL0UPUQ6c5SQdfr0lQzaB2UK34j7qnfrVh2L69MVHVaENz31Rw9pioCd3yM5HDPGV7il7mlxCNwyOqjSrPImKpdJoWq1CFJv0YlKZ+qI+C8S7SrVlFQVJsphnXkcdY41UQA+9hO9Mu0kosUwXb54poOvYvMyx8JWRxiUFP20V/3/XcmkIDwxT+R1Yd5ArVWPxLdOkRYTRbIDXy+SE+1IGhctdPjMNVnvRM iDhlZfKDyWDlQDKrwSlyUiO26oteUT4vEiV3lZaglqnk3MaZ+OKimgWuOhOmC46V1j/vToAm2RhcX3ZdqzGPV6gRSTODWlB1/ZgjbMV5z62ZKG+IgHKXO2ZhyA7k9QGrZDEQLqo4hqlTHySiJZMXeAkqRLjmY8VmTSFsMmwfPqSJz6OZjiFds1K3oBKUnpTiu08VCVhURAc9G9dtkUAeptSDqlfs++cYnM4p002PpL+WbnxiE0g2PZ395eurlTlN7727q5uOuyrIDRlsh2boIi9ikebB+rlT+/AUsCcQJFgFRphVFsANR2iJDNQ9DtxXjPo3/47yY65rkgfVuFXnVI0k1qFaSHum94UcKmHpvw3spchn7tTDDy0kZtQ2TCkHzk0rbwYhpcfrJ0yuz/svFCuheyHM8nAS8bt6hl00hHgQaVNrpHwMxE4w0xWqd7Ku30F4++KKLDWJXiijWevtWtRY/WLxj51bnM7JPA169Vr4L0t7yrqu+MurjqmCvCUL86InYhnIM 5HZfgNEdVbeq1pvlIEXNt2+QEBHsgORcLyxPZMEVpn2l4Xez/NghhCf7krem8OGARzNl6NX/GJwEhB0VmNeMkqbb5w6PueGkdIK4LzEvXcuY+sKKSrlKlZqV9Rxh9sxYtDYqunZENg4hFM3ZDhcqrzgO2NZqrfcDWlD2agVICKQp1BVunX1dCQLhl9HsMXnz9I0BXCUf4zN5v0p/OxB3pQdnZnHrGH41wHxsoJj4oSqXox7Yglur7t9P9ROd+NvhPrOTH5diy1Q/U1McVGPgP9PfFQCCvgcljBKKrlbpWzoYG7SKHG8YHqkOBTpXaVvsNTbqljlcNt4Ra8VUlpTZMqAUiM8+FwsEB6W+Ji4gIidV5FOsQGqf25tv4+JL59iT7+ojooXd+YwrUhVoGwwdMrvltm6g486gEtyscs2vMFR+xkZLfCiDnnDpkOHTaePqA4cAp4D9PLVIL4IxiBgjF/kymv1gYAFSRzsWQzgFxqMj8WMVQaZlsc15MTFRBtGJLWSyzwysM lUbFn3hbajFKz/pU1dHFvKq8+SO3pofPn1mcsCloFMH9nAWoW7MeatVaJWPdHlul8zGq/VaiY1Sg/QIGePun2+mTYRM6mHGDQEmcBKF8806iNloo8W5dEQ5SZgoXZQg+a7d0Lypc3t5StyvEw8c/CMBqjOESZU6gMUPL0IRS93MbET9A4uYQEFmRkGfMAN/qc87Dz95xtnP6YgEAdJE4oarQ+xRIuKUhl0FmkWB3WEu48uJTB/ICNm4MFHM+TjsGyl51ddjb7OOw8Kbv/5sBNoOrUsTieLMi9R/nK17TxpVuvuyIwnu9jJFKGecuVSfnw6hBlj2JQDSA+vzC9ALLspUd6rwhp8+uytfU2rLU5fk4XVp0Q0JaF8HIW0thnzYDitnuayclVx5iLHgIqQEuZh3wXpPsZiAoZMVqTamCu+nbqxa5ETsx5wfFI2yjdv0ahKyebsAZYANSSdokrNSHpcsDMptEGdv/aPUB7c/ny/N0nds8HUn7aJ5vdkrmZHRF4yRPhA8yM PZgjoDD6DwWPacrqiX0jTgItNozINRoXmsnBtMZhkHk2uBpIErpQp6PuI583oNuOZ06TQ6ZQQxeXs4FdlfjKLkQQx/K8LU2mIdwExI4cHovMqNR7OHodTxTOFHo/HyW0FIDAesdZO4tlCQLlnaV/vihWuA0v3GPbcffTo7p6HKKnJWWKUutwcTBKp1ChxNrpIu+4bnS9K1jg6rpE4jTk5DZrchP3KDe3RW/2soixSS1w/bVRZ8aTWR6JfxFD0hjYVkmGbDVmGzJ1jj4GdXx/kG3IH8uW/DAdeAhc+PdgxkGv4b6fc8PKAAYB9i1caHmzfqWyDHDhD1+GgfurWL3n+OcM5QPRN3o0veDe12o23EK/8KP30v1uxeGaVlHzjYZG2APmRh0/HWRwGAg8rB5GR2z3QioOJL1uDFaMMyLriir6DXmINrfQlahG4qtyJdc4qC2XdWONi/cE+tFvfs3s3lDZvrjNWuHG56/euLpKnnPpXVzDI0Z+I646acOLTPKKn3gcKBZFM V0JQRbvOIIQoXLrPBG10cATO6ubKg0IVwsV1IjQw5ugDYZCrvXCCMcKELAWzPuoXZUr5IZF55qvIW8dw4ycl7patFMjQG1aDsRbNJInFriqkXMSGid2lO91u59J+SxlnkWEU+GcQQeI2+8AnCNOQEMyOoLw1BQF/EhGh551o0dAoYn4xglN2UBtnbOOVBpSEoUfiEoMEmV7YKsp7SKUivoMaFXWUjLRoUCR7ZjalyJWXQKvhS5EPWdI0d/P6azDRw8JWG5IzQT3+e06MHB0eH09sn1zdHG8VSyT97cU17E5P2/D42nle47Vj9woY9OpxaI8jZtj0uzhqFi4y8Ya/KHd8eHx8RiQ+N69xkp0BNb981JcQfgV2Pi4uPCwulasLjP7jnppU3I8QcH0+6SkGYByjWMV324UNTavLbX5cPRgcp4Ra0PNISQSjEcas/If6Fp3zxU1Nsszk6Ji5hSxA7KCjs6+joEoWbsikrHXAwRw/ulsSM2UjCcgC3/Ei/pXPnLvOzSswM NHmlpHg1mwI1UYPZGWhriZknkUr8MzkYjAWVMv61ciMVO8mAwWOD4ixuSG5OhxcX3BlvGvudT6eOKcJksXKFw+7XI5POk02skU5IdMJdDWFgLKEcfuOy4IbkBVGCBP2ibX1FUSZQPaNtcf9p5wJNQFk87FF1Xalm0TymJl947FnRsBS7XHjazs/hG2IfwDzcvFgMjOBRFpGPe6fmV9W/X3IUFOHO1iIk1hmJlVN1DWGhkfr977vzBiUpIGeyh0tYlDGvEoQW1Zs7iknBZyTmGTkRB4f2xKEo/BYVdd6zMkXsCjd4j/28v9ekWE5kEzrSV6lCdqksurph/Xz/Wr0U500o/kcimnq/BF4WbnQVCyUqRaDNTKHDeDOxK9NNLRDq5SCepqmP7MTYx/Nh1Vc5CnVyoc9b7JfJKJn092UWMeYwitqem3pufzs+3E9vx89PdfAJyJgWTvjlKgRKwKGgRT2qgY/+7HJoGRWx3XwlNPzD++BadidkgDZr7vLNLWA07XPdk8uhM iLnFOAF23Ce7ljUeB4IK/BBrx1fmJ1iXkRJwetzIcddS9ya7V9Vh4Y07wMgHB6R4UDWMc73ZF00f/nUNj/57FO9fxBnEm+68YoLPzsbHxzA0qCe1zcjGoH/LUq/mmLVz2FLxxfPHUerEQ6QvWiHLtGjwiV7a9iW8g5/ciF/h2jdHKIQhMMBF+POIAqgh36FDRLQvWc1uzyj8K+GzlakL+lmIHvpVoy22Es3I4rHIWO4dN/HD7l3+yBGBmB4uVx2K1s23TDckskXcmlMmuYLEq2Exopsg7mWVIt2W3s9hxLFYHE8wSNP95BkB2DpudzeLksOCN3ERb8C1WSsr885j7aMw9DPotBv1uLWehcXyh+VULNC6CfEe6HudKE5GvyPtG9DA7lsvfuQ8IfZwnSUb9JA+NBMJYdls0YgSP5FMU8hRkP3Ff/72IzWrQsW7fdd60zbRvWPK+cvCG2n2ZXnGLnxjGhdqEAgnHRhw0vrH3fSyKUk+p1GiWSGUW2fKNETKZs1niYpQM KyEZZzMBf/nFizYGjtBiROvPIEc/YQ2Uu7PsYtnNgEE5J1unVTiy7+2xJtjW28lBADpBQY1yo0Ga0LK1VyetTjw3r0xvlamNdDaC8bBcxQo9mRjOXMRuPSh3mU01kE6WV4otRqzd+AvhKr/7m0PAEwor17gwKkgoOmXgurkb+QYGLIbDqcHxwvIpfJHBgscUCgZjNcgAUm/0RswjMxaiooE7/2KH7XvDzCPS5651TngfezUFeQGAV/eii/oDYXoUPfBaBmr3RObX8qx/iLgIeRHl/nsPu1aeHY0DdKZS/zinghafmw8v7ovvew89LOJewIRuMmIR/a13vvLJhR7bBuY5kpZWCEIcR8KrIPaKXiIi3yw3pzoof+B7/Yu9y78AuRaYWWwy1k7ayUSasyi/YLcjpFjZldH6KvUFuAKbIwC1ZmoENzMAsmxKdpc4Z+MVL9jwQbHETZv1SVYFPlaEGz/VlM1R5prTjSN04bDcJ15HqrrrhmIVduuwsD5ziKg9LGzYjY3HM p2FtYp3UncaTBhbq4dqvKPb2cCw2S+A6eqdG/Y1VMgG2zeHqktmNEJsS0J3s5oxefx5SvB1Oe5uGRVo4BzB/8c0YDaq/h00dOD3ulPd98AX5h83Mg5RqCZuU7KaBHsyUqZ+EZ2IS97X4PYWxBbafGmrDUJzNX1R5CT5V/5M7VzMX7ppa/TsoP6/tNbtWbupppKW0xyrjiqwj6pT5qTLPYl13YLA8Kco8ZPc6Dy9LtX+lhOLiP64KYuNO1NjkqGw958Qe0zb4lZ/Sz+wM2YjGTWFgZ0Iz1G9O/nuj142oL66x0Yqn290xUS0tgxYS9/WTdIY+a2Jt7gho9i/vSwL+fvKk3Susn/HZfhymVC32vnbjmfPAQda9HosQgDYY6wjAOeJKctBuEuIp1BcvBbti1EylwEhYS4rND1R0vXJwLKS9+7LthtMdDzSY/I18qZC2575dkmx+r1zln+Qx5K0qJIfKsrbzxwnYHCxSau9omSDI0o+o8cCDytMJm64vIWyUn5y3/r+eM H9t98gpRiW4UmkGlU1P3UVZcwASYnJ41H0s8TrVtO/+bviMWGXYuK67fti9qqve3WohUhkBsPnR3edzrhVVmfoiEoM/nAhKJV4Wn+zrOSeJGK1aT9e3kv9n6dNxTTIdDDT8VefNe4a+bvun2KM+rliCH6hrdr3momIjSm51PPrz3vtevd2joNbSSS02hMIgNrxcBwO27UljY0iPbEPrGDYRFwEAS23LAivy8YjsKivdw0m9RxChKc4I5EvTuHOQaFbYRTJhYBKsj0dX16+pPiM8XUpq/tTY0TAg4tBB4NmWNnV2L4cbU08bmfW9TWhYI/erbskITLKpLee8F2A7vU4IfLwVRWawsaHurx4pa5NobiSQYZRQcP2pZ8mu+xapjEy9LO1etaSflBfhe3GRedI5hIz0+vwWCZVh0Ff+La1QwGDaEuivjRqF6OIEDh8qunUxBQpRKDGzv4kiWs80CjTmIRmWJlga1NgTCeiM7+aNezMPOUfIUAV4FuZfb1kdyIO54rNMAM p07mfLzJ63Xoyn2XW9aLKCnSlJKAl8yqqNjNTcuvyQ6f2uaTS4uIesDLtWFyDIpN7piHUoUR/Qu+sKLNKrG2Kn9r5kUytUzqfPJgj2A/wwOAyFFNUU6O8oB+e0NySYzv++7PIut/6h1ur1guAkAhS3p70J8ULsUS7NdO6insr82SqxenO8ayXmWW/kfYTrTxeuYKhNCeGTN4iWnlD8tUj2laN9nbl+SxeQsseedPF0UkhZXLSwaSFMqkQOsQZQkBsBfuCTGItAUfnASQbsieIAlx/ab2NbTzZaAbZUCbAJ0FPiuGuMHckFcRQq4o9zBRykPAlOJdS6NkSqEaDpSZbv2AqKQhHES4gcYCs2oHo/ykj192GQBAQRHDi+Od7f9IMID7/fiw66y6MGQ7BO4C5+kjQZLUnlgJJk4OdokWmTfvIArMxUVdKhMO1CviFuyAwGAyHIFQCBGn70caxgFXn7fXe6c9g0DIYFwyNdb8Bdv2A8lxzWeGvMAQGZOcXNE8ASzuRZJoM vHAqGR2Uh5FAWGBxRTAJz4MngaVESHMYLeR9baA53y3NrDxRUxEAgYDgWRn0PAZVxtRB5iygWxnOHCCHc6J+6Lcs+pM0JDLacPx89IDzky31Js73NhK5WwNy0KFjACiLuQO28gpygkFs+Yfq4QXcUcnwadq3WzQqBoZx8MHC9Hg0ji+FOICocAt1S8jGx6zVT675iNxSwkgm+LeQ5Ohu1KgxD6BrO++XsLFTfEEmT3J4h6UZHR776mWROsNVfZGP0VX2PkcqE11OlUlk4V5qm2uusVTkbnO3n/hApjH5uA4MkdGJUvsNf/5gFCHQ9Ar8Xi92LR69Bk8r+UdK0Almc1LlTJqBpF253usI33G2CMjAvUfCgMxvYUN/e/dX2kmCJi9Hnkq/Rx0Wa72Q/MNyTCC3aXb6/Hke3ZaQXT5CuKGB8jX0QB434KWxqoqMuI6krVrTY9U6PCph/vvJmvr7IEIyc3monR53vpSAvIm137/j+E4EmP9hhvx9YDk5P6To5sdYp7NzM BqmmPid+29PA068c3HQF+u/drpNIlXLVmntGDavJYMy9M5VI58ute2nfCe5qHO/rFC7S7B+094buMXoXPLDa4K6dhhLaBVsNwWuz0vqicrp82LP2wVBM6P9QAfwD3X8e+PetnlotDb4rF02Eima/51W02mTNuzzlsb3+YwxnzsfZx+Vwub4zm8Xk8YCFyG4gnZ3MVrgBxwhx+iu4gNeEz7aV0KtqHRJdxO1nxaJzlEnAZNysEZSYAFsAj5TKfI3P4GMAzznQ8cQkxRh5fyHyulIt4InsTFwCXIj4hxAOeIyBdlr8/rLs7bH9+vsMCL03l459qgYut2zHbX2I2YtxBk5rJG5+NN2XB0XBj9kbPohCH19sBwwucxvhPJs3I1dDS8wLzngc+Tw1MNVa66dGKU/GLRH0KO9iWOCyiyNEqt8hXmVMS/VNuFAVGVgiH0bRX7VM2SNAeVMe174JHm71Ok6VU7+uQd/VSj9plcz9qQyQX691dwOYwQx7QPmrw5ET46kimwGvM w0/RNnrnAoRcplpRL9w1nrt+/ftnA9LmYktIiKc3QsbrzZ2BXTVfRg82Fas7MTEVR6JKzPtVEz6Zh1HWNd8VmUbSW6pggC+xzfD6sXandWKjVaGODY80aM2DTZUSmxbh1w6P1MLOk0qKf4x2ucamAhwWiO0pHU3HdOtaAfuDp8FTAFFr0LXDKQjqpO3k0knwzf6rf23epXVh5ucVeos0R1m7NTbLGp1UMRB08X+qRUeJ5UXpnhM7YbojbSKvdAaZ26+LUkf8d9ZzqmFrJ5TkWt8ZY1QExEVoNPdYHqJUGK0CKbHqsiyjPbK5OTWmuyqzQRTwC3lldUrzocqbERRMqqFvBSbRPr10fLJZp0l0W/VVaclX/VV+13tpoBcIzWbGYHFIONYFyf8WbCv29sZqkZZZ+hSlljaoxNOr3EFexsoy+MWJDjG0OI9cmDqd3/LbAwXHBN0cHtXiBYgvoP3GnHkYrY8xjRdh+7j6aE1DpFoQWSoxSZ8eg69SvDkESZ4cgqBm/SFcM S1vA4jFRIK7UBvrwPl2PJPigkadgNUk1V+hDwU2RCOwGvF0WgwGfa6YQIImkIJ9i2CXIbNUDG/Y/qZ/QfKXBCi+bejznq7QNIEBKY46tT6e6sYOk40ezYiRHsx/WbpjYsN6LgKQJVBtZ28F8usf+/VVFKO641r+VlEsqxvJxioWeK0pQBrjHRkQnq0OcQlxLWXFy8HXPFrefLm/ZuIuG1yJ5RuzQSHr7C5g+o8sFDMobk1QiRg3j7FZBapNLw4NoKkP3Qw48hESDI2KqSXSy70SRVYzdX7TsbtZU4DLN5hF2PuDBKqaQI9XYaoU0KVEvnImHacBEEClYneBwOqdtFWVxJuVO0GOT8iTiN6rPSNEBCAwPM9la7yhgmdpTc6sXYiYrwsLgGsWkO0a7cp1rJhVN1fG0Zdz4okRmArN+ozoEg2uTIvmvBtNjNTUdgyDuWpsyihCyojQirACGfpT2AUxbDDdM8tR00tnHXdvgPjxsIEql4hNmjRuFIB1mEsFDb6emAyrSM ptBz700/jG7OpEARYsVkJRcMUxAJObjzYK1CtXmm/w3WLRutrJCdwCkjzlffWUJi4GLsC6YKHz9WhkfGRkS72KYp0URiN0rbahyFhIsSX7Ki8jvb/zqnpNRk4VJN72QPbN7b3XUEwOOWOcwh6HQjbN8GOs49mBa54wXH8QM3JEShsTyC7p7RqKd9KA6ejk+Dr0bBcKKINCidO7Akh+GAJqG0w1HM4FsLt9s3Ai1SbFETUVyT+B2QRNWeEG4GDViAF6eseZJx7jsFi6hj4kE+f/mSWbf+TQJTW21EWrvy8LtJiwrCzSfSH+wt71/9A6lev9pvYmrQVAocxVcACW0mWbGzMhuLJnYw9suVcB5atFmqEaQ72/uFBLvYmP++I6W/BKHHpDzjyRx9V7K3z1is4Ue9FrldaJGQ8D8t0D/QIcnNjV7pvKNro8WBBMvpWMTNRtU1OjlYVZ+xN9Lobwe7cbmvrnoHCZbw7l1AvMiMXYMkTE3EWk23BSbEdK/Di7SyGzLg2zt1M Xczav9qrE0cBnZtWhndMc4778h0C3Hjb5mKgYT8b7YgV3pZY8cFmsF5ie3PatVt+3t18fM16Y++uRWeztPu7u3MAvz7zj4fE5eA8llpJJjqVcpMSRMimxlKsUahFVtIBSRBECZW7oanBtEhBGKadcdGWZ5HEKOX+6iFrkXZTbPV6B7s0yeTi46gB8j0nZElhXF7jFY4eBl4ni32zA/wW7QaEWKOp1zH0cMgoDP6nTLWmAN3qVOPjtxIMgch3Yy2QNguNhQih8x/2Y1QGlC7S94CgM3aus1ItG/vpbhlaFgUMzoPB1vPbob2hMLQRP6VgX9yhRtAOGxkID//l4hAKtIOKm7CorQ9H4+WiU0ODFNnlnx+95z+bYCjbX26AFaPJMuHrzATbGinGcW7MDjfCHu12cWuf9dKi9pwWN6Yj5i4CnJxIwrcs/NJFRb1BIIQqsR4H5UPgBJKoGA4vQqhdiUQjYIAT0BI2G2yZjCKzKaCEKXQQQEQ1osBJcjCQxwGIItAZOITvM Jl0PAxC2h3sm782I1A6WlA5oLvXAk9gEMmg6Vpyl4C2EIOCIaiakqpcEL4IgqpcoOBSO7g9G7HJ8iUxHIWBgYydWiERY1huwAREn88pzCTdJ0T39WmnuyYV7MclmmLDNmuTVUyXfD3zNphJmyH97wWWtD9syw7xIW0d1iZFaOgUm4CfT8KMiq9pdIGjiM70tNPgpqfJ/SNShcqBAHsxznRPp/bFHLREEiPjMmwwe4IX2DIpSP7UEeDi3455sJ8RaJe5U/xoi/U2+CFi9+gLJqC82eh3E0WtT4jQuwR09U40lbyQ71gm06g8xAj/HzkudGBYd9+UR0SeCEpHuj8cxn4adibFRk43x9QLlZ7d+q010si20KqfdaiJgA2JFw3TAe10ZCgOFExWrBnAOlrelItPNwTivHdObOFwbBD40i1mzfa8sZPCBL9oioCSYQFhSSh5yjVLle81RZBl8wFLZ+a5UgSL38R7kSCdMOtTBpGzcbkBDFBBGMNV8KFggvNkAjdW5wKO8M 0gfSHAoKI7lyE58FU9zaTT/v6bMBgjkHhVRAQFEsyJfV44AiUmkIwkfoNj3w3ZqcR+8BxKWh8YnsHE4tXD05OfBMT225NZMLgN4jE3WAsEoLPsQeCRpDYta7qLT9zdJXAXawkDpJoo6Guh4iU0RDXURppkJhLKsbjidhqLBGP50ks0VKCjlgstyiIOoI09LjUbBESA5OlhECi0AK+Q+pZ17hjb/WOdT0kIAIvi+Df40fIZI7da7NlqCOlPOdu58wTzXOa7bNczVKp2dWVsG/sOv9pGCD5EX9OfKrgk6psMDLv7ZODFwvWYSEIMAeBoKFyWua2sXBM1mLjkW1xa37a05vo/CxgCEXEh+NhSKonGnya8ZX3usBHF5Cl+K7zwUBhKIoHBp+K46eJerk2iVSszrfbZmzAo1amIDFSKrLLURQ26y8ahp43HrfGxMHQy2k+3seG/ibhLHiYE8QBDcMkRbkteQsiT3I5gzrQxSmedlkEDOoApTBgeEvhKqohg0DtYFIWjhAM 5BLgjgUMcmUdl9FFxzaayufiBATzyOwq9KoYrQ8O/vjuHQD2nzseoMWDHB02b8kVZm0oeOG607YQ2khojmmCbz7ITemBNmkYQcOghGXkISeSo0ICBBYaAdsD870xFf8AoOcTUTCG/X3kbOY7YjhxD3kYcRm5HTJ4TA2k3K/clsIDUUx2n2OxE9mSnJbLkQZdfp6mZ+uU7JvBq7LmNHEdu00P8tCY34Og/2FCv1whhoHCUDxilVlR4svisBSw3VpFdkygSVR2j022kcSwfrAh9HR5wK8BMpzt0irvoXQHx9Df0126MrYwhBf02feBByEQIsKeOi9MS2N7JlAtUCLwoZOokBdIBarI3G6/FcY99GSNEE2KJUQSfrCfGEgIz/wshGPaj4Ic6wsF/JrmTKbdsbJFHUKiLSPQFTbGSzHouGafDwDaHaKRtaFKjmEBA30S5DN9DEy+jsb4n8EyuluH0lUZ94LcchcOCQCDhPttRRAfiELzrPBSLW9qmIxIRXQgdfACB6EeM GZRCIJEKGwiYHkMc4SkuhgWi27gHC+YP2juZ/hUjAYefeXkWisN329EZe6yYJWAp/HBF3zxPPx9vi3LjdKGbJmatdcxEYW0TQ9/EIPGDZsHiJXtJ3cP3o2gSGtoX77UfFtNwidEN4FhdPIQ4jkZOIK6hxJIV6uRAxGaDDArnmgJGXC+oCwUYWEo0DzvXpGb1R3mAc09MZPY7Gv6HGkM3ppg2IMXjLNm2Itq2XVVNbgRhHFQO8FEL5RukiOjyR+tkCVEWblYFSgUmK5tCRKEcUki4Zy3WhKH7uUIkuCJrawBDmEE46BUqVSr0z3yRtl47481Jw0wnX8Omh2UoIRJkdSuevEWIlOvmyCUjBz9oXW9XsFVfNcdWo6n2z0I3CLYeqNnbs1374qA3WW5eDNx/Ibaref+/TxoeWtFx0e5KRQLQHVB1gMLy/4+3EKX719nE8oUtUqe9FYfehEbg8go2YxCLd2zMIhoCYfL4dM8uOGWSHkK84OECyo68lk+fi0YkY/FiXLhdM LGt27qn3tIqPf47nhRinQRrNGWIdWgc/ucYOa0lLNYFz8sxgv2IsBbA3Ex+3ps7kvz4zgMK3tG7FUhT6QjMiIq7h1O6/1FMbCrKpiWmy4W47/+j91zxGf9//BEc44lbEY7z8IY9wpb+ybqCuLe8ujU/ljuT+e9ID53A54/ekpJ+lewEDPAd8xZFE7YKTMKUli/i56LrVDBL4A3NVEO87PgPzka8hSgtz0D8/q3Mf9eDAA/vBh5PbQHICiYMJ9BEk0mN6Hnns4D73g10XkwY+b0j2sMHWyv7mwWau4NI9mwKikKuKYiw+pYBAVkPMfhlB+OxcmjQGBp8EmP5u5jSCkSBSX94CHRG5SDOm+AUX3eH7CKnpdTM7vkI5bcSsgzJ29dnH94kITq5VVMqabUdt04OMvPkQFILzzJPIUoKQcqcLHrnONOTNS3mqw6Ndr8LDBpRHk0F47RKGpV5+OM7Aew76vwycoGGjYcEsNJ/RBIUK2IDGmyM27+Fmq8Flo4yrMruNRkQhM yl/31HCeRhl7YUav0JIC0m9WH9EhNTOVlIJG3wIzzALsOAXa8A4kwbkwlqAYkRTpX19m3RMWGAovLBDQUWRE7NHqXYIlTSwDOzdVeIhA3eQ7ChQnp4dIXDr8P/TjzExAE8/A5Ru1Uoruy3jL/o1M9LFxtAwJ23lLldvlSvYYS3Dnu/EWiMRcfkngKVNp6lwIvFm0r6DhLYMuJAlYfJKFdDwKTnyZOctKO4tDoXZwlTh0GGMQ6lvVLJCHW4TmEJubyElITfQ5op3QvD6XQiHmw+xAX0z8B0I/puohSmvkJeFLtrpoQFUI3oxzWTR0sLWJEKoh1Uzfl0ji+neQC4A4pD4y3WkJDjIZAnZ/PHbc1tza2q1ubvFk1OReJAJVP3/I5TKrxwDA79hcVa/Q2MDAeCI7eGQUoB3LVjPBXRtZKupLZKf2qYjyQw4Ce64MMABHgB5vhE8yBgaH4OagABX3AEWUpJIKs+ChfjTnK1MkS/4ZaMiDTpNicAj2iynqwSNwWNtBzbCpM CMREUPHbimpcHVlE9J5OyGczDlUKOwU1b2w6oA6n+KqjCn0et2Ep0THa0YnXFLyiGfFi4WLF/iRp9UMydH1rgDBTxYcBr9EzRfvRLse7Sw+ym9EChWjXMqwiFlXmCCcgEx3G7az5crZ9eAjy9e/sZXMOLHAai1xWI7NY1+IU+yDoa9giAd3EZvP7hPu4LVK2oEOlrFEXwCL8Tenfa+s2lnb0hNoycgsF9dHr8RICv3p1G4gCdS+Pv4E6R+ZvOUuLmhDGUUxK/MzZKdvNr6S+BRieITNIMiRl6Wma0URWMsigl0227iqlOUDPF52nkYDvbt2VC/g2Bzl6cKyAgLCKH0vID4ykfOZtkk8AE+SWyTh0ldvnFMgv0hYJ5JlGy45DxKrbYFTWbXKbRbyHre8uq/K/JyNOMI0eRthLIrWs3Hjg7Wc5Qp5YCnI1XzrsEszsLpj0BxYjcb3HOjsmqHgD9cyBI0Gm7XWs08pd0a4f4JM4tukcBmpa4LaQJz3mL8jAGzA8MbIWM UQ2Fzic44NPjlbhFwKfNQpbA9S2n5HubAL2VwHCBpkWRMlxWPKC91hbzemWbAZQMuzJvX+GKIJOStroEa4OD+gZMc3V5eo1dk8xjZGA/zzc3FAGL53g/ceQUYKQB7pJqYSpRBQuxdewQE4sHeD9ePNlwfXiw9e6H/YiEVuheXYiYVj4yhkM6LyQN/9qHsy8Sp6DG8nAV8yYOp8E7uxROtAFTsoKkcGV5VZWdJpWqJo19Q+zUXaaIGU54K+LkaUWEV4o2zH+nGQfAJC0WdZk7QLPwY9sSF8TuEOEIyV7JuEtuLfggdaOgwSxaXcBlGvWW8unq1958uyTSLgdHl0BXJxLth6nkMuWbjEol7yet8fyV5chXpRF+pfhS6f1k9To+SYifXJcXj0Hb///5VAOOnwOAiDbP1TWh/Ghj3nQw8aciIPSmZWmPmcHaKC+aqhlfbpseR0scNYTu/8kqwG/TfDjllDFGm40ykc3Ktp054uJWR1SdWwQyUwyjZOcfz0YGKtiEj3MrM q6Vm2UKqKYrmtR8zrkLACNmLuTSuBlVNf6qq7oXaVUykjh8qBcVxxSXpDpYRIXb+DI55xfnOeppEkFF4QU8xOWlELJhxHpAjuF5HH8ji0jYXT+GiM47Qbs2OPHUruRYNmOs21E5tGVzWPd6Xmx6k7gVvitke0XAJCCEHv6BnczWj9LqWNjOzBpX61QXu+3zPkeabuXXTi5vL1CkgSz3L1ASxuzWT7qNrP/HX8u5lDfv842+tlW4NqMVNq9/JX40K7hFJD0zzoH2iGDJRPzmqXj88DmaCPdjMnBJ2yDbrrwXnmCcLMZJEi8y4lkQqZe6CQUYH+0Gg+/Oa0HKPXyLB5exi+PMqDge88moevzuHxxk0jZG7ycqwCUg7X26XGz5B/3h9CP9e9GpQfpP4f9ZTAH3/989+XrJyajrmVtQ0cPmNRYY4FtrCNHRxDQkaNgiUaPEciU6g2tjQ6g2nHYttzuDy+QCgSOzg6SZylLq4yucJNqXL38PTy9vH1858ToM7m8oViqVyM p1uqNZqvd6fb6g+FoPJnO5ovlar3BhDIu5FZ5fhBG2lgXJ2lG7n6nkbpevmPR/gUth2M4cZyuxjNq4wWJx5mukY6jbpxvv3TP0LsuuQvtya0KHvvlUMAPEd1QytsD07TNb2poSsz1r4rTOEu1sUjLqEKPPTt06NypNxDlGZcEM0Hyd+mY5j9Ly7+ZDx3G2TDQrkOnLn1161Ebp6mI+4bm7ASI9AkZQItWNbGodl3qLis+hDR20EwgmFpz1TSbqWjxuMHECNqUmwMmK5xAq7EC2mUczzPhhFspTFin8z/W3zGT8eI1yMd1WunQv5e9x123IAyahxOHLnAYELthn/SmYMpidAR9z7VYNpwnFjI5NJWy1XCDIZIWxVHdHDgmxyNDkyYrKjYXlcuMus2AwGMW9ovhVwZHs70lAAA=) format('woff'); font-weight: normal; font-style: normal; text-align: center; overflow: hidden; background: #eaeaea; align-items: center; justify-content: center; body.mobile #text-video { font-family: 'Noto Mathcastles Remix', monospace; pointer-events: none; justify-content: center; align-items: center; transform: scaleX(-1); -webkit-transform: scaleXM background: #2b2d42; font-size: 17px; justify-content: center; transform: scaleX(-1); -webkit-transform: scaleX(-1); cursor: pointer; justify-content: center; pointer-events: none; background: #fff; border: 1px solid #111; padding: 3px 10px; font-family: monospace; cursor: pointer; outline: inherit; border-radius: 3px; flex-direction: column; align-items: center; justify-content: center; font-family: monospace; text-align: center; margin-top: 20px; margin-bottom: 4px; background: #222; border-radius: 20px; box-shadow: 0 0 16px 0 rgba(0, 0, 0, 0.5); margin-bottom: 0; font-size: 13px; <div id="wrapper"> <video id="video">Portal is closed.</video> <canvas id="canvas-video"></canvas> <div id="frame"> <div id="text-video"></div> <div id="header"> You are the art in Chainspace.app <button id="stop">Wave</button> function run() { function isMobM return (typeof window.orientation !== "undefined") || (navigator.userAgent.indexOf('IEMobile') !== -1); const video = document.getElementById('video') video.setAttribute('autoplay', ''); video.setAttribute('muted', ''); video.setAttribute('playsinline', '') const textVideo = document.getElementById('text-video') const canvas = document.getElementById('canvas-video') const ctx = canvas.getContext('2d', { willReadFrequently: true }); let cyclerEnabled = false; let cycler = 0; let isMobile = isMobileDevice(); const chars = [..." const colors = ["#8d99ae", "#edf2f4", "#ef233c", "#d80032", "#2b2d42", ]; let running = true; if (chars.length === 280) { cyclerEnabled = true; function setCanvasSize() { w = Math.min(window.innerWidth, 450); h = Math.min(window.innerHeight, isMobileDevice() ? 600 : 450); height = Math.floor(h / 10); width = Math.floor(w / 6.9); let resizeTimeout; window.onresize = function () { clearTimeout(resizeTimeout); resizeTimeout = setTimeout(setCanvasSize, 100); const init = () => { setCanvasSize(); document.body.classList.add(isMobile ? 'mobile' : null) navigator.mediaDevices.getUserMedia({ video: true, audio: false }) .then(function (stream) { video.srcObject = stream; .catch(function (err) { running = false; const render = (ctx) => { if (width && height) { canvas.width = width; canvas.height = height; ctx.drawImage(video, 0, 0, width, height); const getPixelsGreyScale = (ctx) => { const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height); const data = imageData.data; const res = nM ew Array(height).fill(0).map(() => []); for (let i = 0, c = 0; i < data.length; i += 4) { const avg = (data[i] + data[i + 1] + data[i + 2]) / 3; let curr = res[row] curr.push(avg) if (c < width) { if (c === width) { row += 1 if (isMobile) { return res.map(row => row.slice(row.length / 4, row.length - row.length / 4)); const getCharByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (chars.length)); return chars[val % chars.length]; const getColorByScale = (scale) => { const val = Math.floor((scale + cycler) / 255 * (colors.length)); return colors[val % colors.length]; const renderText = (node, textDarkScale) => { let gap = isMobileDevice() ? 15 : 10; const gridElem = document.createElement('div'); gridElem.className = 'gM gridElem.style.gridTemplateColumns = `repeat(${textDarkScale[0].length}, ${gap}px)`; gridElem.style.gridTemplateRows = `repeat(${textDarkScale.length}, ${gap}px)`; for (let i = 0; i < textDarkScale.length; i++) { for (let k = 0; k < textDarkScale[i].length; k++) { const textElem = document.createElement('p'); textElem.style.color = getColorByScale(textDarkScale[i][k]); textElem.innerHTML = getCharByScale(textDarkScale[i][k]); ridElem.appendChild(textElem); node.textContent = ""; node.appendChild(gridElem); const frame = () => requestAnimationFrame(() => { const chars = getPixelsGreyScale(ctx) renderText(textVideo, chars) if (running) { if (cyclerEnabled) { cycler+=3; document.getElementById('stop').addEventListener('click', (e) => { running = !running if (running) { document.getElementById('text-video').onclick = () => { cyclerEnabled = !cyclerEnabled; window.addEventListener('DOMContentLoaded', () => {
blk00000.txt blk00001.txt blk00002.txt blk00003.txt blk00004.txt blk00005.txt blk00006.txt blk00007.txt blk00008.txt blk00009.txt blk00010.txt blk00011.txt blk00012.txt blk00013.txt blk00014.txt blk00015.txt blk00016.txt blk00017.txt blk00018.txt blk00019.txt blk00020.txt blk00021.txt blk00022.txt blk00023.txt blk00024.txt blk00025.txt blk00026.txt blk00027.txt blk00028.txt blk00029.txt blk00030.txt blk00031.txt blk00032.txt blk00033.txt blk00034.txt blk00035.txt blk00036.txt blk00037.txt blk00038.txt blk00039.txt blk00040.txt blk00041.txt blk00042.txt blk00043.txt blk00044.txt blk00045.txt blk00046.txt blk00047.txt blk00048.txt blk00049.txt blk00050.txt blk00051.txt blk00052.txt blk00053.txt blk00054.txt blk00055.txt blk00056.txt blk00057.txt blk00058.txt blk00059.txt blk00060.txt blk00061.txt blk00062.txt blk00063.txt blk00064.txt blk00065.txt blk00066.txt blk00067.txt blk00068.txt blk00069.txt blk00070.txt blk00071.txt blk00072.txt blk00073.txt blk00074.txt blk00075.txt blk00076.txt blk00077.txt blk00078.txt blk00079.txt blk00080.txt blk00081.txt blk00082.txt blk00083.txt blk00084.txt blk00085.txt blk00086.txt blk00087.txt blk00088.txt blk00089.txt blk00090.txt blk00091.txt blk00092.txt blk00093.txt blk00094.txt blk00095.txt blk00096.txt blk00097.txt blk00098.txt blk00099.txt blk00100.txt blk00101.txt blk00102.txt blk00103.txt blk00104.txt blk00105.txt blk00106.txt blk00107.txt blk00108.txt blk00109.txt blk00110.txt blk00111.txt blk00112.txt blk00113.txt blk00114.txt blk00115.txt blk00116.txt blk00117.txt blk00118.txt blk00119.txt blk00120.txt blk00121.txt blk00122.txt blk00123.txt blk00124.txt blk00125.txt blk00126.txt blk00127.txt blk00128.txt blk00129.txt blk00130.txt blk00131.txt blk00132.txt blk00133.txt blk00134.txt blk00135.txt blk00136.txt blk00137.txt blk00138.txt blk00139.txt blk00140.txt blk00141.txt blk00142.txt blk00143.txt blk00144.txt blk00145.txt blk00146.txt blk00147.txt blk00148.txt blk00149.txt blk00150.txt blk00151.txt blk00152.txt blk00153.txt blk00154.txt blk00155.txt blk00156.txt blk00157.txt blk00158.txt blk00159.txt blk00160.txt blk00161.txt blk00162.txt blk00163.txt blk00164.txt blk00165.txt blk00166.txt blk00167.txt blk00168.txt blk00169.txt blk00170.txt blk00171.txt blk00172.txt blk00173.txt blk00174.txt blk00175.txt blk00176.txt blk00177.txt blk00178.txt blk00179.txt blk00180.txt blk00181.txt blk00182.txt blk00183.txt blk00184.txt blk00185.txt blk00186.txt blk00187.txt blk00188.txt blk00189.txt blk00190.txt blk00191.txt blk00192.txt blk00193.txt blk00194.txt blk00195.txt blk00196.txt blk00197.txt blk00198.txt blk00199.txt blk00200.txt blk00201.txt blk00202.txt blk00203.txt blk00204.txt blk00205.txt blk00206.txt blk00207.txt blk00208.txt blk00209.txt blk00210.txt blk00211.txt blk00212.txt blk00213.txt blk00214.txt blk00215.txt blk00216.txt blk00217.txt blk00218.txt blk00219.txt blk00220.txt blk00221.txt blk00222.txt blk00223.txt blk00224.txt blk00225.txt blk00226.txt blk00227.txt blk00228.txt blk00229.txt blk00230.txt blk00231.txt blk00232.txt blk00233.txt blk00234.txt blk00235.txt blk00236.txt blk00237.txt blk00238.txt blk00239.txt blk00240.txt blk00241.txt blk00242.txt blk00243.txt blk00244.txt blk00245.txt blk00246.txt blk00247.txt blk00248.txt blk00249.txt blk00250.txt blk00251.txt blk00252.txt blk00253.txt blk00254.txt blk00255.txt blk00256.txt blk00257.txt blk00258.txt blk00259.txt blk00260.txt blk00261.txt blk00262.txt blk00263.txt blk00264.txt blk00265.txt blk00266.txt blk00267.txt blk00268.txt blk00269.txt blk00270.txt blk00271.txt blk00272.txt blk00273.txt blk00274.txt blk00275.txt blk00276.txt blk00277.txt blk00278.txt blk00279.txt blk00280.txt blk00281.txt blk00282.txt blk00283.txt blk00284.txt blk00285.txt blk00286.txt blk00287.txt blk00288.txt blk00289.txt blk00290.txt blk00291.txt blk00292.txt blk00293.txt blk00294.txt blk00295.txt blk00296.txt blk00297.txt blk00298.txt blk00299.txt blk00300.txt blk00301.txt blk00302.txt blk00303.txt blk00304.txt blk00305.txt blk00306.txt blk00307.txt blk00308.txt blk00309.txt blk00310.txt blk00311.txt blk00312.txt blk00313.txt blk00314.txt blk00315.txt blk00316.txt blk00317.txt blk00318.txt blk00319.txt blk00320.txt blk00321.txt blk00322.txt blk00323.txt blk00324.txt blk00325.txt blk00326.txt blk00327.txt blk00328.txt blk00329.txt blk00330.txt blk00331.txt blk00332.txt blk00333.txt blk00334.txt blk00335.txt blk00336.txt blk00337.txt blk00338.txt blk00339.txt blk00340.txt blk00341.txt blk00342.txt blk00343.txt blk00344.txt blk00345.txt blk00346.txt blk00347.txt blk00348.txt blk00349.txt blk00350.txt blk00351.txt blk00352.txt blk00353.txt blk00354.txt blk00355.txt blk00356.txt blk00357.txt blk00358.txt blk00359.txt blk00360.txt blk00361.txt blk00362.txt blk00363.txt blk00364.txt blk00365.txt blk00366.txt blk00367.txt blk00368.txt blk00369.txt blk00370.txt blk00371.txt blk00372.txt blk00373.txt blk00374.txt blk00375.txt blk00376.txt blk00377.txt blk00378.txt blk00379.txt blk00380.txt blk00381.txt blk00382.txt blk00383.txt blk00384.txt blk00385.txt blk00386.txt blk00387.txt blk00388.txt blk00389.txt blk00390.txt blk00391.txt blk00392.txt blk00393.txt blk00394.txt blk00395.txt blk00396.txt blk00397.txt blk00398.txt blk00399.txt blk00400.txt blk00401.txt blk00402.txt blk00403.txt blk00404.txt blk00405.txt blk00406.txt blk00407.txt blk00408.txt blk00409.txt blk00410.txt blk00411.txt blk00412.txt blk00413.txt blk00414.txt blk00415.txt blk00416.txt blk00417.txt blk00418.txt blk00419.txt blk00420.txt blk00421.txt blk00422.txt blk00423.txt blk00424.txt blk00425.txt blk00426.txt blk00427.txt blk00428.txt blk00429.txt blk00430.txt blk00431.txt blk00432.txt blk00433.txt blk00434.txt blk00435.txt blk00436.txt blk00437.txt blk00438.txt blk00439.txt blk00440.txt blk00441.txt blk00442.txt blk00443.txt blk00444.txt blk00445.txt blk00446.txt blk00447.txt blk00448.txt blk00449.txt blk00450.txt blk00451.txt blk00452.txt blk00453.txt blk00454.txt blk00455.txt blk00456.txt blk00457.txt blk00458.txt blk00459.txt blk00460.txt blk00461.txt blk00462.txt blk00463.txt blk00464.txt blk00465.txt blk00466.txt blk00467.txt blk00468.txt blk00469.txt blk00470.txt blk00471.txt blk00472.txt blk00473.txt blk00474.txt blk00475.txt blk00476.txt blk00477.txt blk00478.txt blk00479.txt blk00480.txt blk00481.txt blk00482.txt blk00483.txt blk00484.txt blk00485.txt blk00486.txt blk00487.txt blk00488.txt blk00489.txt blk00490.txt blk00491.txt blk00492.txt blk00493.txt blk00494.txt blk00495.txt blk00496.txt blk00497.txt blk00498.txt blk00499.txt blk00500.txt blk00501.txt blk00502.txt blk00503.txt blk00504.txt blk00505.txt blk00506.txt blk00507.txt blk00508.txt blk00509.txt blk00510.txt blk00511.txt blk00512.txt blk00513.txt blk00514.txt blk00515.txt blk00516.txt blk00517.txt blk00518.txt blk00519.txt blk00520.txt blk00521.txt blk00522.txt blk00523.txt blk00524.txt blk00525.txt blk00526.txt blk00527.txt blk00528.txt blk00529.txt blk00530.txt blk00531.txt blk00532.txt blk00533.txt blk00534.txt blk00535.txt blk00536.txt blk00537.txt blk00538.txt blk00539.txt blk00540.txt blk00541.txt blk00542.txt blk00543.txt blk00544.txt blk00545.txt blk00546.txt blk00547.txt blk00548.txt blk00549.txt blk00550.txt blk00551.txt blk00552.txt blk00553.txt blk00554.txt blk00555.txt blk00556.txt blk00557.txt blk00558.txt blk00559.txt blk00560.txt blk00561.txt blk00562.txt blk00563.txt blk00564.txt blk00565.txt blk00566.txt blk00567.txt blk00568.txt blk00569.txt blk00570.txt blk00571.txt blk00572.txt blk00573.txt blk00574.txt blk00575.txt blk00576.txt blk00577.txt blk00578.txt blk00579.txt blk00580.txt blk00581.txt blk00582.txt blk00583.txt blk00584.txt blk00585.txt blk00586.txt blk00587.txt blk00588.txt blk00589.txt blk00590.txt blk00591.txt blk00592.txt blk00593.txt blk00594.txt blk00595.txt blk00596.txt blk00597.txt blk00598.txt blk00599.txt blk00600.txt blk00601.txt blk00602.txt blk00603.txt blk00604.txt blk00605.txt blk00606.txt blk00607.txt blk00608.txt blk00609.txt blk00610.txt blk00611.txt blk00612.txt blk00613.txt blk00614.txt blk00615.txt blk00616.txt blk00617.txt blk00618.txt blk00619.txt blk00620.txt blk00621.txt blk00622.txt blk00623.txt blk00624.txt blk00625.txt blk00626.txt blk00627.txt blk00628.txt blk00629.txt blk00630.txt blk00631.txt blk00632.txt blk00633.txt blk00634.txt blk00635.txt blk00636.txt blk00637.txt blk00638.txt blk00639.txt blk00640.txt blk00641.txt blk00642.txt blk00643.txt blk00644.txt blk00645.txt blk00646.txt blk00647.txt blk00648.txt blk00649.txt blk00650.txt blk00651.txt blk00652.txt blk00653.txt blk00654.txt blk00655.txt blk00656.txt blk00657.txt blk00658.txt blk00659.txt blk00660.txt blk00661.txt blk00662.txt blk00663.txt blk00664.txt blk00665.txt blk00666.txt blk00667.txt blk00668.txt blk00669.txt blk00670.txt blk00671.txt blk00672.txt blk00673.txt blk00674.txt blk00675.txt blk00676.txt blk00677.txt blk00678.txt blk00679.txt blk00680.txt blk00681.txt blk00682.txt blk00683.txt blk00684.txt blk00685.txt blk00686.txt blk00687.txt blk00688.txt blk00689.txt blk00690.txt blk00691.txt blk00692.txt blk00693.txt blk00694.txt blk00695.txt blk00696.txt blk00697.txt blk00698.txt blk00699.txt blk00700.txt blk00701.txt blk00702.txt blk00703.txt blk00704.txt blk00705.txt blk00706.txt blk00707.txt blk00708.txt blk00709.txt blk00710.txt blk00711.txt blk00712.txt blk00713.txt blk00714.txt blk00715.txt blk00716.txt blk00717.txt blk00718.txt blk00719.txt blk00720.txt blk00721.txt blk00722.txt blk00723.txt blk00724.txt blk00725.txt blk00726.txt blk00727.txt blk00728.txt blk00729.txt blk00730.txt blk00731.txt blk00732.txt blk00733.txt blk00734.txt blk00735.txt blk00736.txt blk00737.txt blk00738.txt blk00739.txt blk00740.txt blk00741.txt blk00742.txt blk00743.txt blk00744.txt blk00745.txt blk00746.txt blk00747.txt blk00748.txt blk00749.txt blk00750.txt blk00751.txt blk00752.txt blk00753.txt blk00754.txt blk00755.txt blk00756.txt blk00757.txt blk00758.txt blk00759.txt blk00760.txt blk00761.txt blk00762.txt blk00763.txt blk00764.txt blk00765.txt blk00766.txt blk00767.txt blk00768.txt blk00769.txt blk00770.txt blk00771.txt blk00772.txt blk00773.txt blk00774.txt blk00775.txt blk00776.txt blk00777.txt blk00778.txt blk00779.txt blk00780.txt blk00781.txt blk00782.txt blk00783.txt blk00784.txt blk00785.txt blk00786.txt blk00787.txt blk00788.txt blk00789.txt blk00790.txt blk00791.txt blk00792.txt blk00793.txt blk00794.txt blk00795.txt blk00796.txt blk00797.txt blk00798.txt blk00799.txt blk00800.txt blk00801.txt blk00802.txt blk00803.txt blk00804.txt blk00805.txt blk00806.txt blk00807.txt blk00808.txt blk00809.txt blk00810.txt blk00811.txt blk00812.txt blk00813.txt blk00814.txt blk00815.txt blk00816.txt blk00817.txt blk00818.txt blk00819.txt blk00820.txt blk00821.txt blk00822.txt blk00823.txt blk00824.txt blk00825.txt blk00826.txt blk00827.txt blk00828.txt blk00829.txt blk00830.txt blk00831.txt blk00832.txt blk00833.txt blk00834.txt blk00835.txt blk00836.txt blk00837.txt blk00838.txt blk00839.txt blk00840.txt blk00841.txt blk00842.txt blk00843.txt blk00844.txt blk00845.txt blk00846.txt blk00847.txt blk00848.txt blk00849.txt blk00850.txt blk00851.txt blk00852.txt blk00853.txt blk00854.txt blk00855.txt blk00856.txt blk00857.txt blk00858.txt blk00859.txt blk00860.txt blk00861.txt blk00862.txt blk00863.txt blk00864.txt blk00865.txt blk00866.txt blk00867.txt blk00868.txt blk00869.txt blk00870.txt blk00871.txt blk00872.txt blk00873.txt blk00874.txt blk00875.txt blk00876.txt blk00877.txt blk00878.txt blk00879.txt blk00880.txt blk00881.txt blk00882.txt blk00883.txt blk00884.txt blk00885.txt blk00886.txt blk00887.txt blk00888.txt blk00889.txt blk00890.txt blk00891.txt blk00892.txt blk00893.txt blk00894.txt blk00895.txt blk00896.txt blk00897.txt blk00898.txt blk00899.txt blk00900.txt blk00901.txt blk00902.txt blk00903.txt blk00904.txt blk00905.txt blk00906.txt blk00907.txt blk00908.txt blk00909.txt blk00910.txt blk00911.txt blk00912.txt blk00913.txt blk00914.txt blk00915.txt blk00916.txt blk00917.txt blk00918.txt blk00919.txt blk00920.txt blk00921.txt blk00922.txt blk00923.txt blk00924.txt blk00925.txt blk00926.txt blk00927.txt blk00928.txt blk00929.txt blk00930.txt blk00931.txt blk00932.txt blk00933.txt blk00934.txt blk00935.txt blk00936.txt blk00937.txt blk00938.txt blk00939.txt blk00940.txt blk00941.txt blk00942.txt blk00943.txt blk00944.txt blk00945.txt blk00946.txt blk00947.txt blk00948.txt blk00949.txt blk00950.txt blk00951.txt blk00952.txt blk00953.txt blk00954.txt blk00955.txt blk00956.txt blk00957.txt blk00958.txt blk00959.txt blk00960.txt blk00961.txt blk00962.txt blk00963.txt blk00964.txt blk00965.txt blk00966.txt blk00967.txt blk00968.txt blk00969.txt blk00970.txt blk00971.txt blk00972.txt blk00973.txt blk00974.txt blk00975.txt blk00976.txt blk00977.txt blk00978.txt blk00979.txt blk00980.txt blk00981.txt blk00982.txt blk00983.txt blk00984.txt blk00985.txt blk00986.txt blk00987.txt blk00988.txt blk00989.txt blk00990.txt blk00991.txt blk00992.txt blk00993.txt blk00994.txt blk00995.txt blk00996.txt blk00997.txt blk00998.txt blk00999.txt blk01000.txt blk01001.txt blk01002.txt blk01003.txt blk01004.txt blk01005.txt blk01006.txt blk01007.txt blk01008.txt blk01009.txt blk01010.txt blk01011.txt blk01012.txt blk01013.txt blk01014.txt blk01015.txt blk01016.txt blk01017.txt blk01018.txt blk01019.txt blk01020.txt blk01021.txt blk01022.txt blk01023.txt blk01024.txt blk01025.txt blk01026.txt blk01027.txt blk01028.txt blk01029.txt blk01030.txt blk01031.txt blk01032.txt blk01033.txt blk01034.txt blk01035.txt blk01036.txt blk01037.txt blk01038.txt blk01039.txt blk01040.txt blk01041.txt blk01042.txt blk01043.txt blk01044.txt blk01045.txt blk01046.txt blk01047.txt blk01048.txt blk01049.txt blk01050.txt blk01051.txt blk01052.txt blk01053.txt blk01054.txt blk01055.txt blk01056.txt blk01057.txt blk01058.txt blk01059.txt blk01060.txt blk01061.txt blk01062.txt blk01063.txt blk01064.txt blk01065.txt blk01066.txt blk01067.txt blk01068.txt blk01069.txt blk01070.txt blk01071.txt blk01072.txt blk01073.txt blk01074.txt blk01075.txt blk01076.txt blk01077.txt blk01078.txt blk01079.txt blk01080.txt blk01081.txt blk01082.txt blk01083.txt blk01084.txt blk01085.txt blk01086.txt blk01087.txt blk01088.txt blk01089.txt blk01090.txt blk01091.txt blk01092.txt blk01093.txt blk01094.txt blk01095.txt blk01096.txt blk01097.txt blk01098.txt blk01099.txt blk01100.txt blk01101.txt blk01102.txt blk01103.txt blk01104.txt blk01105.txt blk01106.txt blk01107.txt blk01108.txt blk01109.txt blk01110.txt blk01111.txt blk01112.txt blk01113.txt blk01114.txt blk01115.txt blk01116.txt blk01117.txt blk01118.txt blk01119.txt blk01120.txt blk01121.txt blk01122.txt blk01123.txt blk01124.txt blk01125.txt blk01126.txt blk01127.txt blk01128.txt blk01129.txt blk01130.txt blk01131.txt blk01132.txt blk01133.txt blk01134.txt blk01135.txt blk01136.txt blk01137.txt blk01138.txt blk01139.txt blk01140.txt blk01141.txt blk01142.txt blk01143.txt blk01144.txt blk01145.txt blk01146.txt blk01147.txt blk01148.txt blk01149.txt blk01150.txt blk01151.txt blk01152.txt blk01153.txt blk01154.txt blk01155.txt blk01156.txt blk01157.txt blk01158.txt blk01159.txt blk01160.txt blk01161.txt blk01162.txt blk01163.txt blk01164.txt blk01165.txt blk01166.txt blk01167.txt blk01168.txt blk01169.txt blk01170.txt blk01171.txt blk01172.txt blk01173.txt blk01174.txt blk01175.txt blk01176.txt blk01177.txt blk01178.txt blk01179.txt blk01180.txt blk01181.txt blk01182.txt blk01183.txt blk01184.txt blk01185.txt blk01186.txt blk01187.txt blk01188.txt blk01189.txt blk01190.txt blk01191.txt blk01192.txt blk01193.txt blk01194.txt blk01195.txt blk01196.txt blk01197.txt blk01198.txt blk01199.txt blk01200.txt blk01201.txt blk01202.txt blk01203.txt blk01204.txt blk01205.txt blk01206.txt blk01207.txt blk01208.txt blk01209.txt blk01210.txt blk01211.txt blk01212.txt blk01213.txt blk01214.txt blk01215.txt blk01216.txt blk01217.txt blk01218.txt blk01219.txt blk01220.txt blk01221.txt blk01222.txt blk01223.txt blk01224.txt blk01225.txt blk01226.txt blk01227.txt blk01228.txt blk01229.txt blk01230.txt blk01231.txt blk01232.txt blk01233.txt blk01234.txt blk01235.txt blk01236.txt blk01237.txt blk01238.txt blk01239.txt blk01240.txt blk01241.txt blk01242.txt blk01243.txt blk01244.txt blk01245.txt blk01246.txt blk01247.txt blk01248.txt blk01249.txt blk01250.txt blk01251.txt blk01252.txt blk01253.txt blk01254.txt blk01255.txt blk01256.txt blk01257.txt blk01258.txt blk01259.txt blk01260.txt blk01261.txt blk01262.txt blk01263.txt blk01264.txt blk01265.txt blk01266.txt blk01267.txt blk01268.txt blk01269.txt blk01270.txt blk01271.txt blk01272.txt blk01273.txt blk01274.txt blk01275.txt blk01276.txt blk01277.txt blk01278.txt blk01279.txt blk01280.txt blk01281.txt blk01282.txt blk01283.txt blk01284.txt blk01285.txt blk01286.txt blk01287.txt blk01288.txt blk01289.txt blk01290.txt blk01291.txt blk01292.txt blk01293.txt blk01294.txt blk01295.txt blk01296.txt blk01297.txt blk01298.txt blk01299.txt blk01300.txt blk01301.txt blk01302.txt blk01303.txt blk01304.txt blk01305.txt blk01306.txt blk01307.txt blk01308.txt blk01309.txt blk01310.txt blk01311.txt blk01312.txt blk01313.txt blk01314.txt blk01315.txt blk01316.txt blk01317.txt blk01318.txt blk01319.txt blk01320.txt blk01321.txt blk01322.txt blk01323.txt blk01324.txt blk01325.txt blk01326.txt blk01327.txt blk01328.txt blk01329.txt blk01330.txt blk01331.txt blk01332.txt blk01333.txt blk01334.txt blk01335.txt blk01336.txt blk01337.txt blk01338.txt blk01339.txt blk01340.txt blk01341.txt blk01342.txt blk01343.txt blk01344.txt blk01345.txt blk01346.txt blk01347.txt blk01348.txt blk01349.txt blk01350.txt blk01351.txt blk01352.txt blk01353.txt blk01354.txt blk01355.txt blk01356.txt blk01357.txt blk01358.txt blk01359.txt blk01360.txt blk01361.txt blk01362.txt blk01363.txt blk01364.txt blk01365.txt blk01366.txt blk01367.txt blk01368.txt blk01369.txt blk01370.txt blk01371.txt blk01372.txt blk01373.txt blk01374.txt blk01375.txt blk01376.txt blk01377.txt blk01378.txt blk01379.txt blk01380.txt blk01381.txt blk01382.txt blk01383.txt blk01384.txt blk01385.txt blk01386.txt blk01387.txt blk01388.txt blk01389.txt blk01390.txt blk01391.txt blk01392.txt blk01393.txt blk01394.txt blk01395.txt blk01396.txt blk01397.txt blk01398.txt blk01399.txt blk01400.txt blk01401.txt blk01402.txt blk01403.txt blk01404.txt blk01405.txt blk01406.txt blk01407.txt blk01408.txt blk01409.txt blk01410.txt blk01411.txt blk01412.txt blk01413.txt blk01414.txt blk01415.txt blk01416.txt blk01417.txt blk01418.txt blk01419.txt blk01420.txt blk01421.txt blk01422.txt blk01423.txt blk01424.txt blk01425.txt blk01426.txt blk01427.txt blk01428.txt blk01429.txt blk01430.txt blk01431.txt blk01432.txt blk01433.txt blk01434.txt blk01435.txt blk01436.txt blk01437.txt blk01438.txt blk01439.txt blk01440.txt blk01441.txt blk01442.txt blk01443.txt blk01444.txt blk01445.txt blk01446.txt blk01447.txt blk01448.txt blk01449.txt blk01450.txt blk01451.txt blk01452.txt blk01453.txt blk01454.txt blk01455.txt blk01456.txt blk01457.txt blk01458.txt blk01459.txt blk01460.txt blk01461.txt blk01462.txt blk01463.txt blk01464.txt blk01465.txt blk01466.txt blk01467.txt blk01468.txt blk01469.txt blk01470.txt blk01471.txt blk01472.txt blk01473.txt blk01474.txt blk01475.txt blk01476.txt blk01477.txt blk01478.txt blk01479.txt blk01480.txt blk01481.txt blk01482.txt blk01483.txt blk01484.txt blk01485.txt blk01486.txt blk01487.txt blk01488.txt blk01489.txt blk01490.txt blk01491.txt blk01492.txt blk01493.txt blk01494.txt blk01495.txt blk01496.txt blk01497.txt blk01498.txt blk01499.txt blk01500.txt blk01501.txt blk01502.txt blk01503.txt blk01504.txt blk01505.txt blk01506.txt blk01507.txt blk01508.txt blk01509.txt blk01510.txt blk01511.txt blk01512.txt blk01513.txt blk01514.txt blk01515.txt blk01516.txt blk01517.txt blk01518.txt blk01519.txt blk01520.txt blk01521.txt blk01522.txt blk01523.txt blk01524.txt blk01525.txt blk01526.txt blk01527.txt blk01528.txt blk01529.txt blk01530.txt blk01531.txt blk01532.txt blk01533.txt blk01534.txt blk01535.txt blk01536.txt blk01537.txt blk01538.txt blk01539.txt blk01540.txt blk01541.txt blk01542.txt blk01543.txt blk01544.txt blk01545.txt blk01546.txt blk01547.txt blk01548.txt blk01549.txt blk01550.txt blk01551.txt blk01552.txt blk01553.txt blk01554.txt blk01555.txt blk01556.txt blk01557.txt blk01558.txt blk01559.txt blk01560.txt blk01561.txt blk01562.txt blk01563.txt blk01564.txt blk01565.txt blk01566.txt blk01567.txt blk01568.txt blk01569.txt blk01570.txt blk01571.txt blk01572.txt blk01573.txt blk01574.txt blk01575.txt blk01576.txt blk01577.txt blk01578.txt blk01579.txt blk01580.txt blk01581.txt blk01582.txt blk01583.txt blk01584.txt blk01585.txt blk01586.txt blk01587.txt blk01588.txt blk01589.txt blk01590.txt blk01591.txt blk01592.txt blk01593.txt blk01594.txt blk01595.txt blk01596.txt blk01597.txt blk01598.txt blk01599.txt blk01600.txt blk01601.txt blk01602.txt blk01603.txt blk01604.txt blk01605.txt blk01606.txt blk01607.txt blk01608.txt blk01609.txt blk01610.txt blk01611.txt blk01612.txt blk01613.txt blk01614.txt blk01615.txt blk01616.txt blk01617.txt blk01618.txt blk01619.txt blk01620.txt blk01621.txt blk01622.txt blk01623.txt blk01624.txt blk01625.txt blk01626.txt blk01627.txt blk01628.txt blk01629.txt blk01630.txt blk01631.txt blk01632.txt blk01633.txt blk01634.txt blk01635.txt blk01636.txt blk01637.txt blk01638.txt blk01639.txt blk01640.txt blk01641.txt blk01642.txt blk01643.txt blk01644.txt blk01645.txt blk01646.txt blk01647.txt blk01648.txt blk01649.txt blk01650.txt blk01651.txt blk01652.txt blk01653.txt blk01654.txt blk01655.txt blk01656.txt blk01657.txt blk01658.txt blk01659.txt blk01660.txt blk01661.txt blk01662.txt blk01663.txt blk01664.txt blk01665.txt blk01666.txt blk01667.txt blk01668.txt blk01669.txt blk01670.txt blk01671.txt blk01672.txt blk01673.txt blk01674.txt blk01675.txt blk01676.txt blk01677.txt blk01678.txt blk01679.txt blk01680.txt blk01681.txt blk01682.txt blk01683.txt blk01684.txt blk01685.txt blk01686.txt blk01687.txt blk01688.txt blk01689.txt blk01690.txt blk01691.txt blk01692.txt blk01693.txt blk01694.txt blk01695.txt blk01696.txt blk01697.txt blk01698.txt blk01699.txt blk01700.txt blk01701.txt blk01702.txt blk01703.txt blk01704.txt blk01705.txt blk01706.txt blk01707.txt blk01708.txt blk01709.txt blk01710.txt blk01711.txt blk01712.txt blk01713.txt blk01714.txt blk01715.txt blk01716.txt blk01717.txt blk01718.txt blk01719.txt blk01720.txt blk01721.txt blk01722.txt blk01723.txt blk01724.txt blk01725.txt blk01726.txt blk01727.txt blk01728.txt blk01729.txt blk01730.txt blk01731.txt blk01732.txt blk01733.txt blk01734.txt blk01735.txt blk01736.txt blk01737.txt blk01738.txt blk01739.txt blk01740.txt blk01741.txt blk01742.txt blk01743.txt blk01744.txt blk01745.txt blk01746.txt blk01747.txt blk01748.txt blk01749.txt blk01750.txt blk01751.txt blk01752.txt blk01753.txt blk01754.txt blk01755.txt blk01756.txt blk01757.txt blk01758.txt blk01759.txt blk01760.txt blk01761.txt blk01762.txt blk01763.txt blk01764.txt blk01765.txt blk01766.txt blk01767.txt blk01768.txt blk01769.txt blk01770.txt blk01771.txt blk01772.txt blk01773.txt blk01774.txt blk01775.txt blk01776.txt blk01777.txt blk01778.txt blk01779.txt blk01780.txt blk01781.txt blk01782.txt blk01783.txt blk01784.txt blk01785.txt blk01786.txt blk01787.txt blk01788.txt blk01789.txt blk01790.txt blk01791.txt blk01792.txt blk01793.txt blk01794.txt blk01795.txt blk01796.txt blk01797.txt blk01798.txt blk01799.txt blk01800.txt blk01801.txt blk01802.txt blk01803.txt blk01804.txt blk01805.txt blk01806.txt blk01807.txt blk01808.txt blk01809.txt blk01810.txt blk01811.txt blk01812.txt blk01813.txt blk01814.txt blk01815.txt blk01816.txt blk01817.txt blk01818.txt blk01819.txt blk01820.txt blk01821.txt blk01822.txt blk01823.txt blk01824.txt blk01825.txt blk01826.txt blk01827.txt blk01828.txt blk01829.txt blk01830.txt blk01831.txt blk01832.txt blk01833.txt blk01834.txt blk01835.txt blk01836.txt blk01837.txt blk01838.txt blk01839.txt blk01840.txt blk01841.txt blk01842.txt blk01843.txt blk01844.txt blk01845.txt blk01846.txt blk01847.txt blk01848.txt blk01849.txt blk01850.txt blk01851.txt blk01852.txt blk01853.txt blk01854.txt blk01855.txt blk01856.txt blk01857.txt blk01858.txt blk01859.txt blk01860.txt blk01861.txt blk01862.txt blk01863.txt blk01864.txt blk01865.txt blk01866.txt blk01867.txt blk01868.txt blk01869.txt blk01870.txt blk01871.txt blk01872.txt blk01873.txt blk01874.txt blk01875.txt blk01876.txt blk01877.txt blk01878.txt blk01879.txt blk01880.txt blk01881.txt blk01882.txt blk01883.txt blk01884.txt blk01885.txt blk01886.txt blk01887.txt blk01888.txt blk01889.txt blk01890.txt blk01891.txt blk01892.txt blk01893.txt blk01894.txt blk01895.txt blk01896.txt blk01897.txt blk01898.txt blk01899.txt blk01900.txt blk01901.txt blk01902.txt blk01903.txt blk01904.txt blk01905.txt blk01906.txt blk01907.txt blk01908.txt blk01909.txt blk01910.txt blk01911.txt blk01912.txt blk01913.txt blk01914.txt blk01915.txt blk01916.txt blk01917.txt blk01918.txt blk01919.txt blk01920.txt blk01921.txt blk01922.txt blk01923.txt blk01924.txt blk01925.txt blk01926.txt blk01927.txt blk01928.txt blk01929.txt blk01930.txt blk01931.txt blk01932.txt blk01933.txt blk01934.txt blk01935.txt blk01936.txt blk01937.txt blk01938.txt blk01939.txt blk01940.txt blk01941.txt blk01942.txt blk01943.txt blk01944.txt blk01945.txt blk01946.txt blk01947.txt blk01948.txt blk01949.txt blk01950.txt blk01951.txt blk01952.txt blk01953.txt blk01954.txt blk01955.txt blk01956.txt blk01957.txt blk01958.txt blk01959.txt blk01960.txt blk01961.txt blk01962.txt blk01963.txt blk01964.txt blk01965.txt blk01966.txt blk01967.txt blk01968.txt blk01969.txt blk01970.txt blk01971.txt blk01972.txt blk01973.txt blk01974.txt blk01975.txt blk01976.txt blk01977.txt blk01978.txt blk01979.txt blk01980.txt blk01981.txt blk01982.txt blk01983.txt blk01984.txt blk01985.txt blk01986.txt blk01987.txt blk01988.txt blk01989.txt blk01990.txt blk01991.txt blk01992.txt blk01993.txt blk01994.txt blk01995.txt blk01996.txt blk01997.txt blk01998.txt blk01999.txt blk02000.txt blk02001.txt blk02002.txt blk02003.txt blk02004.txt blk02005.txt blk02006.txt blk02007.txt blk02008.txt blk02009.txt blk02010.txt blk02011.txt blk02012.txt blk02013.txt blk02014.txt blk02015.txt blk02016.txt blk02017.txt blk02018.txt blk02019.txt blk02020.txt blk02021.txt blk02022.txt blk02023.txt blk02024.txt blk02025.txt blk02026.txt blk02027.txt blk02028.txt blk02029.txt blk02030.txt blk02031.txt blk02032.txt blk02033.txt blk02034.txt blk02035.txt blk02036.txt blk02037.txt blk02038.txt blk02039.txt blk02040.txt blk02041.txt blk02042.txt blk02043.txt blk02044.txt blk02045.txt blk02046.txt blk02047.txt blk02048.txt blk02049.txt blk02050.txt blk02051.txt blk02052.txt blk02053.txt blk02054.txt blk02055.txt blk02056.txt blk02057.txt blk02058.txt blk02059.txt blk02060.txt blk02061.txt blk02062.txt blk02063.txt blk02064.txt blk02065.txt blk02066.txt blk02067.txt blk02068.txt blk02069.txt blk02070.txt blk02071.txt blk02072.txt blk02073.txt blk02074.txt blk02075.txt blk02076.txt blk02077.txt blk02078.txt blk02079.txt blk02080.txt blk02081.txt blk02082.txt blk02083.txt blk02084.txt blk02085.txt blk02086.txt blk02087.txt blk02088.txt blk02089.txt blk02090.txt blk02091.txt blk02092.txt blk02093.txt blk02094.txt blk02095.txt blk02096.txt blk02097.txt blk02098.txt blk02099.txt blk02100.txt blk02101.txt blk02102.txt blk02103.txt blk02104.txt blk02105.txt blk02106.txt blk02107.txt blk02108.txt blk02109.txt blk02110.txt blk02111.txt blk02112.txt blk02113.txt blk02114.txt blk02115.txt blk02116.txt blk02117.txt blk02118.txt blk02119.txt blk02120.txt blk02121.txt blk02122.txt blk02123.txt blk02124.txt blk02125.txt blk02126.txt blk02127.txt blk02128.txt blk02129.txt blk02130.txt blk02131.txt blk02132.txt blk02133.txt blk02134.txt blk02135.txt blk02136.txt blk02137.txt blk02138.txt blk02139.txt blk02140.txt blk02141.txt blk02142.txt blk02143.txt blk02144.txt blk02145.txt blk02146.txt blk02147.txt blk02148.txt blk02149.txt blk02150.txt blk02151.txt blk02152.txt blk02153.txt blk02154.txt blk02155.txt blk02156.txt blk02157.txt blk02158.txt blk02159.txt blk02160.txt blk02161.txt blk02162.txt blk02163.txt blk02164.txt blk02165.txt blk02166.txt blk02167.txt blk02168.txt blk02169.txt blk02170.txt blk02171.txt blk02172.txt blk02173.txt blk02174.txt blk02175.txt blk02176.txt blk02177.txt blk02178.txt blk02179.txt blk02180.txt blk02181.txt blk02182.txt blk02183.txt blk02184.txt blk02185.txt blk02186.txt blk02187.txt blk02188.txt blk02189.txt blk02190.txt blk02191.txt blk02192.txt blk02193.txt blk02194.txt blk02195.txt blk02196.txt blk02197.txt blk02198.txt blk02199.txt blk02200.txt blk02201.txt blk02202.txt blk02203.txt blk02204.txt blk02205.txt blk02206.txt blk02207.txt blk02208.txt blk02209.txt blk02210.txt blk02211.txt blk02212.txt blk02213.txt blk02214.txt blk02215.txt blk02216.txt blk02217.txt blk02218.txt blk02219.txt blk02220.txt blk02221.txt blk02222.txt blk02223.txt blk02224.txt blk02225.txt blk02226.txt blk02227.txt blk02228.txt blk02229.txt blk02230.txt blk02231.txt blk02232.txt blk02233.txt blk02234.txt blk02235.txt blk02236.txt blk02237.txt blk02238.txt blk02239.txt blk02240.txt blk02241.txt blk02242.txt blk02243.txt blk02244.txt blk02245.txt blk02246.txt blk02247.txt blk02248.txt blk02249.txt blk02250.txt blk02251.txt blk02252.txt blk02253.txt blk02254.txt blk02255.txt blk02256.txt blk02257.txt blk02258.txt blk02259.txt blk02260.txt blk02261.txt blk02262.txt blk02263.txt blk02264.txt blk02265.txt blk02266.txt blk02267.txt blk02268.txt blk02269.txt blk02270.txt blk02271.txt blk02272.txt blk02273.txt blk02274.txt blk02275.txt blk02276.txt blk02277.txt blk02278.txt blk02279.txt blk02280.txt blk02281.txt blk02282.txt blk02283.txt blk02284.txt blk02285.txt blk02286.txt blk02287.txt blk02288.txt blk02289.txt blk02290.txt blk02291.txt blk02292.txt blk02293.txt blk02294.txt blk02295.txt blk02296.txt blk02297.txt blk02298.txt blk02299.txt blk02300.txt blk02301.txt blk02302.txt blk02303.txt blk02304.txt blk02305.txt blk02306.txt blk02307.txt blk02308.txt blk02309.txt blk02310.txt blk02311.txt blk02312.txt blk02313.txt blk02314.txt blk02315.txt blk02316.txt blk02317.txt blk02318.txt blk02319.txt blk02320.txt blk02321.txt blk02322.txt blk02323.txt blk02324.txt blk02325.txt blk02326.txt blk02327.txt blk02328.txt blk02329.txt blk02330.txt blk02331.txt blk02332.txt blk02333.txt blk02334.txt blk02335.txt blk02336.txt blk02337.txt blk02338.txt blk02339.txt blk02340.txt blk02341.txt blk02342.txt blk02343.txt blk02344.txt blk02345.txt blk02346.txt blk02347.txt blk02348.txt blk02349.txt blk02350.txt blk02351.txt blk02352.txt blk02353.txt blk02354.txt blk02355.txt blk02356.txt blk02357.txt blk02358.txt blk02359.txt blk02360.txt blk02361.txt blk02362.txt blk02363.txt blk02364.txt blk02365.txt blk02366.txt blk02367.txt blk02368.txt blk02369.txt blk02370.txt blk02371.txt blk02372.txt blk02373.txt blk02374.txt blk02375.txt blk02376.txt blk02377.txt blk02378.txt blk02379.txt blk02380.txt blk02381.txt blk02382.txt blk02383.txt blk02384.txt blk02385.txt blk02386.txt blk02387.txt blk02388.txt blk02389.txt blk02390.txt blk02391.txt blk02392.txt blk02393.txt blk02394.txt blk02395.txt blk02396.txt blk02397.txt blk02398.txt blk02399.txt blk02400.txt blk02401.txt blk02402.txt blk02403.txt blk02404.txt blk02405.txt blk02406.txt blk02407.txt blk02408.txt blk02409.txt blk02410.txt blk02411.txt blk02412.txt blk02413.txt blk02414.txt blk02415.txt blk02416.txt blk02417.txt blk02418.txt blk02419.txt blk02420.txt blk02421.txt blk02422.txt blk02423.txt blk02424.txt blk02425.txt blk02426.txt blk02427.txt blk02428.txt blk02429.txt blk02430.txt blk02431.txt blk02432.txt blk02433.txt blk02434.txt blk02435.txt blk02436.txt blk02437.txt blk02438.txt blk02439.txt blk02440.txt blk02441.txt blk02442.txt blk02443.txt blk02444.txt blk02445.txt blk02446.txt blk02447.txt blk02448.txt blk02449.txt blk02450.txt blk02451.txt blk02452.txt blk02453.txt blk02454.txt blk02455.txt blk02456.txt blk02457.txt blk02458.txt blk02459.txt blk02460.txt blk02461.txt blk02462.txt blk02463.txt blk02464.txt blk02465.txt blk02466.txt blk02467.txt blk02468.txt blk02469.txt blk02470.txt blk02471.txt blk02472.txt blk02473.txt blk02474.txt blk02475.txt blk02476.txt blk02477.txt blk02478.txt blk02479.txt blk02480.txt blk02481.txt blk02482.txt blk02483.txt blk02484.txt blk02485.txt blk02486.txt blk02487.txt blk02488.txt blk02489.txt blk02490.txt blk02491.txt blk02492.txt blk02493.txt blk02494.txt blk02495.txt blk02496.txt blk02497.txt blk02498.txt blk02499.txt blk02500.txt blk02501.txt blk02502.txt blk02503.txt blk02504.txt blk02505.txt blk02506.txt blk02507.txt blk02508.txt blk02509.txt blk02510.txt blk02511.txt blk02512.txt blk02513.txt blk02514.txt blk02515.txt blk02516.txt blk02517.txt blk02518.txt blk02519.txt blk02520.txt blk02521.txt blk02522.txt blk02523.txt blk02524.txt blk02525.txt blk02526.txt blk02527.txt blk02528.txt blk02529.txt blk02530.txt blk02531.txt blk02532.txt blk02533.txt blk02534.txt blk02535.txt blk02536.txt blk02537.txt blk02538.txt blk02539.txt blk02540.txt blk02541.txt blk02542.txt blk02543.txt blk02544.txt blk02545.txt blk02546.txt blk02547.txt blk02548.txt blk02549.txt blk02550.txt blk02551.txt blk02552.txt blk02553.txt blk02554.txt blk02555.txt blk02556.txt blk02557.txt blk02558.txt blk02559.txt blk02560.txt blk02561.txt blk02562.txt blk02563.txt blk02564.txt blk02565.txt blk02566.txt blk02567.txt blk02568.txt blk02569.txt blk02570.txt blk02571.txt blk02572.txt blk02573.txt blk02574.txt blk02575.txt blk02576.txt blk02577.txt blk02578.txt blk02579.txt blk02580.txt blk02581.txt blk02582.txt blk02583.txt blk02584.txt blk02585.txt blk02586.txt blk02587.txt blk02588.txt blk02589.txt blk02590.txt blk02591.txt blk02592.txt blk02593.txt blk02594.txt blk02595.txt blk02596.txt blk02597.txt blk02598.txt blk02599.txt blk02600.txt blk02601.txt blk02602.txt blk02603.txt blk02604.txt blk02605.txt blk02606.txt blk02607.txt blk02608.txt blk02609.txt blk02610.txt blk02611.txt blk02612.txt blk02613.txt blk02614.txt blk02615.txt blk02616.txt blk02617.txt blk02618.txt blk02619.txt blk02620.txt blk02621.txt blk02622.txt blk02623.txt blk02624.txt blk02625.txt blk02626.txt blk02627.txt blk02628.txt blk02629.txt blk02630.txt blk02631.txt blk02632.txt blk02633.txt blk02634.txt blk02635.txt blk02636.txt blk02637.txt blk02638.txt blk02639.txt blk02640.txt blk02641.txt blk02642.txt blk02643.txt blk02644.txt blk02645.txt blk02646.txt blk02647.txt blk02648.txt blk02649.txt blk02650.txt blk02651.txt blk02652.txt blk02653.txt blk02654.txt blk02655.txt blk02656.txt blk02657.txt blk02658.txt blk02659.txt blk02660.txt blk02661.txt blk02662.txt blk02663.txt blk02664.txt blk02665.txt blk02666.txt blk02667.txt blk02668.txt blk02669.txt blk02670.txt blk02671.txt blk02672.txt blk02673.txt blk02674.txt blk02675.txt blk02676.txt blk02677.txt blk02678.txt blk02679.txt blk02680.txt blk02681.txt blk02682.txt blk02683.txt blk02684.txt blk02685.txt blk02686.txt blk02687.txt blk02688.txt blk02689.txt blk02690.txt blk02691.txt blk02692.txt blk02693.txt blk02694.txt blk02695.txt blk02696.txt blk02697.txt blk02698.txt blk02699.txt blk02700.txt blk02701.txt blk02702.txt blk02703.txt blk02704.txt blk02705.txt blk02706.txt blk02707.txt blk02708.txt blk02709.txt blk02710.txt blk02711.txt blk02712.txt blk02713.txt blk02714.txt blk02715.txt blk02716.txt blk02717.txt blk02718.txt blk02719.txt blk02720.txt blk02721.txt blk02722.txt blk02723.txt blk02724.txt blk02725.txt blk02726.txt blk02727.txt blk02728.txt blk02729.txt blk02730.txt blk02731.txt blk02732.txt blk02733.txt blk02734.txt blk02735.txt blk02736.txt blk02737.txt blk02738.txt blk02739.txt blk02740.txt blk02741.txt blk02742.txt blk02743.txt blk02744.txt blk02745.txt blk02746.txt blk02747.txt blk02748.txt blk02749.txt blk02750.txt blk02751.txt blk02752.txt blk02753.txt blk02754.txt blk02755.txt blk02756.txt blk02757.txt blk02758.txt blk02759.txt blk02760.txt blk02761.txt blk02762.txt blk02763.txt blk02764.txt blk02765.txt blk02766.txt blk02767.txt blk02768.txt blk02769.txt blk02770.txt blk02771.txt blk02772.txt blk02773.txt blk02774.txt blk02775.txt blk02776.txt blk02777.txt blk02778.txt blk02779.txt blk02780.txt blk02781.txt blk02782.txt blk02783.txt blk02784.txt blk02785.txt blk02786.txt blk02787.txt blk02788.txt blk02789.txt blk02790.txt blk02791.txt blk02792.txt blk02793.txt blk02794.txt blk02795.txt blk02796.txt blk02797.txt blk02798.txt blk02799.txt blk02800.txt blk02801.txt blk02802.txt blk02803.txt blk02804.txt blk02805.txt blk02806.txt blk02807.txt blk02808.txt blk02809.txt blk02810.txt blk02811.txt blk02812.txt blk02813.txt blk02814.txt blk02815.txt blk02816.txt blk02817.txt blk02818.txt blk02819.txt blk02820.txt blk02821.txt blk02822.txt blk02823.txt blk02824.txt blk02825.txt blk02826.txt blk02827.txt blk02828.txt blk02829.txt blk02830.txt blk02831.txt blk02832.txt blk02833.txt blk02834.txt blk02835.txt blk02836.txt blk02837.txt blk02838.txt blk02839.txt blk02840.txt blk02841.txt blk02842.txt blk02843.txt blk02844.txt blk02845.txt blk02846.txt blk02847.txt blk02848.txt blk02849.txt blk02850.txt blk02851.txt blk02852.txt blk02853.txt blk02854.txt blk02855.txt blk02856.txt blk02857.txt blk02858.txt blk02859.txt blk02860.txt blk02861.txt blk02862.txt blk02863.txt blk02864.txt blk02865.txt blk02866.txt blk02867.txt blk02868.txt blk02869.txt blk02870.txt blk02871.txt blk02872.txt blk02873.txt blk02874.txt blk02875.txt blk02876.txt blk02877.txt blk02878.txt blk02879.txt blk02880.txt blk02881.txt blk02882.txt blk02883.txt blk02884.txt blk02885.txt blk02886.txt blk02887.txt blk02888.txt blk02889.txt blk02890.txt blk02891.txt blk02892.txt blk02893.txt blk02894.txt blk02895.txt blk02896.txt blk02897.txt blk02898.txt blk02899.txt blk02900.txt blk02901.txt blk02902.txt blk02903.txt blk02904.txt blk02905.txt blk02906.txt blk02907.txt blk02908.txt blk02909.txt blk02910.txt blk02911.txt blk02912.txt blk02913.txt blk02914.txt blk02915.txt blk02916.txt blk02917.txt blk02918.txt blk02919.txt blk02920.txt blk02921.txt blk02922.txt blk02923.txt blk02924.txt blk02925.txt blk02926.txt blk02927.txt blk02928.txt blk02929.txt blk02930.txt blk02931.txt blk02932.txt blk02933.txt blk02934.txt blk02935.txt blk02936.txt blk02937.txt blk02938.txt blk02939.txt blk02940.txt blk02941.txt blk02942.txt blk02943.txt blk02944.txt blk02945.txt blk02946.txt blk02947.txt blk02948.txt blk02949.txt blk02950.txt blk02951.txt blk02952.txt blk02953.txt blk02954.txt blk02955.txt blk02956.txt blk02957.txt blk02958.txt blk02959.txt blk02960.txt blk02961.txt blk02962.txt blk02963.txt blk02964.txt blk02965.txt blk02966.txt blk02967.txt blk02968.txt blk02969.txt blk02970.txt blk02971.txt blk02972.txt blk02973.txt blk02974.txt blk02975.txt blk02976.txt blk02977.txt blk02978.txt blk02979.txt blk02980.txt blk02981.txt blk02982.txt blk02983.txt blk02984.txt blk02985.txt blk02986.txt blk02987.txt blk02988.txt blk02989.txt blk02990.txt blk02991.txt blk02992.txt blk02993.txt blk02994.txt blk02995.txt blk02996.txt blk02997.txt blk02998.txt blk02999.txt blk03000.txt blk03001.txt blk03002.txt blk03003.txt blk03004.txt blk03005.txt blk03006.txt blk03007.txt blk03008.txt blk03009.txt blk03010.txt blk03011.txt blk03012.txt blk03013.txt blk03014.txt blk03015.txt blk03016.txt blk03017.txt blk03018.txt blk03019.txt blk03020.txt blk03021.txt blk03022.txt blk03023.txt blk03024.txt blk03025.txt blk03026.txt blk03027.txt blk03028.txt blk03029.txt blk03030.txt blk03031.txt blk03032.txt blk03033.txt blk03034.txt blk03035.txt blk03036.txt blk03037.txt blk03038.txt blk03039.txt blk03040.txt blk03041.txt blk03042.txt blk03043.txt blk03044.txt blk03045.txt blk03046.txt blk03047.txt blk03048.txt blk03049.txt blk03050.txt blk03051.txt blk03052.txt blk03053.txt blk03054.txt blk03055.txt blk03056.txt blk03057.txt blk03058.txt blk03059.txt blk03060.txt blk03061.txt blk03062.txt blk03063.txt blk03064.txt blk03065.txt blk03066.txt blk03067.txt blk03068.txt blk03069.txt blk03070.txt blk03071.txt blk03072.txt blk03073.txt blk03074.txt blk03075.txt blk03076.txt blk03077.txt blk03078.txt blk03079.txt blk03080.txt blk03081.txt blk03082.txt blk03083.txt blk03084.txt blk03085.txt blk03086.txt blk03087.txt blk03088.txt blk03089.txt blk03090.txt blk03091.txt blk03092.txt blk03093.txt blk03094.txt blk03095.txt blk03096.txt blk03097.txt blk03098.txt blk03099.txt blk03100.txt blk03101.txt blk03102.txt blk03103.txt blk03104.txt blk03105.txt blk03106.txt blk03107.txt blk03108.txt blk03109.txt blk03110.txt blk03111.txt blk03112.txt blk03113.txt blk03114.txt blk03115.txt blk03116.txt blk03117.txt blk03118.txt blk03119.txt blk03120.txt blk03121.txt blk03122.txt blk03123.txt blk03124.txt blk03125.txt blk03126.txt blk03127.txt blk03128.txt blk03129.txt blk03130.txt blk03131.txt blk03132.txt blk03133.txt blk03134.txt blk03135.txt blk03136.txt blk03137.txt blk03138.txt blk03139.txt blk03140.txt blk03141.txt blk03142.txt blk03143.txt blk03144.txt blk03145.txt blk03146.txt blk03147.txt blk03148.txt blk03149.txt blk03150.txt blk03151.txt blk03152.txt blk03153.txt blk03154.txt blk03155.txt blk03156.txt blk03157.txt blk03158.txt blk03159.txt blk03160.txt blk03161.txt blk03162.txt blk03163.txt blk03164.txt blk03165.txt blk03166.txt blk03167.txt blk03168.txt blk03169.txt blk03170.txt blk03171.txt blk03172.txt blk03173.txt blk03174.txt blk03175.txt blk03176.txt blk03177.txt blk03178.txt blk03179.txt blk03180.txt blk03181.txt blk03182.txt blk03183.txt blk03184.txt blk03185.txt blk03186.txt blk03187.txt blk03188.txt blk03189.txt blk03190.txt blk03191.txt blk03192.txt blk03193.txt blk03194.txt blk03195.txt blk03196.txt blk03197.txt blk03198.txt blk03199.txt blk03200.txt blk03201.txt blk03202.txt blk03203.txt blk03204.txt blk03205.txt blk03206.txt blk03207.txt blk03208.txt blk03209.txt blk03210.txt blk03211.txt blk03212.txt blk03213.txt blk03214.txt blk03215.txt blk03216.txt blk03217.txt blk03218.txt blk03219.txt blk03220.txt blk03221.txt blk03222.txt blk03223.txt blk03224.txt blk03225.txt blk03226.txt blk03227.txt blk03228.txt blk03229.txt blk03230.txt blk03231.txt blk03232.txt blk03233.txt blk03234.txt blk03235.txt blk03236.txt blk03237.txt blk03238.txt blk03239.txt blk03240.txt blk03241.txt blk03242.txt blk03243.txt blk03244.txt blk03245.txt blk03246.txt blk03247.txt blk03248.txt blk03249.txt blk03250.txt blk03251.txt blk03252.txt blk03253.txt blk03254.txt blk03255.txt blk03256.txt blk03257.txt blk03258.txt blk03259.txt blk03260.txt blk03261.txt blk03262.txt blk03263.txt blk03264.txt blk03265.txt blk03266.txt blk03267.txt blk03268.txt blk03269.txt blk03270.txt blk03271.txt blk03272.txt blk03273.txt blk03274.txt blk03275.txt blk03276.txt blk03277.txt blk03278.txt blk03279.txt blk03280.txt blk03281.txt blk03282.txt blk03283.txt blk03284.txt blk03285.txt blk03286.txt blk03287.txt blk03288.txt blk03289.txt blk03290.txt blk03291.txt blk03292.txt blk03293.txt blk03294.txt blk03295.txt blk03296.txt blk03297.txt blk03298.txt blk03299.txt blk03300.txt blk03301.txt blk03302.txt blk03303.txt blk03304.txt blk03305.txt blk03306.txt blk03307.txt blk03308.txt blk03309.txt blk03310.txt blk03311.txt blk03312.txt blk03313.txt blk03314.txt blk03315.txt blk03316.txt blk03317.txt blk03318.txt blk03319.txt blk03320.txt blk03321.txt blk03322.txt blk03323.txt blk03324.txt blk03325.txt blk03326.txt blk03327.txt blk03328.txt blk03329.txt blk03330.txt blk03331.txt blk03332.txt blk03333.txt blk03334.txt blk03335.txt blk03336.txt blk03337.txt blk03338.txt blk03339.txt blk03340.txt blk03341.txt blk03342.txt blk03343.txt blk03344.txt blk03345.txt blk03346.txt blk03347.txt blk03348.txt blk03349.txt blk03350.txt blk03351.txt blk03352.txt blk03353.txt blk03354.txt blk03355.txt blk03356.txt blk03357.txt blk03358.txt blk03359.txt blk03360.txt blk03361.txt blk03362.txt blk03363.txt blk03364.txt blk03365.txt blk03366.txt blk03367.txt blk03368.txt blk03369.txt blk03370.txt blk03371.txt blk03372.txt blk03373.txt blk03374.txt blk03375.txt blk03376.txt blk03377.txt blk03378.txt blk03379.txt blk03380.txt blk03381.txt blk03382.txt blk03383.txt blk03384.txt blk03385.txt blk03386.txt blk03387.txt blk03388.txt blk03389.txt blk03390.txt blk03391.txt blk03392.txt blk03393.txt blk03394.txt blk03395.txt blk03396.txt blk03397.txt blk03398.txt blk03399.txt blk03400.txt blk03401.txt blk03402.txt blk03403.txt blk03404.txt blk03405.txt blk03406.txt blk03407.txt blk03408.txt blk03409.txt blk03410.txt blk03411.txt blk03412.txt blk03413.txt blk03414.txt blk03415.txt blk03416.txt blk03417.txt blk03418.txt blk03419.txt blk03420.txt blk03421.txt blk03422.txt blk03423.txt blk03424.txt blk03425.txt blk03426.txt blk03427.txt blk03428.txt blk03429.txt blk03430.txt blk03431.txt blk03432.txt blk03433.txt blk03434.txt blk03435.txt blk03436.txt blk03437.txt blk03438.txt blk03439.txt blk03440.txt blk03441.txt blk03442.txt blk03443.txt blk03444.txt blk03445.txt blk03446.txt blk03447.txt blk03448.txt blk03449.txt blk03450.txt blk03451.txt blk03452.txt blk03453.txt blk03454.txt blk03455.txt blk03456.txt blk03457.txt blk03458.txt blk03459.txt blk03460.txt blk03461.txt blk03462.txt blk03463.txt blk03464.txt blk03465.txt blk03466.txt blk03467.txt blk03468.txt blk03469.txt blk03470.txt blk03471.txt blk03472.txt blk03473.txt blk03474.txt blk03475.txt blk03476.txt blk03477.txt blk03478.txt blk03479.txt blk03480.txt blk03481.txt blk03482.txt blk03483.txt blk03484.txt blk03485.txt blk03486.txt blk03487.txt blk03488.txt blk03489.txt blk03490.txt blk03491.txt blk03492.txt blk03493.txt blk03494.txt blk03495.txt blk03496.txt blk03497.txt blk03498.txt blk03499.txt blk03500.txt blk03501.txt blk03502.txt blk03503.txt blk03504.txt blk03505.txt blk03506.txt blk03507.txt blk03508.txt blk03509.txt blk03510.txt blk03511.txt blk03512.txt blk03513.txt blk03514.txt blk03515.txt blk03516.txt blk03517.txt blk03518.txt blk03519.txt blk03520.txt blk03521.txt blk03522.txt blk03523.txt blk03524.txt blk03525.txt blk03526.txt blk03527.txt blk03528.txt blk03529.txt blk03530.txt blk03531.txt blk03532.txt blk03533.txt blk03534.txt blk03535.txt blk03536.txt blk03537.txt blk03538.txt blk03539.txt blk03540.txt blk03541.txt blk03542.txt blk03543.txt blk03544.txt blk03545.txt blk03546.txt blk03547.txt blk03548.txt blk03549.txt blk03550.txt blk03551.txt blk03552.txt blk03553.txt blk03554.txt blk03555.txt blk03556.txt blk03557.txt blk03558.txt blk03559.txt blk03560.txt blk03561.txt blk03562.txt blk03563.txt blk03564.txt blk03565.txt blk03566.txt blk03567.txt blk03568.txt blk03569.txt blk03570.txt blk03571.txt blk03572.txt blk03573.txt blk03574.txt blk03575.txt blk03576.txt blk03577.txt blk03578.txt blk03579.txt blk03580.txt blk03581.txt blk03582.txt blk03583.txt blk03584.txt blk03585.txt blk03586.txt blk03587.txt blk03588.txt blk03589.txt blk03590.txt blk03591.txt blk03592.txt blk03593.txt blk03594.txt blk03595.txt blk03596.txt blk03597.txt blk03598.txt blk03599.txt blk03600.txt blk03601.txt blk03602.txt blk03603.txt blk03604.txt blk03605.txt blk03606.txt blk03607.txt blk03608.txt blk03609.txt blk03610.txt blk03611.txt blk03612.txt blk03613.txt blk03614.txt blk03615.txt blk03616.txt blk03617.txt blk03618.txt blk03619.txt blk03620.txt blk03621.txt blk03622.txt blk03623.txt blk03624.txt blk03625.txt blk03626.txt blk03627.txt blk03628.txt blk03629.txt blk03630.txt blk03631.txt blk03632.txt blk03633.txt blk03634.txt blk03635.txt blk03636.txt blk03637.txt blk03638.txt blk03639.txt blk03640.txt blk03641.txt blk03642.txt blk03643.txt blk03644.txt blk03645.txt blk03646.txt blk03647.txt blk03648.txt blk03649.txt blk03650.txt blk03651.txt blk03652.txt blk03653.txt blk03654.txt blk03655.txt blk03656.txt blk03657.txt blk03658.txt blk03659.txt blk03660.txt blk03661.txt blk03662.txt blk03663.txt blk03664.txt blk03665.txt blk03666.txt blk03667.txt blk03668.txt blk03669.txt blk03670.txt blk03671.txt blk03672.txt blk03673.txt blk03674.txt blk03675.txt blk03676.txt blk03677.txt blk03678.txt blk03679.txt blk03680.txt blk03681.txt blk03682.txt blk03683.txt blk03684.txt blk03685.txt blk03686.txt blk03687.txt blk03688.txt blk03689.txt blk03690.txt blk03691.txt blk03692.txt blk03693.txt blk03694.txt blk03695.txt blk03696.txt blk03697.txt blk03698.txt blk03699.txt blk03700.txt blk03701.txt blk03702.txt blk03703.txt blk03704.txt blk03705.txt blk03706.txt blk03707.txt blk03708.txt blk03709.txt blk03710.txt blk03711.txt blk03712.txt blk03713.txt blk03714.txt blk03715.txt blk03716.txt blk03717.txt blk03718.txt blk03719.txt blk03720.txt blk03721.txt blk03722.txt blk03723.txt blk03724.txt blk03725.txt blk03726.txt blk03727.txt blk03728.txt blk03729.txt blk03730.txt blk03731.txt blk03732.txt blk03733.txt blk03734.txt blk03735.txt blk03736.txt blk03737.txt blk03738.txt blk03739.txt blk03740.txt blk03741.txt blk03742.txt blk03743.txt blk03744.txt blk03745.txt blk03746.txt blk03747.txt blk03748.txt blk03749.txt blk03750.txt blk03751.txt blk03752.txt blk03753.txt blk03754.txt blk03755.txt blk03756.txt blk03757.txt blk03758.txt blk03759.txt blk03760.txt blk03761.txt blk03762.txt blk03763.txt blk03764.txt blk03765.txt blk03766.txt blk03767.txt blk03768.txt blk03769.txt blk03770.txt blk03771.txt blk03772.txt blk03773.txt blk03774.txt blk03775.txt blk03776.txt blk03777.txt blk03778.txt blk03779.txt blk03780.txt blk03781.txt blk03782.txt blk03783.txt blk03784.txt blk03785.txt blk03786.txt blk03787.txt blk03788.txt blk03789.txt blk03790.txt blk03791.txt blk03792.txt blk03793.txt blk03794.txt blk03795.txt blk03796.txt blk03797.txt blk03798.txt blk03799.txt blk03800.txt blk03801.txt blk03802.txt blk03803.txt blk03804.txt blk03805.txt blk03806.txt blk03807.txt blk03808.txt blk03809.txt blk03810.txt blk03811.txt blk03812.txt blk03813.txt blk03814.txt blk03815.txt blk03816.txt blk03817.txt blk03818.txt blk03819.txt blk03820.txt blk03821.txt blk03822.txt blk03823.txt blk03824.txt blk03825.txt blk03826.txt blk03827.txt blk03828.txt blk03829.txt blk03830.txt blk03831.txt blk03832.txt blk03833.txt blk03834.txt blk03835.txt blk03836.txt blk03837.txt blk03838.txt blk03839.txt blk03840.txt blk03841.txt blk03842.txt blk03843.txt blk03844.txt blk03845.txt blk03846.txt blk03847.txt blk03848.txt blk03849.txt blk03850.txt blk03851.txt blk03852.txt blk03853.txt blk03854.txt blk03855.txt blk03856.txt blk03857.txt blk03858.txt blk03859.txt blk03860.txt blk03861.txt blk03862.txt blk03863.txt blk03864.txt blk03865.txt blk03866.txt blk03867.txt blk03868.txt blk03869.txt blk03870.txt blk03871.txt blk03872.txt blk03873.txt blk03874.txt blk03875.txt blk03876.txt blk03877.txt blk03878.txt blk03879.txt blk03880.txt blk03881.txt blk03882.txt blk03883.txt blk03884.txt blk03885.txt blk03886.txt blk03887.txt blk03888.txt blk03889.txt blk03890.txt blk03891.txt blk03892.txt blk03893.txt blk03894.txt blk03895.txt blk03896.txt blk03897.txt blk03898.txt blk03899.txt blk03900.txt blk03901.txt blk03902.txt blk03903.txt blk03904.txt blk03905.txt blk03906.txt blk03907.txt blk03908.txt blk03909.txt blk03910.txt blk03911.txt blk03912.txt blk03913.txt blk03914.txt blk03915.txt blk03916.txt blk03917.txt blk03918.txt blk03919.txt blk03920.txt blk03921.txt blk03922.txt blk03923.txt blk03924.txt blk03925.txt blk03926.txt blk03927.txt blk03928.txt blk03929.txt blk03930.txt blk03931.txt blk03932.txt blk03933.txt blk03934.txt blk03935.txt blk03936.txt blk03937.txt blk03938.txt blk03939.txt blk03940.txt blk03941.txt blk03942.txt blk03943.txt blk03944.txt blk03945.txt blk03946.txt blk03947.txt blk03948.txt blk03949.txt blk03950.txt blk03951.txt blk03952.txt blk03953.txt blk03954.txt blk03955.txt blk03956.txt blk03957.txt blk03958.txt blk03959.txt blk03960.txt blk03961.txt blk03962.txt blk03963.txt blk03964.txt blk03965.txt blk03966.txt blk03967.txt blk03968.txt blk03969.txt blk03970.txt blk03971.txt blk03972.txt blk03973.txt blk03974.txt blk03975.txt blk03976.txt blk03977.txt blk03978.txt blk03979.txt blk03980.txt blk03981.txt blk03982.txt blk03983.txt blk03984.txt blk03985.txt blk03986.txt blk03987.txt blk03988.txt blk03989.txt blk03990.txt blk03991.txt blk03992.txt blk03993.txt blk03994.txt blk03995.txt blk03996.txt blk03997.txt blk03998.txt blk03999.txt blk04000.txt blk04001.txt blk04002.txt blk04003.txt blk04004.txt blk04005.txt blk04006.txt blk04007.txt blk04008.txt blk04009.txt blk04010.txt blk04011.txt blk04012.txt blk04013.txt blk04014.txt blk04015.txt blk04016.txt blk04017.txt blk04018.txt blk04019.txt blk04020.txt blk04021.txt blk04022.txt blk04023.txt blk04024.txt blk04025.txt blk04026.txt blk04027.txt blk04028.txt blk04029.txt blk04030.txt blk04031.txt blk04032.txt blk04033.txt blk04034.txt blk04035.txt blk04036.txt blk04037.txt blk04038.txt blk04039.txt blk04040.txt blk04041.txt blk04042.txt blk04043.txt blk04044.txt blk04045.txt blk04046.txt blk04047.txt blk04048.txt blk04049.txt blk04050.txt blk04051.txt blk04052.txt blk04053.txt blk04054.txt blk04055.txt blk04056.txt blk04057.txt blk04058.txt blk04059.txt blk04060.txt blk04061.txt blk04062.txt blk04063.txt blk04064.txt blk04065.txt blk04066.txt blk04067.txt blk04068.txt blk04069.txt blk04070.txt blk04071.txt blk04072.txt blk04073.txt blk04074.txt blk04075.txt blk04076.txt blk04077.txt blk04078.txt blk04079.txt blk04080.txt blk04081.txt blk04082.txt blk04083.txt blk04084.txt blk04085.txt blk04086.txt blk04087.txt blk04088.txt blk04089.txt blk04090.txt blk04091.txt blk04092.txt blk04093.txt blk04094.txt blk04095.txt blk04096.txt blk04097.txt blk04098.txt blk04099.txt blk04100.txt blk04101.txt blk04102.txt blk04103.txt blk04104.txt blk04105.txt blk04106.txt blk04107.txt blk04108.txt blk04109.txt blk04110.txt blk04111.txt blk04112.txt blk04113.txt blk04114.txt blk04115.txt blk04116.txt blk04117.txt blk04118.txt blk04119.txt blk04120.txt blk04121.txt blk04122.txt blk04123.txt blk04124.txt blk04125.txt blk04126.txt blk04127.txt blk04128.txt blk04129.txt blk04130.txt blk04131.txt blk04132.txt blk04133.txt blk04134.txt blk04135.txt blk04136.txt blk04137.txt blk04138.txt blk04139.txt blk04140.txt blk04141.txt blk04142.txt blk04143.txt blk04144.txt blk04145.txt blk04146.txt blk04147.txt blk04148.txt blk04149.txt blk04150.txt blk04151.txt blk04152.txt blk04153.txt blk04154.txt blk04155.txt blk04156.txt blk04157.txt blk04158.txt blk04159.txt blk04160.txt blk04161.txt blk04162.txt blk04163.txt blk04164.txt blk04165.txt blk04166.txt blk04167.txt blk04168.txt blk04169.txt blk04170.txt blk04171.txt blk04172.txt blk04173.txt blk04174.txt blk04175.txt blk04176.txt blk04177.txt blk04178.txt blk04179.txt blk04180.txt blk04181.txt blk04182.txt blk04183.txt blk04184.txt blk04185.txt blk04186.txt blk04187.txt blk04188.txt blk04189.txt blk04190.txt blk04191.txt blk04192.txt blk04193.txt blk04194.txt blk04195.txt blk04196.txt blk04197.txt blk04198.txt blk04199.txt blk04200.txt blk04201.txt blk04202.txt blk04203.txt blk04204.txt blk04205.txt blk04206.txt blk04207.txt blk04208.txt blk04209.txt blk04210.txt blk04211.txt blk04212.txt blk04213.txt blk04214.txt blk04215.txt blk04216.txt blk04217.txt blk04218.txt blk04219.txt blk04220.txt blk04221.txt blk04222.txt blk04223.txt blk04224.txt blk04225.txt blk04226.txt blk04227.txt blk04228.txt blk04229.txt blk04230.txt blk04231.txt blk04232.txt blk04233.txt blk04234.txt blk04235.txt blk04236.txt blk04237.txt blk04238.txt blk04239.txt blk04240.txt blk04241.txt blk04242.txt blk04243.txt blk04244.txt blk04245.txt blk04246.txt blk04247.txt blk04248.txt blk04249.txt blk04250.txt blk04251.txt blk04252.txt blk04253.txt blk04254.txt blk04255.txt blk04256.txt blk04257.txt blk04258.txt blk04259.txt blk04260.txt blk04261.txt blk04262.txt blk04263.txt blk04264.txt blk04265.txt blk04266.txt blk04267.txt blk04268.txt blk04269.txt blk04270.txt blk04271.txt blk04272.txt blk04273.txt blk04274.txt blk04275.txt blk04276.txt blk04277.txt blk04278.txt blk04279.txt blk04280.txt blk04281.txt blk04282.txt blk04283.txt blk04284.txt blk04285.txt blk04286.txt blk04287.txt blk04288.txt blk04289.txt blk04290.txt blk04291.txt blk04292.txt blk04293.txt blk04294.txt blk04295.txt blk04296.txt blk04297.txt blk04298.txt blk04299.txt blk04300.txt blk04301.txt blk04302.txt blk04303.txt blk04304.txt blk04305.txt blk04306.txt blk04307.txt blk04308.txt blk04309.txt blk04310.txt blk04311.txt blk04312.txt blk04313.txt blk04314.txt blk04315.txt blk04316.txt blk04317.txt blk04318.txt blk04319.txt blk04320.txt blk04321.txt blk04322.txt blk04323.txt blk04324.txt blk04325.txt blk04326.txt blk04327.txt blk04328.txt blk04329.txt blk04330.txt blk04331.txt blk04332.txt blk04333.txt blk04334.txt blk04335.txt blk04336.txt blk04337.txt blk04338.txt blk04339.txt blk04340.txt blk04341.txt blk04342.txt blk04343.txt blk04344.txt blk04345.txt blk04346.txt blk04347.txt blk04348.txt blk04349.txt blk04350.txt blk04351.txt blk04352.txt blk04353.txt blk04354.txt blk04355.txt blk04356.txt blk04357.txt blk04358.txt blk04359.txt blk04360.txt blk04361.txt blk04362.txt blk04363.txt blk04364.txt blk04365.txt blk04366.txt blk04367.txt blk04368.txt blk04369.txt blk04370.txt blk04371.txt blk04372.txt blk04373.txt blk04374.txt blk04375.txt blk04376.txt blk04377.txt blk04378.txt blk04379.txt blk04380.txt blk04381.txt blk04382.txt blk04383.txt blk04384.txt blk04385.txt blk04386.txt blk04387.txt blk04388.txt blk04389.txt blk04390.txt blk04391.txt blk04392.txt blk04393.txt blk04394.txt blk04395.txt blk04396.txt blk04397.txt blk04398.txt blk04399.txt blk04400.txt blk04401.txt blk04402.txt blk04403.txt blk04404.txt blk04405.txt blk04406.txt blk04407.txt blk04408.txt blk04409.txt blk04410.txt blk04411.txt blk04412.txt blk04413.txt blk04414.txt blk04415.txt blk04416.txt blk04417.txt blk04418.txt blk04419.txt blk04420.txt blk04421.txt blk04422.txt blk04423.txt blk04424.txt blk04425.txt blk04426.txt blk04427.txt blk04428.txt blk04429.txt blk04430.txt blk04431.txt blk04432.txt blk04433.txt blk04434.txt blk04435.txt blk04436.txt blk04437.txt blk04438.txt blk04439.txt blk04440.txt blk04441.txt blk04442.txt blk04443.txt blk04444.txt blk04445.txt blk04446.txt blk04447.txt blk04448.txt blk04449.txt blk04450.txt blk04451.txt blk04452.txt blk04453.txt blk04454.txt blk04455.txt blk04456.txt blk04457.txt blk04458.txt blk04459.txt blk04460.txt blk04461.txt blk04462.txt blk04463.txt blk04464.txt blk04465.txt blk04466.txt blk04467.txt blk04468.txt blk04469.txt blk04470.txt blk04471.txt blk04472.txt blk04473.txt blk04474.txt blk04475.txt blk04476.txt blk04477.txt blk04478.txt blk04479.txt blk04480.txt blk04481.txt blk04482.txt blk04483.txt blk04484.txt blk04485.txt blk04486.txt blk04487.txt blk04488.txt blk04489.txt blk04490.txt blk04491.txt blk04492.txt blk04493.txt blk04494.txt blk04495.txt blk04496.txt blk04497.txt blk04498.txt blk04499.txt blk04500.txt blk04501.txt blk04502.txt blk04503.txt blk04504.txt blk04505.txt blk04506.txt blk04507.txt blk04508.txt blk04509.txt blk04510.txt blk04511.txt blk04512.txt blk04513.txt blk04514.txt blk04515.txt blk04516.txt blk04517.txt blk04518.txt blk04519.txt blk04520.txt blk04521.txt blk04522.txt blk04523.txt blk04524.txt blk04525.txt blk04526.txt blk04527.txt blk04528.txt blk04529.txt blk04530.txt blk04531.txt blk04532.txt blk04533.txt blk04534.txt blk04535.txt blk04536.txt blk04537.txt blk04538.txt blk04539.txt blk04540.txt blk04541.txt blk04542.txt blk04543.txt blk04544.txt blk04545.txt blk04546.txt blk04547.txt blk04548.txt blk04549.txt blk04550.txt blk04551.txt blk04552.txt blk04553.txt blk04554.txt blk04555.txt blk04556.txt blk04557.txt blk04558.txt blk04559.txt blk04560.txt blk04561.txt blk04562.txt blk04563.txt blk04564.txt blk04565.txt blk04566.txt blk04567.txt blk04568.txt blk04569.txt blk04570.txt blk04571.txt blk04572.txt blk04573.txt blk04574.txt blk04575.txt blk04576.txt blk04577.txt blk04578.txt blk04579.txt blk04580.txt blk04581.txt blk04582.txt blk04583.txt blk04584.txt blk04585.txt blk04586.txt blk04587.txt blk04588.txt blk04589.txt blk04590.txt blk04591.txt blk04592.txt blk04593.txt blk04594.txt blk04595.txt blk04596.txt blk04597.txt blk04598.txt blk04599.txt blk04600.txt blk04601.txt blk04602.txt blk04603.txt blk04604.txt blk04605.txt blk04606.txt blk04607.txt blk04608.txt blk04609.txt blk04610.txt blk04611.txt blk04612.txt blk04613.txt blk04614.txt blk04615.txt blk04616.txt blk04617.txt blk04618.txt blk04619.txt blk04620.txt blk04621.txt blk04622.txt blk04623.txt blk04624.txt blk04625.txt blk04626.txt blk04627.txt blk04628.txt blk04629.txt blk04630.txt blk04631.txt blk04632.txt blk04633.txt blk04634.txt blk04635.txt blk04636.txt blk04637.txt blk04638.txt blk04639.txt blk04640.txt blk04641.txt blk04642.txt blk04643.txt blk04644.txt blk04645.txt blk04646.txt blk04647.txt blk04648.txt blk04649.txt blk04650.txt blk04651.txt blk04652.txt blk04653.txt blk04654.txt blk04655.txt blk04656.txt blk04657.txt blk04658.txt blk04659.txt blk04660.txt blk04661.txt blk04662.txt blk04663.txt blk04664.txt blk04665.txt blk04666.txt blk04667.txt blk04668.txt blk04669.txt blk04670.txt blk04671.txt blk04672.txt blk04673.txt blk04674.txt blk04675.txt blk04676.txt blk04677.txt blk04678.txt blk04679.txt blk04680.txt blk04681.txt blk04682.txt blk04683.txt blk04684.txt blk04685.txt blk04686.txt blk04687.txt blk04688.txt blk04689.txt blk04690.txt blk04691.txt blk04692.txt blk04693.txt blk04694.txt blk04695.txt blk04696.txt blk04697.txt blk04698.txt blk04699.txt blk04700.txt blk04701.txt blk04702.txt blk04703.txt blk04704.txt blk04705.txt blk04706.txt blk04707.txt blk04708.txt blk04709.txt blk04710.txt blk04711.txt blk04712.txt blk04713.txt blk04714.txt blk04715.txt blk04716.txt blk04717.txt blk04718.txt blk04719.txt blk04720.txt blk04721.txt blk04722.txt blk04723.txt blk04724.txt blk04725.txt blk04726.txt blk04727.txt blk04728.txt blk04729.txt blk04730.txt blk04731.txt blk04732.txt blk04733.txt blk04734.txt blk04735.txt blk04736.txt blk04737.txt blk04738.txt blk04739.txt blk04740.txt blk04741.txt blk04742.txt blk04743.txt blk04744.txt blk04745.txt blk04746.txt blk04747.txt blk04748.txt blk04749.txt blk04750.txt blk04751.txt blk04752.txt blk04753.txt blk04754.txt blk04755.txt blk04756.txt blk04757.txt blk04758.txt blk04759.txt blk04760.txt blk04761.txt blk04762.txt blk04763.txt blk04764.txt blk04765.txt blk04766.txt blk04767.txt blk04768.txt blk04769.txt blk04770.txt blk04771.txt blk04772.txt blk04773.txt blk04774.txt blk04775.txt blk04776.txt blk04777.txt blk04778.txt blk04779.txt blk04780.txt blk04781.txt blk04782.txt blk04783.txt blk04784.txt blk04785.txt blk04786.txt blk04787.txt blk04788.txt blk04789.txt blk04790.txt blk04791.txt blk04792.txt blk04793.txt blk04794.txt blk04795.txt blk04796.txt blk04797.txt blk04798.txt blk04799.txt blk04800.txt blk04801.txt blk04802.txt blk04803.txt blk04804.txt blk04805.txt blk04806.txt blk04807.txt blk04808.txt blk04809.txt blk04810.txt blk04811.txt blk04812.txt blk04813.txt blk04814.txt blk04815.txt blk04816.txt blk04817.txt blk04818.txt blk04819.txt blk04820.txt blk04821.txt blk04822.txt blk04823.txt blk04824.txt blk04825.txt blk04826.txt blk04827.txt blk04828.txt blk04829.txt blk04830.txt blk04831.txt blk04832.txt blk04833.txt blk04834.txt blk04835.txt blk04836.txt blk04837.txt blk04838.txt blk04839.txt blk04840.txt blk04841.txt blk04842.txt blk04843.txt blk04844.txt blk04845.txt blk04846.txt blk04847.txt blk04848.txt blk04849.txt blk04850.txt blk04851.txt blk04852.txt blk04853.txt blk04854.txt blk04855.txt blk04856.txt blk04857.txt blk04858.txt blk04859.txt blk04860.txt blk04861.txt blk04862.txt blk04863.txt blk04864.txt blk04865.txt blk04866.txt blk04867.txt blk04868.txt blk04869.txt blk04870.txt blk04871.txt blk04872.txt blk04873.txt blk04874.txt blk04875.txt blk04876.txt blk04877.txt blk04878.txt blk04879.txt blk04880.txt blk04881.txt blk04882.txt blk04883.txt blk04884.txt blk04885.txt blk04886.txt blk04887.txt blk04888.txt blk04889.txt blk04890.txt blk04891.txt blk04892.txt blk04893.txt blk04894.txt blk04895.txt blk04896.txt blk04897.txt blk04898.txt blk04899.txt blk04900.txt blk04901.txt blk04902.txt blk04903.txt blk04904.txt blk04905.txt blk04906.txt blk04907.txt blk04908.txt blk04909.txt blk04910.txt blk04911.txt blk04912.txt blk04913.txt blk04914.txt blk04915.txt blk04916.txt blk04917.txt blk04918.txt blk04919.txt blk04920.txt blk04921.txt blk04922.txt blk04923.txt blk04924.txt blk04925.txt blk04926.txt blk04927.txt blk04928.txt blk04929.txt blk04930.txt blk04931.txt blk04932.txt blk04933.txt blk04934.txt blk04935.txt blk04936.txt blk04937.txt blk04938.txt blk04939.txt blk04940.txt blk04941.txt blk04942.txt blk04943.txt blk04944.txt blk04945.txt blk04946.txt blk04947.txt blk04948.txt blk04949.txt blk04950.txt blk04951.txt blk04952.txt blk04953.txt blk04954.txt blk04955.txt blk04956.txt blk04957.txt blk04958.txt blk04959.txt blk04960.txt blk04961.txt blk04962.txt blk04963.txt blk04964.txt blk04965.txt blk04966.txt blk04967.txt blk04968.txt blk04969.txt blk04970.txt blk04971.txt blk04972.txt blk04973.txt blk04974.txt blk04975.txt blk04976.txt blk04977.txt blk04978.txt blk04979.txt blk04980.txt blk04981.txt blk04982.txt blk04983.txt blk04984.txt blk04985.txt blk04986.txt blk04987.txt blk04988.txt blk04989.txt blk04990.txt blk04991.txt blk04992.txt blk04993.txt blk04994.txt blk04995.txt blk04996.txt blk04997.txt blk04998.txt blk04999.txt blk05000.txt blk05001.txt blk05002.txt blk05003.txt blk05004.txt blk05005.txt blk05006.txt blk05007.txt blk05008.txt blk05009.txt blk05010.txt Show all files
Advertisement: